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Abstract

The study of pattern containment and avoidance for linear permutations is a well-established
area of enumerative combinatorics. A cyclic permutation is the set of all rotations of a linear
permutation. Vella and Callan independently initiated the study of permutation avoidance in
cyclic permutations and characterized the avoidance classes for all single permutations of length
4. We continue this work. In particular, we derive results about avoidance of multiple patterns
of length 4, and we determine generating functions for the cyclic descent statistic on these
classes. We also consider consecutive pattern containment, and relate the generating functions
for the number of occurrences of certain linear and cyclic patterns. Finally, we end with various
open questions and avenues for future research.
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Figure 1: The graph of 42351 on the left and of [42351] on the right

1 Introduction

We first review some notions from the well-studied theory of patterns in (linear) permutations. More
information on this topic can be found in the texts of Bóna [8], Sagan [35], or Stanley [37, 38].
Let N be the nonnegative integers. If m,n ∈ N then we define [m,n] = {m,m + 1, . . . , n} which
we abbreviate to [n] = [1, n] when m = 1. Consider the symmetric group Sn of all permutations
π = π1π2 . . . πn of [n] written in one-line notation. We call n the length of π and write |π| = n. We
will sometimes put commas between the elements of π for readability. We say that two sequences
of distinct integers π = π1 . . . πk and σ = σ1 . . . σk are order isomorphic, written π ∼= σ, whenever
πi < πj if and only if σi < σj. If σ ∈ Sn and π ∈ Sk then σ contains π as a pattern if there is a
subsequence σ′ of σ with |σ′| = k and σ′ ∼= π. If no such subsequence exists then σ avoids π. We use
the notation

Avn(π) = {σ ∈ Sn | σ avoids π}

for the avoidance class of π. For example σ = 42351 contains the pattern π = 3241 because of the
subsequence 4251 among others. But it avoids 1234 because it has no increasing subsequence of
length 4. One can extend this notion to sets of permutations Π by letting

Avn(Π) = {σ ∈ Sn | σ avoids all π ∈ Π} =
⋂
π∈Π

Avn(π).

A famous theorem of Erdős and Szekeres [26] can be stated in terms of pattern containment and
avoidance. Let

ιn = 12 . . . n

and
δn = n . . . 21

be the increasing and decreasing permutations of length n, respectively.

Theorem 1.1 ([26]). Suppose m,n ∈ N. Then any σ ∈ Smn+1 contains either ιm+1 or δn+1. This is
the best possible in that there exist permutations in Smn which avoid both ιm+1 and δn+1.

The diagram of π ∈ Sn is the collection of points (i, πi) in the first quadrant of the Cartesian
plane. The graphical representation of π = 42351 is given on the left in Figure 1. It follows that we
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can act on π with the dihedral group of the square

D4 = {ρ0, ρ90, ρ180, ρ270, r0, r1, r−1, r∞}

where ρθ is rotation counterclockwise through θ degrees and rm is reflection in a line of slope m.
We wish to write some of these rigid motions in terms of the one-line notation for π = π1π2 . . . πn.
Reflection in a vertical line gives the reversal of π which is

πr = πn . . . π2π1.

Similarly, reflection in a horizontal line results in the complement of π

πc = n+ 1− π1, n+ 1− π2, . . . , n+ 1− πn.

Combining these two operations gives rotation by 180 degree or reverse complement

πrc = n+ 1− πn, . . . , n+ 1− π2, n+ 1− π1.

We apply any of these operations to sets of permutations by applying them to each element of the
set.

We can use diagrams to inflate permutations. If we are given π = π1π2 . . . πn ∈ Sn and per-
mutations σ1, σ2, . . . , σn then the inflation of π by the σi is the permutation π⟨σ1, σ2, . . . , σn⟩ whose
diagram is obtained from that of π by replacing each vertex (i, πi) by a copy of σi. For example,
given π = 132 and σ1, σ2, σ3 then a schematic of the diagram of 132⟨σ1, σ2, σ3⟩ is given on the right
in Figure 2. More concretely, if σ1 = 21, σ2 = 1, and σ3 = 213 then

132⟨σ1, σ2, σ3⟩ = 216435.

We say that patterns π and π′ are Wilf equivalent, written π ≡ π′, if #Avn(π) = #Avn(π
′) for

all n ∈ N where the hash symbol denotes cardinality. This definition extends in the obvious way to
sets of patterns. Note that if π and π′ are Wilf equivalent then both must be in the same Sn. It is
easy to see that if ϕ ∈ Dn then π ≡ ϕ(π) and so these are called trivial Wilf equivalences. As is well
known, all elements of S3 are Wilf equivalent.

Theorem 1.2. If π ∈ S3 then
#Avn(π) = Cn

where Cn = 1
n+1

(
2n
n

)
it the nth Catalan number.

Trivial Wilf equivalence carries over to sets Π of permutations. Simion and Schmidt [36] determined
all Wilf equivalences among the Avn(Π) for all Π ⊆ S3.

A permutation statistic is a map st : ⊎n≥0Sn → S where S is some set. Many statistics are based
on the descent set statistic which is

Des π = {i | πi > πi+1}.

The elements i ∈ Des π are called descents and if πi < πi+1 then i is called an ascent. Four famous
statistics related to Des are the the descent number statistic

desπ = #Des π
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Figure 2: The diagram of 132 (left) and 132⟨σ1, σ2, σ3⟩ (right)

the major index statistic

maj π =
∑

i∈Desπ

i,

the inversion statistic
inv π = #{(i, j) | i < j and πi > πj},

and the excedance statistic
excπ = #{i | π(i) > i}.

Let st be a statistic whose range is N and q be a variable. If Π is a set of patterns then its avoidance
class has a corresponding generating function

F st
n (Π) = F st

n (Π; q) =
∑

σ∈Avn(Π)

qstσ.

Say that Π and Π′ are st-Wilf equivalent and write Π
st≡ Π′ if F st

n (Π) = F st
n (Π′) for all n ≥ 0. Clearly

st-Wilf equivalence implies Wilf equivalence. The maj- and inv-Wilf equivalence classes for Π ⊆ S3

were determined by Dokos, Dwyer, Johnson, Sagan, and Selsor [17].
If π = π1π2 . . . πn ∈ Sn then the corresponding cyclic permutation is the set of all rotations of π,

denoted by
[π] = {π1π2 . . . πn, π2 . . . πnπ1, . . . , πnπ1 . . . , πn−1}.

These are sometimes called horizontal rotations in the literature to distinguish them from vertical
rotations of the diagram [24, 25]. Our notion of cyclic permutations has appeared in the literature
under different names: Callan [10] calls them “circular permutations”, and Vella [40] calls them
“cyclic arrangements”. We also note that some authors use the term “cyclic permutation” to refer
instead to a linear permutation whose disjoint cycle decomposition is a single cycle, and study pattern
avoidance in this setting [2, 21]. Continuing our example from the beginning of the section,

[42351] = {42351, 23514, 35142, 51423, 14235}.

If necessary, we will call permutations from Sn linear to distinguish them from their cyclic cousins.
We also use square brackets to denote cyclic analogues of objects defined in the linear case. For
example, [Sn] is the set of all cyclic permutations of length n. We say a cyclic permutation [σ]
contains [π] as a pattern if there is some rotation σ′ of σ which contains π linearly. Otherwise [σ]
avoids [π]. In our perennial example, even though 42351 avoids 1234 we have that [42351] contains
[1234] since the rotation 14235 has the copy 1235 of this pattern. Given a set [Π] of cyclic patterns,
the cyclic avoidance class Avn[Π] is defined as expected. Note that when using a specific set of cyclic
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permutations, the square brackets will be put around the permutations themselves, for example,
Avn([π], [π

′]).
One can also put certain restrictions on the form of a copy of a pattern. A vincular pattern [π] is

one where certain cyclically adjacent elements of π are required to be cyclically adjacent in any copy.
In this case, the adjacent elements are underlined. For example, [42351] contains the vincular pattern
[1324] because the copy [1425] has the three corresponding elements cyclically adjacent. However,
it avoids [1324] because neither of the two copies of [1324] have the prescribed adjacencies. Call a
vincular pattern of the form [π1 . . . πk] consecutive.

Vella [40] is the first person, to our knowledge, to consider (nonvincular) cyclic pattern avoidance
and calculate #Avn[1243] and #Avn[1324]. Callan [10] determined #Avn[π] for all [π] ∈ [S4].
Gray, Lanning, and Wang continued work in this direction considering cyclic packing of patterns [28]
and patterns in colored cyclic permutations [29]. The study of vincular patterns in the linear case
was originated by Babson and Steingŕımsson [3]. More recently, and inspired by the present work,
Li [32] studied avoiding sets of vincular patterns of length three and four. A cyclic version of the
Erdős–Szekeres Theorem was proved by Czabarka and Wang [13] and will be useful for us in the
sequel.

Theorem 1.3 ([13]). If m,n ∈ N then any [σ] ∈ [Smn+2] contains either [ιm+2] or [δn+2]. This is
the best possible in that there exist permutations in [Smn+1] which avoid both [ιm+2] and [δn+2].

The graph of a cyclic permutation [π] is obtained by embedding the graph of π on a cylinder. This
is indicated on the right in Figure 1 by identifying the two dotted arrows. Cyclic Wilf equivalence
has the obvious definition. But note that now there are fewer trivial cyclic Wilf equivalences since
we need the chosen group element to preserved the cylinder, not just the square. So the only trivial
equivalences are

[π] ≡ [πr] ≡ [πc] ≡ [πrc]. (1)

Certain linear permutation statistics have obvious cyclic analogues. For example, if π ∈ Sn then
its cyclic descent number is

cdes[π] = #{i | πi > πi+1 where subscripts are taken modulo n}.

Note that this is well defined because the cardinality does not depend on which representative of
[π] is chosen. To illustrate, π = 23514 has cyclic descents at indices 3 and 5 so cdes[π] = 2. The
corresponding generating function F cdes

n [Π] where [Π] is a set of cyclic permutations, and cdes-Wilf
equivalence should now need no definition. Note that cdes is another form of the excedance statistic
on linear permutations. In particular, if π = π1π2 . . . πn then

cdes[π] = exc(πn, . . . , π2, π1)

where (πn, πn−1 . . . , π1) is cycle notation for the linear permutation which, as a function, sends πi to
πi−1 for all i modulo n.

The rest of this paper is organized as follows. Section 2 will extend Callan’s work by enumerating
Avn[Π] for [Π] ⊂ [S4] consisting of two patterns. One of our principle proof techniques will be the use
of generating trees. The following section will consider [Π] with three or more patterns. We will need
the cyclic version of the Erdős–Szekeres Theorem in this section and the previous one to show that
the cardinalities of certain avoidance classes are eventually zero. In Section 4 we will compute the
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[Π] #Avn[Π]

{[1234]}, {[1432]} 2n + 1− 2n−
(
n
3

)
{[1243]}, {[1342]} 2n−1 − n+ 1

{[1324]}, {[1423]} F2n−3

{[1234], [1243]}, {[1234], [1324]}, {[1234], [1342]}, {[1243], [1432]} 2(n− 2)
{[1342], [1432]}, {[1423], [1432]}
{[1234], [1423]}, {[1243], [1324]}, {[1243], [1423]}, {[1324], [1342]} 1 +

(
n−1
2

)
{[1324], [1432]}, {[1342], [1423]}
{[1234], [1432]} 0

{[1243], [1342]} 4

{[1324], [1423]} 2n−2

{[1234], [1243], [1324]}, {[1234], [1324], [1342]}, {[1243], [1324], [1342]} 3
{[1243], [1342], [1423]}, {[1243], [1423], [1432]}, {[1342], [1423], [1432]}
{[1234], [1243], [1342]}, {[1243], [1342], [1432]} 2

{[1234], [1243], [1423]}, {[1234], [1324], [1423]}, {[1234], [1342], [1423]} n− 1
{[1243], [1324], [1423]}, {[1243], [1324], [1432]}, {[1324], [1342], [1423]}
{[1324], [1342], [1432]}, {[1324], [1423], [1432]}
{[1234], [1243], [1432]}, {[1234], [1324], [1432]} 0
{[1234], [1342], [1432]}, {[1234], [1423], [1432]}
{[1234], [1243], [1324], [1342]}, {[1243], [1342], [1423], [1432]} 1

{[1234], [1243], [1324], [1423]}, {[1234], [1243], [1342], [1423]} 2
{[1234], [1324], [1342], [1423]}, {[1243], [1324], [1342], [1423]}
{[1243], [1324], [1342], [1432]}, {[1243], [1324], [1423], [1432]}
{[1324], [1342], [1423], [1432]}
{[1234], [1243], [1324], [1342], [1423]}, {[1243], [1324], [1342], [1423], [1432]} 1

Table 1: Wilf equivalence classes and cardinalities of Avn[Π] for certain [Π] and n ≥ 5

cyclic descent generating functions for [Π] ⊂ [S4], thus refining the previous enumerations. Section 5
will be devoted to the study of consecutive patterns whose initial element is 1. We will show that
there is a simple relationship between the generating functions counting the number of occurrences of
a consecutive pattern in linear permutations and its cyclic analogue. This will be used to resolve two
conjectures in an earlier version of this article which were also proved in the aforementioned paper
of Li [32]. We will end with a section of open problems and additional comments.

2 Pattern avoidance of doubletons

In this section we will enumerate Avn[Π] for all [Π] ⊂ [S4] with #[Π] = 2. Any cyclic Wilf equiv-
alences stated without proof are trivial. We will collect our results in this section and the next, as
well as those of Callan, in Table 1.
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Let us first dispose of the simplest singleton avoidance classes where [π] ∈ [Sk] for k < 4. In
[S2] there is only one cyclic permutation [12] and it is easy to see that every [σ] of length at least
2 contains it. In [S3] there are only the patterns [123] and [321], and these are only avoided by [δn]
and [ιn], respectively.

Callan [10] enumerated Avn[π] for any given [π] ∈ [S4]. Recall the version of the Fibonacci
numbers defined by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3. Unlike the case of linear
permutations in S3, there are no nontrivial Wilf equivalences.

Theorem 2.1 ([10]). For n ≥ 2 we have

#Avn[1234] = #Avn[1432] = 2n + 1− 2n−
(
n

3

)
,

#Avn[1243] = #Avn[1342] = 2n−1 − n+ 1,

#Avn[1324] = #Avn[1423] = F2n−3.

In presenting the enumerations for doubletons, we make the following conventions to facilitate
locating a given result. All cyclic patterns will be listed starting with 1. And all sets of cyclic patterns
will be given in lexicographic order. We will also use terms like “just before” or “just after” in [σ]
to refer the left-to-right order on the cylinder of a cyclic permutation in the form of Figure 1. For
example, in [σ] = [42351] the 5 comes just before 1 and the 4 just after. We also say that an element
x is between y and z if it is in the subsequence of [σ] traversed going left-to-right around the cylinder
from y to z. Continuing our example, between 2 and 5 we have 3, while between 5 and 2 we have 1
and 4.

One of our tools will be generating trees. To the best of our knowledge, these trees were introduced
by Chung, Grahamm, Hoggatt, and Kleiman [12] for studying Baxter permutations. Since then, they
have become an integral technique in the theory of pattern avoidance [4, 9, 31, 41, 42]. The generating
tree for an avoidance class Av[Π], denoted by T [Π], has as its root the permutation [12]. The children
of any [σ] ∈ Avn[Π] are all the [σ′] ∈ Avn+1[Π] which can be formed by inserting n + 1 into one of
the spaces of [σ]. A space, also called a site, where insertion of n + 1 produces a permutation of
the avoidance class is called active while the other spaces are inactive. A useful observation is that
if a space is inactive it must be because inserting n + 1 there results in copy of a forbidden pattern
[π] where n + 1 plays the role of the largest element of π. Once we have picked a representative
σ = σ1σ2 . . . σn for [σ] we will label the spaces as 1, 2, . . . , n left to right where space i comes between
σi and σi+1. The nodes for Avn[Π] will be said to be at level n in T [Π]. We call the number of children
of a vertex its degree which is denoted deg[σ]. Given d ∈ N, suppose that every cyclic permutation
with deg[σ] = d has children of degrees c1, c2, . . . , cd. Then this is denoted by the production rule

(d) → (c1)(c2) . . . (cd).

There may be other nodes having some special characteristic X which always produces nodes having
characteristics Y1, Y2, . . . , Yd which correspond to a production rule

(X) → (Y1)(Y2) . . . (Yd).

In particular, the characteristic of being the root of the tree is denoted in a production rule by (∗).
We can also have production rules which mix numbers for degrees and letters for characteristics. If
T [π] can be characterized by production rules, these can often be used to calculate #Avn[Π].
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Theorem 2.2. We have

{[1234], [1243]} ≡ {[1234], [1342]} ≡ {[1243], [1432]} ≡ {[1342], [1432]}.

And for n ≥ 3
#Avn([1234], [1342]) = 2(n− 2).

Proof. We claim that T = T ([1234], [1342]) has the following production rules

(∗) → (2)(2),

(1) → (1),

(2) → (1)(2).

Once these are proved then the enumeration follows easily since one can inductively show that, for
n ≥ 3, level n consists of two nodes of degree 2 and 2(n− 3) nodes of degree 1.

It is easy to check the production rule at levels n = 2 and 3, so we assume that n ≥ 4 and also
that [σ] ∈ Avn([1234], [1342]). First of all, note that the site before n is always active. For if it were
not then the result [σ′] of inserting n+1 would have a copy κ of one of the patterns containing n+1.
But n can not be in κ since neither of the patterns have 4 followed immediately in the cycle by 3. So
replacing n+ 1 by n in κ would give a forbidden pattern in [σ] which is a contradiction. Thus every
[σ] at has at least one child. Also σ has at most two children. For suppose

σ′ = n+ 1, ρ, n, τ

is the result of inserting n+1 in σ. It follows that |ρ| ≤ 1 since if ρ ≥ 2 then [σ′] has a copy of either
[4123] or [4213]. Thus n+ 1 must be inserted either directly before n or two elements before n.

Now consider
δ = n, n− 1, . . . , 3, 2, 1, and ϵ = n, n− 1, . . . , 3, 1, 2. (2)

It is easy to check that both sites n and n − 1 are active in these permutations and so both have
degree 2. It is also obvious that if one inserts n + 1 in site n in either permutation then one gets
another permutation of the same form.

From what we have done, we can finish the proof if we show that deg[σ] = 2 implies [σ] = [δ] or
[σ] = [ϵ]. Write

σ = nρm

where m is the last element of σ and ρ is everything between n and m. Since deg[σ] = 2, site n− 1
is active and inserting n+ 1 there yields

σ′ = n, ρ, n+ 1,m.

Then m ≤ 2 since otherwise [σ] contains a copy of [4123] or [4213] since n ≥ 4. In the case m = 1 we
must have ρ decreasing. For if there is an ascent x < y in ρ then [σ′] contains [x, y, n+ 1, 1] which is
a copy of [2341], a contradiction. So in this case ρ is decreasing and σ = δ. The other possibility is
that m = 2. This forces the last element of ρ to be 1. For if 1 is elsewhere and x is the last element
of ρ then then [σ′] contains [1, x, n+1, 2] which is contradictory copy of [1342]. Similarly to the first
case, one can now show that ρ is decreasing and so σ = ϵ as desired.
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Comparing our next result with the previous one will provide our first nontrivial Wilf equivalence.

Theorem 2.3. We have
{[1234], [1324]} ≡ {[1423], [1432]}.

And for n ≥ 3
#Avn([1234], [1324]) = 2(n− 2).

Proof. Let D stand for the decreasing permutation and E for the decreasing permutation with its
largest two elements swapped. We consider the root [12] to be of type D. We will show that
T = T ([1234], [1324]) has production rules

(1) → (1),

(D) → (D)(E),

(E) → (1)(1).

It follows by induction that level n ≥ 3 of T has a D, an E, and 2(n−3) nodes of degree one, proving
the theorem.

The same demonstration as in the previous theorem shows that the site before n in any [σ] ∈
Avn([1234], [1324]) is active. So again, every such permutation has at least one child. Also, every [σ]
has at most two children. Indeed, write

σ = 1σ2 . . . σn (3)

and put n+1 in site i ≥ 3. Then 1, σ2, σ3, n+1 is a copy of either 1234 or 1324, another contradiction.
Now consider permutations corresponding to D and E at level n

δ = 1, n, n− 1, n− 2, n− 3, . . . , 2 and ϵ = 1, n− 1, n, n− 2, n− 3, . . . , 2. (4)

It is easy to check that both sites 1 and 2 are active in δ, ϵ. So, by the previous paragraph, they
both have degree 2. Furthermore, the two children of δ have the form D and E.

We will be done if we can show that [σ] having two children implies [σ] = [δ] or [ϵ]. Write σ as
in (3). Since the active sites must be 1 and 2, and the site before n must be active, either σ2 = n or
σ3 = n. If σ2 = n and there is an ascent x < y in the rest of the permutation, then after inserting
n + 1 in position 2 we have [x, y, n, n + 1] which is a copy of [1234], a contradiction. So in this case
[σ] = [δ]. Alternatively, suppose σ3 = n. This forces σ2 = n− 1, since if σ2 = x < n− 1 then n− 1
comes after n. But inserting n + 1 in position 1 gives [x, n, n − 1, n + 1] which is a copy of [1324].
And similarly to the first case we see that the rest of σ is decreasing. The result is that [σ] = [ϵ].
This completes the proof.

Theorem 2.4. We have
{[1234], [1423]} ≡ {[1324], [1432]}.

And for n ≥ 1

#Avn([1234], [1423]) = 1 +

(
n− 1

2

)
.
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Proof. Suppose [σ] ∈ Avn([1234], [1423]) and write

σ = 1ρnτ (5)

where ρ and τ are the subsequences between 1 and n, and between n and 1, respectively. Now ρ and
τ must be decreasing since [σ] avoids [1234] and [1423], respectively. Furthermore, ρ must consist of
consecutive integers since, if not, then we have x < y < z such that 1zxny is a subsequence of σ. So
[xnyz] is a copy of [1423] in [σ], which is a contradiction. Conversely, it is easy to check that if σ has
the form (5) with ρ and τ decreasing and ρ consecutive then [σ] ∈ Avn([1234], [1423]). So we have
characterized the elements of this class.

To finish the enumeration, if ρ = ∅ there is one corresponding σ. But if ρ ̸= ∅ then choosing the
smallest and largest element of ρ from the elements 2, 3, . . . , n − 1 completely determines σ. Since
these two elements could be equal, we are choosing 2 elements from n − 2 elements with repetition
which is counted by

(
n−1
2

)
.

The following result follows immediately from Theorem 1.3

Theorem 2.5. We have
#Avn([1234], [1432]) = 0

for n ≥ 6.

We now have, by comparison with Theorem 2.4, another nontrivial Wilf equivalence.

Theorem 2.6. We have

{[1243], [1324]} ≡ {[1243], [1423]} ≡ {[1324], [1342]} ≡ {[1342], [1423]}.

And for n ≥ 1

#Avn([1324], [1342]) = 1 +

(
n− 1

2

)
.

Proof. Take [σ] ∈ Avn([1324], [1342]) and write σ as in (5). Then ρ is increasing since [σ] avoids
[1324]. And every element of ρ is smaller than every element of τ since [σ] avoids [1342]. To avoid a
copy of one of the forbidden patterns containing the 1 of σ we must have that τ avoids 213 and 231.
And to avoid a copy of [1324] where n plays the role of 4, it must be that τ avoids 132. The τ which
avoid these three pattern are exactly those which are inflations of the form τ = 21⟨δk, ιl⟩ for some
k, l ≥ 0 (see the chart on page 2773 of [17]). Absorbing the 1 and n of σ into ρ and τ , respectively,
we see that

σ = 132⟨ιj, δk, ιl⟩ (6)

where j, k ≥ 1 and l ≥ 0. Again, it is not hard to check that for every σ of this form we have
[σ] ∈ Avn([1324], [1342]).

To enumerate these σ, we distinguish two cases. If l ≥ 2 then picking the smallest and largest
elements of the copy of ιl from 2, 3, . . . , n−1 completely determines σ. So in this case there are

(
n−2
2

)
choices. If l ≤ 1 then the copy of ιl can be appended to the copy of δk so that σ = 12[ιj, δn−j]. Since
we must have 1 and n in the ascending and decreasing subsequences, there are now n − 1 choices.
Adding the two counts given the desired result.
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Theorem 2.7. For n ≥ 4 we have

#Avn([1243], [1342]) = 4.

Proof. Take [σ] ∈ Avn([1243], [1342]) and write σ as in (5). Then ρ and τ can not both be nonempty.
For if x ∈ ρ and y ∈ τ then 1xny is a copy of either 1243 or 1342.

Assume first that ρ = ∅ so that
σ = 1nτ. (7)

Then τ must be increasing or decreasing. For suppose it was neither. Then it would contain a copy
of one of the patterns 132, 231, 213, or 312. In the first two cases this would give, together with
the 1, a copy of 1243 or 1342 in σ. And in the last two cases, prepending n gives a copy of 4213 or
4312. Conversely, if σ is given by (7) with τ increasing or decreasing then it is easy to verify that
[σ] ∈ Avn([1243], [1342]).

Using the same ideas, one can also show that if τ = ∅ then one gets exactly two elements of
Avn([1243], [1342]), of the form σ = 1ρn where ρ is either increasing or decreasing. Thus there are a
total of four elements in the avoidance class.

Theorem 2.8. For n ≥ 3 we have

#Avn([1324], [1423]) = 2n−2.

Proof. Take [σ] ∈ Avn([1324], [1423]) and write

σ = n, ρ, n− 1, τ.

Similar to the previous proof, one of ρ or τ must be empty since otherwise 4132 or 4231 is a pattern
in σ. If ρ = ∅ then one shows similarly that n−2 either begins or ends τ . Continuing in this manner,
we see that there are 2 choices for the positions of n − 1, n − 2, . . . , 2. Checking, as usual, that all
such permutations are actually in the avoidance set, the enumeration follows.

3 Three or more patterns

We will now compute #Avn[Π] for Π ⊆ S4 having #Π ≥ 3. We will not consider those [Π] containing
both [1234] and [1432] since for such classes #Avn[Π] = 0 for n ≥ 6 as in Theorem 2.5.

Theorem 3.1. We have

{[1234], [1243], [1324]} ≡ {[1234], [1324], [1342]} ≡ {[1243], [1423], [1432]} ≡ {[1342], [1423], [1432]}.

And for n ≥ 4
#Avn([1234], [1324], [1342]) = 3.

Proof. If [σ] ∈ Avn([1234], [1324], [1342]) then [σ] avoids [1324] and [1342]. So, by the proof of
Theorem 2.6, we can write σ in the form (6) for j, k, l ≥ 1. But since [σ] also avoids [1234] we must
have j + l ≤ 3. For the same reason, j ≤ 2 since if j = 3 then the copy of ι3 and one element of the
copy of δk would form a [1234]. Thus the only possibilities are (j, l) = (1, 1), (1, 2), or (2, 1) which
proves the result.
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Theorem 3.2. We have

{[1234], [1243], [1342]} ≡ {[1243], [1342], [1432]}.

And for n ≥ 5
#Avn([1234], [1243], [1342]) = 2.

Proof. If [σ] ∈ Avn([1234], [1243], [1342]) then [σ] avoids [1243] and [1342]. So, by the proof of
Theorem 2.7, we can write

σ = xyρ (8)

where {x, y} = {1, n} and ρ is either increasing or decreasing. Since n ≥ 5 we have |ρ| ≥ 3. But [σ]
also avoides [1234] and this forces ρ to be decreasing. So there are two choices for [σ] depending on
the values of x and y.

Theorem 3.3. We have

{[1234], [1243], [1423]} ≡ {[1234], [1342], [1423]} ≡ {[1243], [1324], [1432]} ≡ {[1324], [1342], [1432]}.

And for n ≥ 2
#Avn([1234], [1342], [1423]) = n− 1.

Proof. We will show that T = T ([1234], [1342], [1423]) has production rules

(∗) → (1)(2),

(1) → (1),

(2) → (1)(2).

Then, by induction, level n ≥ 2 of T will contain one node of degree 2 and n− 2 nodes of degree 1.
Checking the root is easy, so assume n ≥ 3.

By Theorem 2.2, T is a subtree of T ([1234], [1342]). So we just need to check which nodes of that
tree also avoid [1423]. As in the proof of that theorem, the site before n in [σ] at level n in T is still
active since 4 is not followed immediately by 3 in [1423]. Thus it suffices to show that both sites of
δ remain active, but only one in ϵ where δ, ϵ are defined by (2). Indeed, the two sites of δ give rise
to copies of δ and ϵ at level n+ 1 of T . But site n− 1 of delta which was active in the larger tree is
now inactive since inserting n + 1 there gives the copy [1, n + 1, 2, n] of [1423]. This completes the
proof.

We now have, in comparison with the previous theorem, a nontrivial Wilf equivalence.

Theorem 3.4. We have

{[1234], [1324], [1423]} ≡ {[1324], [1423], [1432]}.

And for n ≥ 2
#Avn([1234], [1324], [1423]) = n− 1.

12



Proof. It suffices to show that T = T ([1234], [1324], [1423]) satisfies the same production rules as in
the previous theorem. Now T is a subtree of T ([1234], [1324]) which was constructed in the proof
of Theorem 2.3. And we see in the usual way that the site before n in any [σ] remains active in T
because 4 is not immediately followed by 3 in [1423].

So it suffices to show, with δ and ϵ as in (4), that site 1 remains active in δ, but not in ϵ. Indeed,
inserting n+1 in this site of δ just produces another descending sequence. But in ϵ such a placement
gives the copy [1, n+ 1, n− 1, n] of [1423].

We now have another nontrivial Wilf equivalence with Theorem 3.1.

Theorem 3.5. We have

{[1243], [1324], [1342]} ≡ {[1243], [1342], [1423]}.

And for n ≥ 4
#Avn([1243], [1324], [1342]) = 3.

Proof. By Theorem 2.7, we just need to show that exactly 3 of the 4 permutations [σ] avoiding
{[1243], [1342]} also avoid [1324]. These permutations are described in equation (8). If x = n and
y = 1 then [σ] contains the copy [n132] of this pattern. It is also easy to check that the other three
avoid it.

We now have our last nontrivial Wilf equivalence for triples.

Theorem 3.6. We have

{[1243], [1324], [1423]} ≡ {[1324], [1342], [1423]}.

And for n ≥ 2
#Avn([1324], [1342], [1423]) = n− 1.

Proof. Comparing the description of Avn([1324], [1342]) in the proof of Theorem 2.6 and that of
Avn([1324], [1423]) in the proof of Theorem 2.8, we see that any [σ] ∈ Avn([1324], [1342], [1423]) can
be put in the form

σ = 21[δk, ιn−k]

with k ≥ 1. Also, k = n− 1 and k = n yield the same permutation. So there are n− 1 choices for k
and we are done.

When #[Π] ≥ 4 where [Π] ⊂ [S4], the size of Avn[Π] becomes constant for n ≥ 5. And this
size is trivial to calculate for n ≤ 4. Furthermore, the description of the surviving permutations for
large n is easy to obtain given our previous proofs. So we content ourselves with a listing of the
equivalence classes and associated constants in Table 1. Classes are separated by double horizontal
line. As usual, we do not consider classes containing both the increasing and decreasing permutations
because of the cyclic Erdős–Szekeres Theorem.
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4 Cyclic descent generating functions

We will now consider the generating function for the number of cyclic descents over various avoidance
classes [Π] ⊂ [S4], starting with those defined by a single element. We will sometimes use the
characterizations given by Callan [10] for these classes to facilitate our work, and use the abbreviation

Dn([Π]) = Dn([Π]; q) =
∑

σ∈Avn[Π]

qcdesσ

for the generating function.
To begin, we have a lemma showing that trivial Wilf equivalences also give simple relationships

between the corresponding generating functions.

Lemma 4.1. For any [Π] we have

Dn([Π]
r; q) = Dn([Π]

c; q) = qnDn([π]; 1/q)

and
Dn([Π]

rc; q) = Dn([Π]; q).

Proof. Reversing or complementing a permutation turns all cyclic descents into cyclic ascents and
vice-versa. Translating this into generating functions gives the first displayed equalities. And the
second displayed equation follows from the previous display.

Now consider the possible Dn([π]) for [π] ∈ [S4]. We begin with the simplest case.

Theorem 4.2. We have Dn([1423]; q) = qnDn([1324]; 1/q) where, for n ≥ 2,

Dn([1324]; q) =
n−1∑
k=1

(
n+ k − 3

n− k − 1

)
qk.

Proof. We use Callan’s characterization of this avoidance class to obtain a recursion for Dn([1324]).
If [σ] ∈ Avn([1324]) and n ≥ 3 then write σ = σ1σ2 . . . σn−1n. Let k be the index such that σk = n−1.
There are two cases.

If k = n − 1 then σ = τ, n − 1, n where [τ, n − 1] ∈ Avn−1([1324]) and this is a bijection. Since
cdes[σ] = cdes[τ, n− 1], this case contributes Dn−1([1324]) to the recursion.

If 1 ≤ k ≤ n− 2 then this forces

σ = 2314[ιk−1, 1, τ, 1]

for some τ such that [τn] avoids [1324]. Because of the extra descent caused by n − 1 we have
cdes[σ] = 1 + cdes[τn]. So this case gives a contribution of

∑n−2
k=1 qDn−k([1324]).

Putting everything together, we have

Dn([1324]) = Dn−1([1324]) +
n−2∑
k=1

qDn−k([1324]).

for n ≥ 3 and D2([1324]) = q. It is now a simple manner of manipulating binomial coefficients to
show that the formula given in the theorem satisfies this initial value problem.
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For the next case, we will use a characterization of the class different from the one found by
Callan. This will permit us to avoid the use of a recurrence.

Lemma 4.3. Suppose [σ] ∈ [Sn] and write σ = 1ρnτ . We have [σ] ∈ Avn([1342]) if and only if the
following three conditions are satsified:

(a) ρ and τ both avoid {213, 231},

(b) max ρ < min τ ,

(c) there is not both a descent in ρ and an ascent in τ .

Proof. For the forward direction, suppose [σ] ∈ Avn([1342]). Condition (a) is true since if either ρ or
τ contains 213 then, together with n, we have that [σ] contains [2134]. Similarly, if either contains
231 then [σ] contains the forbidden pattern by prepending the 1. As far as (b), if there is y > x with
y ∈ ρ and x ∈ τ then [1ynx] is a copy of [1342]. Finally for (c), if there were a descent in ρ and an
ascent in τ then, because of (b), putting them together would again give a copy of the pattern to
avoid.

The converse is similar where one assumes that a copy of [1342] exists and then considers all the
different intersections it could have with 1, ρ, n, and τ . We leave the details to the reader.

In order to use this lemma, we will need a result about the ordinary descent statistic on linear
permutations avoiding {123, 231}. The next result is a specialization of Proposition 5.2 of the paper
of Dokos, Dwyer, Johnson, Sagan, and Selsor [17] and so the proof is ommited.

Lemma 4.4 ([17]). We have ∑
σ∈Avn(213,231)

qdesσ = (1 + q)n−1.

We need one last well-known definition. Call a polynomial f(q) =
∑n

k=0 akq
k of degree n sym-

metric if ak = an−k for all 0 ≤ k ≤ n. Note that f(q) of degree n is symmetric if and only if

qnf(1/q) = f(q). (9)

Theorem 4.5. We have Dn([1243]; q) = Dn([1342]; q) where, for n ≥ 2,

Dn([1342]; q) = 2q(1 + q)n−2 − q · 1− qn−1

1− q

is symmetric.

Proof. It is easy to prove from the explicit form of Dn([1342]) that it satisfies equation (9) and
so is symmetric. So once this is proved, the equality of the two generating functions follows from
Lemma 4.1.

We adopt the notation of Lemma 4.3 and let σk = n where 2 ≤ k ≤ n. We will consider cases
depending on whether ρ or τ is empty. If ρ = ∅ then by Lemma 4.3 (a) and Lemma 4.4 we have that
the generating function for the possible linear τ is (1 + q)n−3. Also, cdes[σ] = 2 + des τ by the form
of σ, so the contribution of such [σ] to Dn([1342]) is q

2(1 + q)n−3. In an analogous way, we see that
those [σ] with τ = ∅ yield q(1 + q)n−3. Adding these, we have a total of q(1 + q)n−2 so far.

15



We now assume that ρ, τ are both nonempty so that 3 ≤ k ≤ n − 1. By parts (b) and (c)
of Lemma 4.3, either ρ must be an increasing subsequence of consecutive integers or τ must be a
decreasing one. Using Lemma 4.4 again, we see that in the first subcase a contribution of q2(1 +
q)n−k−1 is obtained. And in the second, taking into account the descents in ρ, the contribution is
qn−k+1(1 + q)k−3. However, these two subcases overlap when ρ is increasing and τ is decreasing. So
we must subtract qn−k+1.

Thus we get a grand total of

Dn([1342]) = q(1 + q)n−2 +
n−1∑
k=3

[q2(1 + q)n−k−1 + qn−k+1(1 + q)k−3 − qn−k+1].

Summing the geometric series and simplifying completes the proof.

For the avoidance class of the increasing (or decreasing) pattern in [S4], we will need another
concept. Given sequences ρ and τ of distinct integers, their shuffle set is

ρ� τ = {σ : |σ| = |ρ|+ |τ | and both ρ, τ are subsequences of σ}.

For example,
12� 34 = {1234, 1324, 1342, 3124, 3142, 3412}.

In the statement of the next result we make the usual convention that
(
n
k

)
= 0 if k > n.

Theorem 4.6. We have Dn([1234]; q) = qnDn([1432]; 1/q) where, for n ≥ 2,

Dn([1432]; q) = q + (2n−1 − n)q2 +
∑
j≥3

(
n

2j − 1

)
qj.

Proof. We use Callan’s description of the avoidance for [1234] translated by complementation to
apply to [1432]. We are going to derive a recursion for Dn([1432]; q). If [σ] ∈ Sn[1432] then suppose
σn = 1 and σk = 2 for some 1 ≤ k ≤ n− 1. There are three cases.

If k = 1 then there is a bijection between such [σ] and Avn−1[1432] obtained by removing 1 and
taking the order isomorphic cyclic permutation on [n − 1]. Since 2 immediately follows 1 cyclically
in [σ], the descent into 1 remains a descent after applying the map. So the contribution of this case
is Dn−1([1432]; q).

Now suppose that 2 ≤ k ≤ n− 1 and write

σ = ρ2τ1.

where |ρ| = k − 1, |τ | = n − k − 1. As Callan proves, ρ must be increasing. So there are two more
cases depending upon whether the elements of ρ are consecutive or not. Suppose first that they are
not consecutive. In this case, τ must also be increasing so cdes[σ] = 2. To compute the number of
such σ, note that once the elements of ρ have been picked from [3, n], all of σ is determined. The
total number of nonempty subsets of this interval is 2n−2−1. And those which consist of consecutive
integers are determined by their minimum and maximum element, which could be equal. So there
are

(
n−1
2

)
subsets to exclude. The contribuion of this case is then(

2n−2 −
(
n− 1

2

)
− 1

)
q2.
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Finally we consider the case when ρ ̸= ∅ is consecutive (and still increasing), say with minimum
m + 1 and maximum M − 1. Note that if l = |τ | then 0 ≤ l ≤ n − 3. Callan shows that the
possible τ are the elements of (34 . . .m)� (M,M +1, . . . , n). Since a permutation can be written as
a shuffle in many ways, the same shuffle could occur for different ρ. So it will be convenient to color
the elements of the second sequence by marking them with a hat. Thus the σ in this case are in

bijection with colored shuffles (34 . . .m)� (M̂, M̂ + 1, . . . , n̂). It will also be convenient to consider
these as corresponding to the sequences 2τ by prepending a 2 to each shuffle and considering 2 as an
uncolored element. Set S be the set of such sequences s = 2s2s3 . . . sl+1 where l,m,M are allowed
to vary over all possible values. Note that if s corresponds to σ then desσ = 2 + des s. To compute
des s, we consider the transition indices

Tr s = {i | si is colored and si+1 is not, or vice-versa}.

For example, if s = 236̂457̂8̂ then Tr s = {2, 3, 5}. It is easy to see that the map Tr : S → 2[l], the
range being all subsets of [l], is a bijection. Also, every other transition index of s starting with the
second corresponds to a descent. So, using the round down function, des s = ⌊#Tr s/2⌋. We can
now complete this case using i = #Tr s to see that the contribution is

n−3∑
l=0

l∑
i=0

(
l

i

)
q⌊i/2⌋+2 =

n−3∑
i=0

q⌊i/2⌋+2

n−3∑
l=i

(
l

i

)

=
n−3∑
i=0

(
n− 2

i+ 1

)
q⌊i/2⌋+2

= q2
∑
j≥0

[(
n− 2

2j + 1

)
+

(
n− 2

2j + 2

)]
qj

= q2
∑
j≥0

(
n− 1

2j + 2

)
qj.

Putting all the cases together we have

Dn([1432]; q) = Dn−1([1432]; q) + q2

[
2n−2 −

(
n− 1

2

)
− 1 +

∑
j≥0

(
n− 1

2j + 2

)
qj

]
.

As usual, the routine verification that our desired formula satisfies this recursion and the initial
condition is left to the reader.

We now turn to the cyclic descent polynomials for pairs in [S4]. To simplify notation, for any
polynomial f(q) and n ∈ N we let

f (n)(q) = qnf(1/q).

Theorem 4.7. We have the following descent polynomials.

(a) We have

Dn([1234], [1243]) = Dn([1342], [1432]) = D(n)
n ([1243], [1432]) = D(n)

n ([1234], [1342]).

And for n ≥ 3
Dn([1234], [1342]; q) = (2n− 5)qn−2 + qn−1.
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(b) We have
Dn([1423], [1432]) = D(n)

n ([1234], [1324]).

And for n ≥ 3
Dn([1234], [1324]; q) = (2n− 5)qn−2 + qn−1.

(c) We have
Dn([1324], [1432]) = D(n)

n ([1234], [1423]).

And for n ≥ 1

Dn([1234], [1423]; q) = qn−1 +

(
n− 1

2

)
qn−2.

(d) We have

Dn([1243], [1423]) = Dn([1342], [1423]) = D(n)
n ([1243], [1324]) = D(n)

n ([1324], [1342]).

And for n ≥ 1

Dn([1324], [1342]; q) = q +
n−1∑
k=2

(n− k)qk.

(e) For n ≥ 4 we have
Dn([1243], [1342]; q) = q + q2 + qn−1 + qn−2.

(f) For n ≥ 3 we have
Dn([1324], [1423]; q) = q(1 + q)n−2.

Proof. We will only prove (a) as the others follow easily in a similar fashion from the descriptions of
the avoidance classes in Section 2. We adopt the notation of the proof of Theorem 2.2.

We will use the description of the generating tree to obtain a recursion for Dn+1[1243], [1432]).
Note that if n+ 1 is inserted in site i of σ to form σ′ then

cdes[σ′] =

{
cdes[σ] if i is a cyclic descent,
cdes[σ] + 1 if i is a cyclic ascent.

Since the site before n is always active, these children will give a contribution of qDn([1243], [1432])
because such a site is a cyclic ascent. In δ and ϵ, insertion in the other active site gives permutations
with n− 1 descents. So

Dn+1([1243], [1432]) = 2qn−1 + qDn([1243], [1432]).

It is now easy to check that the formula in (a) satisfies this recursion and is also valid at n = 3,
completing the proof.

For classes avoiding 3 or more patterns, we will only write down the results for those which are
not eventually constant. The interested reader can easily compute the polynomials for the remaining
classes. We also content ourselves with stating the polynomial for one member of every trivial Wilf
equivalence class since the rest can be computed from Lemma 4.1.
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Theorem 4.8. We have the descent polynomials

Dn([1234], [1342], [1423]; q) = Dn([1234], [1324], [1423]; q) = (n− 2)qn−2 + qn−1

and

Dn([1324], [1342], [1423]; q) = q · 1− qn−1

1− q

for n ≥ 2.

5 Consecutive patterns

We will now concentrate on the consecutive case. For the rest of this section, we let π = π1π2 . . . πk

be a consecutive pattern. We will relate the number of occurrences of π in linear permutations to
the number of occurrences of [π] in cyclic permutations.

We let oπ(σ) be the number of occurrences of π in a linear permutation σ. Similarly, we denote
by cπ[σ] the number of occurrences of [π] in [σ]. This number is well defined, in the sense that it does
not depend on the chosen representative of [σ], since rotating σ simply changes the positions of the
occurrences of [π], but not the actual subsequences or how many there are. Note also that cπ[σ] = 0
precisely if [σ] avoids [π]. For example, c132[25314] = 2, since [253] and [142] are occurrences of [σ]
in [π]. On the other hand, c132[24531] = 0, so [24531] ∈ Av5[132].

We denote by

Pπ(u, z) =
∑
n≥0

∑
σ∈Sn

uoπ(σ)
zn

n!

the exponential generating function counting occurrences of a consecutive pattern σ in linear permu-
tations, and let ωπ(u, z) = 1/Pπ(u, z). Formulas and differential equations for Pπ(u, z) and ωπ(u, z),
for various patterns π, have been given in [22, 23], see also [30, 34, 33, 18] for related work.

Let

Cπ(u, z) =
∑
n≥0

∑
[σ]∈[Sn]

ucπ [σ]
zn

n!
(10)

be the exponential generating function counting occurrences of [π] in cyclic permutations, and note
that

Cπ(0, z) =
∑
n≥0

#Avn[π]
zn

n!
.

As in the case of consecutive patterns in linear permutations, letting

πr = πk . . . π2π1

and
πc = (k + 1− π1)(k + 1− π2) . . . (k + 1− πk),

it is clear that
Cπ(u, z) = Cπc(u, z) = Cπr(u, z) = Cπrc(u, z),

since occurrences of [π] in [σ] correspond to occurrences of [πr] in [σr], and to occurrences of [πc]
in [σc]. For example, for patterns of length 3, we have C123(u, z) = C321(u, z) and C132(u, z) =
C312(u, z) = C213(u, z) = C231(u, z).
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For a function F (u, z), we will use F ′(u, z) to denote its partial derivative with respect to the
variable z. Our central result in this section relates consecutive patterns in the cyclic case with those
in the linear case. The requirement π1 = 1 can be replaced, by the above symmetries, with any of
π1 = k, πk = 1, or πk = k, where k is the length of π.

For the purposes of the proof we will let a permutation be any linear or cyclic ordering of a finite
set of positive integers. Any set of cyclic permutations [Σ] = {[σ(1)], [σ(2)], . . . , [σ(m)]} will be given
weight

wt[Σ] = uCπ [σ(1)] · uCπ [σ(2)] · · ·uCπ [σ(m)],

and any linear permutation σ will be given weight wt σ = uoπ(σ). Finally, the left-right minima of
σ = σ1σ2 . . . σn are the elements σi such that

σi = min{σ1, σ2, . . . , σi}.

These elements give rise to the left-right minima factorization of σ which is

σ = σ(1)σ(2) . . . σ(m) (11)

where σ(i) is the factor (consecutive subword) of σ starting at the ith left-right minimum and ending
just before the (i+ 1)st.

Theorem 5.1. Let π = π1π2 . . . πk be a consecutive pattern with π1 = 1. Then

Cπ(u, z) = 1 + lnPπ(u, z).

Proof. Exponentiating the equation in the statement of the theorem, it suffices to prove that

Pπ(u, z) = eCπ(u,z)−1.

By the Exponential Formula (see Theorem 4.5.1 in Sagan’s book [35]), it suffices to show that
there is a bijection ϕ between permutations σ ∈ Sn and sets of cyclic permutations

[Σ] = {[σ(1)], [σ(2)], . . . , [σ(m)]}

such that

(a)
k⊎

i=1

σ(i) = {1, 2, . . . , n}, the union being of the underlying sets of the σ(i), and

(b) wt σ = wt[Σ].

Define
ϕ(σ) = {[σ(1)], [σ(2)], . . . , [σ(m)]}

where the σ(i) are the factors in (11). Then (a) holds because every element of {1, 2, . . . , n} must
appear in exactly one of the factors of the factorization. To prove (b), let us show that any occurrence
of π in σ is entirely contained in one of the σ(i). Indeed, if the occurrence overlaps two or more factors,
then the left-right minimum of the second factor is smaller than the first element of the occurrence.
This contradicts the fact that π begins with 1.

To show ϕ is bijective, we construct its inverse. Given [Σ], rotate each cyclic permutation so
that σ(i) starts with its minimum element. Then concatenate these linear permutations in order of
decreasing first element to form σ. It is easy to check that this describes the inverse of ϕ.
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Expressions for Pπ = Pπ(u, z) are known for certain consecutive patterns π, often in the form of
differential equations satisfied by its reciprocal ωπ = 1/Pπ. In fact, up to symmetry, all the patterns
σ for which explicit differential equations have been found so far satisfy σ1 = 1. Thus, Theorem 5.1
can be applied to these patterns to deduce an expression for Cπ = Cπ(u, z).

Restating Theorem 5.1 to relate Cπ and ωπ, we have Cπ = 1− lnωπ, from where C ′
π = −ω′

π/ωπ,
and

ωπ = e1−Cπ . (12)

In some cases, this relation allows us to obtain differential equations directly in terms of Cπ, as we
will see below.

It is proved in [22, Theorem 3.1] (see also [23, Theorem 2.1]) that, for π = 12 . . . k with k ≥ 3,
the function ωπ = ωπ(u, z) satisfies the differential equation

ω(k−1)
π + (1− u)(ω(k−2)

π + · · ·+ ω′
π + ωπ) = 0 (13)

with initial conditions ωπ(u, 0) = 1, ω′
π(u, 0) = −1, and ω

(i)
π (u, 0) = 0 for 2 ≤ i ≤ k − 2. In [23,

Theorem 2.4], similar differential equations are given for ωπ whenever π is a so-called chain pattern
(see [23, Definition 2.2]). Chain patterns generalize monotone patterns, but they still satisfy π1 = 1
(up to symmetry), as shown in [23, Lemma 2.3]. Thus, for all such patterns π, Theorem 5.1 can be
used to determine Cπ = 1− lnωπ.

It is possible to rewrite (13) as a differential equation for Cπ using the identity (12). For example,
when k = 3, we obtain the following.

Corollary 5.2. Let R = R123(u, z) = C ′
123(u, z). Then R satisfies the differential equation

R′ = R2 + (u− 1)(R− 1) (14)

with initial condition R(u, 0) = 1. An explicit expression is given by

R123(u, z) =
1

2

(
1− u− tanh

(
z
√
u2 + 2u− 3

2
− arctanh

(
u+ 1√

u2 + 2u− 3

))√
u2 + 2u− 3

)
,

which, for u = 0, simplifies to

R123(0, z) =
1

2
+

√
3

2
tan

(√
3

2
z +

π

6

)
.

Proof. Differentiating Equation (12), we get ω′
π = −C ′

π e
1−Cπ and ω′′

π = (−C ′′
π + (C ′

π)
2) e1−Cπ . Sub-

stituting these expressions into Equation (13) for k = 3, and dividing both sides by e1−Cπ , we obtain
Equation (14).

Setting u = 0 in Equation (14) gives

R′
123(0, z) = R123(0, z)

2 −R123(0, z) + 1, (15)

proving part 1 of Conjecture 6.4 of an earlier version of this paper. For k = 4, a similar computation
yields the following.
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Corollary 5.3. Let R = R1234(u, z) = C ′
1234(u, z). Then R satisfies the differential equation

R′′ = 3R′R−R3 + (u− 1)(R′ −R2 +R− 1) (16)

with initial conditions R(u, 0) = 1, R′(u, 0) = 1. For u = 0, an explicit expression is given by

R1234(0, z) =
cos z + sin z + e−z

cos z − sin z + e−z
.

In the case of linear permutations, explicit expressions for P123(u, z), P123(0, z) and P1234(0, z)
have been given in [22, Theorems 4.1 and 4.3]. Let us also point out that, for σ = 12 . . . k, the
generating function Rπ = C ′

π coincides with the generating function denoted by R in the proof of
[22, Theorem 3.1].

A consecutive pattern π of length k is called non-overlapping if two occurrences of σ cannot overlap
in more than one position; in other words, there is no permutation σ ∈ S2k−2 with oπ(σ) ≥ 2.

Generalizing [22, Theorem 3.2], it is shown in [23, Theorem 3.1] that, for any non-overlapping
consecutive pattern π of length k ≥ 3 with π1 = 1, the function ωπ = ωπ(u, z) satisfies the following
differential equation, where b = σk:

ω(b)
π + (1− u)

zk−b

(k − b)!
ω′
π = 0, (17)

with initial conditions ωπ(u, 0) = 1, ω′
π(u, 0) = −1, and ω

(i)
π (u, 0) = 0 for 2 ≤ i ≤ b − 1. Again,

by Theorem 5.1, this determines Cπ = 1 − lnωπ for all such patterns. In this case, the generating
function C ′

π coincides with the generating function denoted by R in the proof of [22, Theorem 3.2].
In the case b = 2, rewriting (17) as a differential equation for Cπ using (12) and its derivatives,

we obtain the following.

Corollary 5.4. Let π be a non-overlapping pattern of length k ≥ 3 with π1 = 1 and πk = 2, and let
R = Rπ(u, z) = C ′

π(u, z). Then R satisfies the differential equation

R′ = R2 + (u− 1)
zk−2

(k − 2)!
R (18)

with initial condition R(u, 0) = 1. An explicit expression is given by

Rσ(u, z) =
e(u−1) zk−1

(k−1)!

1−
∫ z

0
e(u−1) tk−1

(k−1)! dt
,

or equivalently,

Cπ(u, z) = 1− ln

(
1−

∫ z

0

e(u−1) tk−1

(k−1)! dt

)
.

Setting u = 0 in Equation (18) for k = 3 gives the equation

R′
132(0, z) = R132(0, z)

2 − zR132(0, z).
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Dividing both sides by R132(0, z), integrating, and using that R132 = C ′
132, we obtain lnC ′

132(0, z) =
C132(0, z)− z2/2, or equivalently,

C ′
132(0, z) = eC132(0,z)−z2/2, (19)

proving part 2 of Conjecture 6.4 in an earlier version of this paper.
In [23], differential equations are also given for ωπ(u, z) when π is any of 1324, 12534, or 13254.

For each of these patterns, Theorem 5.1 can again be applied to obtain Cπ(u, z).

6 Open problems and concluding remarks

We collect here various areas for future research in the hopes that the reader will be interested in
pursuing this work.

6.1 Longer patterns

There has been very little work about containment and avoidance for cyclic patterns of length longer
than 4. Of course, the cyclic Erdős–Szekeres Theorem, Theorem 1.3 above, is one such result.
There is also a paper of Gray, Lanning and Wang [28] where the authors consider cyclic packing
(maximizing the number of copies of a given pattern among all the permutations [σ] ∈ [Sn] for some
n) and superpatterns (permutations containing all the patterns [π] ∈ [Sk] for some k). It would be
interesting to see if there are nice enumerative formulas for classes consisting of cyclic patterns of
length 5 and up.

6.2 Other statistics

One could study other cyclic statistics. For example, the peak set of a linear permutation is

Pk π = {i | πi−1 < πi > πi+1}

with corresponding peak number
pkπ = #Pk π.

Peaks are an important part of Stembridge’s theory of enriched P -partitions [39] where P is a partially
ordered set. On the enumerative side, the study of permutations which have a given peak set has
been a subject of current interest [5, 6, 7, 11, 14, 15, 16]. Now define the cyclic peak number to be

cpk[π] = #{i | πi−1 < πi > πi+1 where subscripts are taken modulo n}.

As with cdes, this is well defined since it is independent of the choice of representative of [π]. There
should be interesting generating functions for the distribution of cpk over avoidance classes, or even
for the joint distribution of cdes and cpk. As evidence, we prove one such result.

Theorem 6.1. For n ≥ 3∑
[σ]∈Avn([1234],[1342])

qcdes[σ]tcpk[σ] = qn−2t+ (2n− 6)qn−2t2 + qn−1t.
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Proof. Let Fn(q, t) denote the desired generating function. We proceed as in the proof of Theorem 4.7
(a) to find a recursion for Fn+1(q, t). Since the largest element of [σ] is always a cyclic peak, inserting
n + 1 before n does not change cpk. So this contributes qFn(q, t) to the recursion. For δ and ϵ,
inserting n+ 1 in the other active site increases the number of peaks to 2. So the contribution from
these cases is 2qn−1t2. In summary

Fn+1(q, t) = 2qn−1t2 + qFn(q, t)

and the desired polynomial is easily seen to be the solution.

In a recent paper Adin, Gessel, Reiner, and Roichman [1] defined a cyclic analogue of the Hopf
algebra of quasisymmetric functions. In this context the cyclic descent set of a linear permutation
arises naturally in the description of the product in this algebra. They also raise the following
intriguing question.

Question 6.2. Find an analogue of the major index for cyclic permutations that has nice properties,
such as a generating function over [Sn] which factors nicely as does the generating function for the
ordinary major index over Sn.

6.3 Vincular patterns

We will show how one vincular class is enumerated by the Catalan numbers. As remarked in the
introduction [32], Li has continued our work with an extensive study of vincular pattern avoidance.

Theorem 6.3. We have
[1324] ≡ [1423] ≡ [1324] ≡ [2314].

And for n ≥ 1
#Avn[1324] = Cn−1.

Proof. The Wilf equivalences are trivial. To prove the Catalan formula, suppose that [σ] ∈ Avn[1324]
for n ≥ 2 and write σ so that σn = n and σn−1 = m for some m ∈ [n − 1]. First notice that
σ = ρτmn where ρ and τ are permutations of [m + 1, n − 1] and [m − 1], respectively. For if there
are x < m < y < n with x before y in σ then [xymn] is a copy of [1324]. Furthermore, it is clear
that [mρ] and [τm] must avoid the forbidden pattern.

We claim the if σ = ρτmn where ρ and τ obey the restrictions of the previous paragraph then
[σ] avoids [1324]. Suppose, towards a contradiction, that a copy [κ] = [wyxz] exists with wyxz order
isomorphic to 1324. Consider the elements x and z which play the roles of 2 and 4. The possibility
that they are m and n, respectively, is ruled out by the fact that every element of ρ is larger than
every element of τ . If z ∈ τm then all of κ must be in this subsequence since z is the largest element
of the copy. But this is impossible since [τm] avoids the bad pattern. Finally, suppose z ∈ ρ. This
forces x ∈ ρ since it comes cyclically just before z, and n is too large to be x. We must also have
y ∈ ρ since x < y < z. But now there is no possible choice for w. Indeed, if w ∈ [mρ] then [κ] is in
this subsequence, contradicting our assumption. And if w ∈ τ then it could be replaced by m since
x, y, z > m, yielding the same contradiction as before.

From the first two paragraphs we immediately get the recursion

#Avn[1324] =
n−1∑
m=1

#Avm[1324] ·#Avn−m[1324].
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From this the Catalan enumeration follows by induction.

For the case of consecutive patters, a natural problem for further research would be to find Cπ(u, z)
for consecutive patterns π that do not begin with 1 (even after applying the basic symmetries).

In a different direction, it is shown in [19] that, for n large enough, the number of (linear)
permutations in Sn that avoid a consecutive pattern π of length k is largest when π is a monotone
pattern, and it is smallest when π = 12 . . . (k − 2)k(k − 1) (or any of its symmetries). One could ask
if there is an analogue of this theorem for consecutive patterns in cyclic permutations.

References

[1] Ron M. Adin, Ira M. Gessel, Victor Reiner, and Yuval Roichman. Cyclic quasi-
symmetric functions. Sém. Lothar. Combin., 82B:Art. 67, 12, 2020.

[2] Kassie Archer and Sergi Elizalde. Cyclic permutations realized by signed shifts. J.
Comb., 5(1):1–30, 2014.
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