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ABSTRACT

Projections of bipartite or two-mode networks capture co-occurrences, and are used in diverse fields (e.g., ecology, economics,
bibliometrics, politics) to represent unipartite networks that would otherwise be difficult or impossible to measure directly. A key
challenge in analyzing such networks is determining whether an observed number of co-occurrences is significant. Several
models now exist for doing so and thus for extracting the backbone of bipartite projections, but they have not been directly
compared to each other. In this paper, we compare five such models – fixed fill model (FFM) fixed row model (FRM), fixed
column model (FCM), fixed degree sequence model (FDSM), and stochastic degree sequence model (SDSM) – in terms of
accuracy, speed, statistical power, similarity, and community detection. We find that the computationally-fast SDSM offers a
statistically conservative but close approximation of the computationally-impractical FDSM under a wide range of conditions,
and that it correctly recovers a known community structure even when the signal is weak. Therefore, although each backbone
model may have particular applications, we recommend SDSM for extracting the backbone of most bipartite projections.

Introduction
Bipartite or two-mode networks are composed of two types of nodes, which we call agents and artifacts, and edges between
nodes of one type and nodes of the other type. They can be used to represent a wide range of phenomena and therefore are
studied in a diverse range of disciplines. For example, natural selection unfolds as species (the agents) compete over sites
(the artifacts), commerce is possible as traders exchange resources, scientific advances are reported as scholars write papers,
and laws are adopted as legislators sponsor bills. Although bipartite networks are useful in their own right, they can also be
useful for inferring unipartite (i.e., one-mode) networks that would otherwise be difficult or impossible to measure directly. A
bipartite projection transforms a bipartite network into a unipartite co-occurrence network in which agents are connected to the
extent that they share artifacts. For example, competitive interaction networks can be inferred from species’ co-occurrence in
sites,1 trade networks can be inferred from firm co-location2 or product co-exchange,3 scholarly collaboration networks can be
inferred from paper co-authorship,4 and political alliance networks can be inferred from bill co-sponsorship.5 Throughout the
paper we use these applications to offer concrete examples, however the models we discuss are perfectly general and can be
applied to derive unipartite backbones in a range of contexts.6–8 Indeed, in principle any unipartite network can be represented
as the projection of some bipartite network.9–11

Despite their promise, bipartite projections (i.e., co-occurrence networks) are challenging to analyse because they are
typically dense and weighted, and because the edge weights do not necessarily capture the strength of the relationship between
nodes.12 As a result, it is often useful to analyze the backbone of a bipartite projection, which is an unweighted and typically
sparser network that retains only the most ‘important’ edges. Although well-known methods exist for extracting the backbone
of weighted networks that are not bipartite projections,13, 14 methods designed specifically for bipartite projections have recently
been developed.12, 15–17 However, relatively little is known about the similarities and differences of methods for extracting
the backbone of bipartite projections. In this paper, we present five such methods – fixed fill model (FFM) fixed row model
(FRM), fixed column model (FCM), fixed degree sequence model (FDSM), and stochastic degree sequence model (SDSM) –
and conduct four related studies to better understand them.

The paper is organized in six sections. We begin by formally defining bipartite projections, backbones, and the five backbone
models, presenting proofs of the probability mass functions for their respective edge weight distributions in the Supplementary
Information. In study 1, we evaluate the accuracy and speed of different approaches for estimating cell-filling probabilities used
by the SDSM. In study 2, we evaluate the statistical power of the SDSM relative to the FDSM. In study 3, we examine how
degree distributions impact the similarity of backbones extracted using different models. In study 4, we examine the extent to
which backbones extracted using different models accurately recover a known community structure. Finally, we conclude with
recommendations for backbone model selection and opportunities for future model development.
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Backbone extraction for bipartite projections

Preliminaries
A bipartite network captures connections between nodes of one type (agents) and nodes of a second type (artifacts). Throughout
this section, we use the ecological case of Darwin’s Finches to provide a concrete example.18, 19 On his voyage to the Galapagos
Islands on the H.M.S. Beagle, Darwin observed that only some species of finches lived on each island. These patterns can be
represented as a bipartite network in which finch species (the agent nodes) are connected to the islands (the artifact nodes)
where they are found.20 A bipartite network can be represented as a binary matrix in which the agents are arrayed as rows, and
the artifacts are arrayed as columns. We use B to denote a bipartite network’s representation as a matrix, where Bik = 1 if agent
i is connected to artifact k, and otherwise is 0. The sequence of row sums and the sequence of column sums of B are called the
agent and artifact degrees sequences, respectively. These sequences are among the bipartite network’s most significant features
and are known to have implications for bipartite projections and backbones.9, 21, 22 In the ecological case, the agent degree
sequence captures the number of islands where each species is found, while the artifact degree sequence captures the number of
species found on each island.

The projection of a bipartite network is a weighted unipartite co-occurrence network in which a pair of agents is connected
by an edge with a weight equal to their number of shared artifacts. For example, the bipartite projection of Darwin’s species
location network is a species co-occurrence network in which a pair of species is connected by an edge with a weight equal to
the number of islands where they are both found. We use P to denote the matrix representation of a bipartite projection, which is
computed as BBT , where BT indicates the transpose of B. In a projection P, Pi j indicates the number of times both i and j were
connected to the same artifact k in B. The diagonal entries of P, Pii, are equal to the agent degrees, but in practice are ignored.

The backbone of a bipartite projection is a binary representation of P that contains only the most ‘important’ or ‘significant’
edges. For example, the backbone of a species co-occurrence network connects pairs of species if they are found on a significant
number of the same islands, which might be interpreted as evidence that the two species do not compete for resources and
perhaps are symbiotic. We use P′ to denote the matrix representation of the backbone of P. Because multiple methods exist for
deciding when an edge is significant and thus should occur in the backbone, we use P

′M denote a backbone extracted using
method M.

Backbone extraction methods that were originally developed for non-projection weighted networks are often also applied to
weighted bipartite projections. One simple method preserves an edge in the backbone if its weight in the projection exceeds
some universal threshold T . However, when T = 0, which is common, the backbone is very dense and has a high clustering
coefficient because each artifact of degree d induces d(d−1)/2 edges in the backbone.23 Using T > 0 can yield a sparser and
less clustered backbone,24–26 but the choice of a particular threshold value is arbitrary, and applying the same threshold to all
edges yields backbones that overlook agents with low degree in the projection.13 More sophisticated methods, including the
disparity filter13 and likelihood filter,14 aim to overcome these limitations of the universal threshold method by using a different
threshold for each edge based on a null model. However, all methods that can be applied to non-projection weighted networks
have the same shortcoming when applied to weighted bipartite projections: they ignore information about the artifacts.12 In the
ecological case, the universal threshold, disparity filter, and likelihood filter methods all decide whether two species should be
connected in the backbone only by examining how many islands they are both found on, but do not consider the characteristics
of those islands, including how many other species are found there, or even how many islands there are. Therefore, although
these methods are promising for extracting the backbone from non-projection weighted networks, different methods are required
for extracting the backbone from a bipartite projection.

Bipartite ensemble backbone models
Bipartite ensemble backbone models decide whether an edge’s observed weight Pi j is significantly large, and thus whether a
corresponding edge should be included in the backbone, in the following way. Let B be the set of all bipartite networks B∗
having the same number of agents and artifacts as B. In the ecological case, B∗ might be viewed as representing a possible
world containing the same species and islands, but in which locations of species on islands is different, and likewise B is the
set of all such possible worlds. We will create our ensembles by taking a subset BM of B subject to certain constraints M and
imposing a probability distribution on it. In all our models except the SDSM, we impose the uniform probability distribution on
BM, that is, each element of the ensemble is equally likely. We will then extract the backbone from the projection of B by
using the distribution of edge weights arising from projections of members of the ensemble under consideration.

We use P∗i j to denote a random variable equal to (B∗B∗T )i j for B∗ ∈ BM. That is, P∗i j is the number of artifacts shared by i
and j in a bipartite network randomly drawn from BM. In the ecological case, P∗i j represents the number of islands that are
home to both species i and j in a possible world, while the distribution of P∗i j is the distribution of the number of islands shared
by species i and j in all possible worlds.

Decisions about which edges should appear in a backbone extracted at the two-tailed statistical significance level α are
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made by comparing Pi j to P∗i j

P′i j =

{
1 if Pr(P∗i j ≥ Pi j)<

α

2 ,

0 otherwise.

This test preserves an edge in the backbone if its weight in the observed projection is uncommonly large compared to its weight
in projections of members of the ensemble. A two-tailed significance test is used because, in principle, an edge’s weight in the
observed projection could be uncommonly larger or uncommonly smaller than its weight in projections of members of the
ensemble. In the ecological case, two species are connected in the backbone if their number of shared islands in the observed
world is uncommonly large compared to their number of shared islands in all possible worlds.

There are many ways that B can be constrained,27 with each set of constraints describing a different ensemble BM and
different ensemble backbone model; however, in this paper we focus on five possibilities. In the fixed degree sequence model
(FDSM) B∗ ∈ BFDSM are constrained to have the same agent and artifact degree sequences as B. Adopting the FDSM
implies, for example, that in all possible worlds a given species is found on exactly the same number of islands, and a given
island is home to exactly the same number of species. The distribution of P∗i j arising from BFDSM is unknown, but can be
approximated by uniformly sampling B∗ from BFDSM, constructing P∗, and saving the values P∗i j. In the studies below, we use
1000 samples of B∗ generated using the ‘curveball’ algorithm, which is among the fastest methods to sample BFDSM uniformly
at random.28, 29 The FDSM has been used to extract the backbone of bipartite projections of, for example, movies co-liked by
viewers15 and conference panel co-participation by scholars.30, 31 In this paper, we use the FDSM as the reference model to
which other ensemble models are compared because it fully controls for both degree sequences.

The primary limitation of the FDSM is its computational cost. First, constructing each P∗ requires matrix multiplication,
which must be performed repeatedly and has complexity O(n2.37) for two n×n matrices using the fast Coppersmith-Winograd
algorithm.32 Second, computing Pr(P∗i j ≥ Pi j) with sufficient precision to achieve a two-tailed familywise error rate of α

requires at least .5m2−.5m
α/2 +1 samples, where m is the number of rows (i.e., agents) in B and P. Thus, for example, extracting

the backbone of a bipartite projection with 1000 agents at a family-wise error rate of 0.05 would require performing at least 20
million matrix multiplications. Therefore, the tightly-constrained FDSM is frequently impractical for backbone extraction.
However, models that rely on ensembles with more relaxed constraints offer computationally-feasible alternatives.

In the highly relaxed fixed fill model (FFM), B∗ ∈ BFFM are simply constrained to contain the same number of 1s as B.
Adopting the FFM implies, for example, that in all possible worlds only the total number of species-habitat pairs is fixed, but
any given species may be found on a different number of islands and any given island may be home to a different number of
species. The distribution of P∗i j arising from BFFM has not been described before, but is derived in Supplementary Text S1.1. We
call it a Jacobi distribution because it is related to Jacobi polynomials.

In the more constrained fixed row model (FRM), B∗ ∈ BFRM are constrained to have the same agent degree sequence as B,
but have unconstrained artifact degree sequences. Adopting the FRM for backbone extraction implies, for example, that in all
possible worlds a given species is found on the same number of islands, but a given island may be home to a different number
of species. The distribution of P∗i j arising from BFRM is hypergeometric (see Supplementary Text S1.2).17, 33 The FRM has been
used to extract the backbone of bipartite projections of, for example, movies co-starring actors,17 papers co-written by authors,17

parties co-attended by women,33 majority opinions joined by Supreme Court justices,33, and microRNAs co-associated with
diseases.34

In the closely related fixed column model (FCM), B∗ ∈ BFCM are constrained to have the same artifact degree sequence as
B, but have unconstrained agent degree sequences. Adopting the FCM for backbone extraction implies, for example, that in all
possible worlds a given species may be found on a different number of islands, but a given island is home to the same number
of species. The distribution of P∗i j arising from BFCM has not been described before, but is derived in Supplementary Text S1.3,
where we show it is Poisson-binomial.

Finally, the stochastic degree sequence model (SDSM) takes BSDSM to be all binary m×n matrices, but also gives a process
for generating these matrices with different probabilities. Each B∗ is generated by filling the cells B∗ik with a 0 or 1 depending
on the outcome of an independent Bernoulli trial with probability p∗ik. The distribution of the random variable P∗i j arising from
BSDSM is Poisson-binomial with parameters which can be computed using the p∗ik (see Supplementary Text S1.4).21, 35 There
are many ways to choose p∗ik, but in the studies below we choose p∗ik so that it approximates Pr(B∗ik = 1) for B∗ ∈ BFDSM,
with the goal of ensuring that the expected agent and artifact degree sequences of B∗ ∈ BSDSM match those of B. Adopting
such a version of SDSM implies, for example, that in each possible world a given species may be found on many or few islands
and a given island may be home to many or few species, but the average number of islands on which a given species lives in all
possible worlds and the average number of species that live on an given island in all possible worlds matches these values
the observed world. The SDSM has been used to extract the backbone of bipartite projections of, for example, legislators
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co-sponsoring bills,5, 12, 36 zebrafish (Danio rerio) sharing operational taxonomic units,37 countries sharing exports,3 and genes
expressed in genesets.38

Study 1: Choosing cell-filling probabilities for the SDSM

The SDSM requires choosing p∗ik, which we want to approximate Pr(B∗ik = 1) for B∗ ∈ BFDSM. There are three types of
methods that might be used for doing so: arithmetic, general linear models, and entropy maximization. First, we can choose
p∗ik = (ri × ck)/ f , where ri is the sum of entries in row i of B, ck is the sum of entries in column k of B, and f is the sum
of all entries in B. When p∗ik falls outside the [0,1] range, it is truncated toward 0 or 1, respectively.19 We call this method
RCF because the value is chosen based on a row sum, a column sum, and the number of entries of B that are filled with a one.
Second, an estimate can be obtained by fitting a general linear model of the form:

Bik = β0 +β1ri +β2ck + ε , or
Bik = β0 +β1ri +β2ck +β3rick + ε,

where the β ’s are estimated coefficients and ε is an error term. If the model is treated as a linear regression and the coefficients
are estimated using ordinary least squares, then the predicted value of Bik is chosen for p∗ik, either truncating values outside the
required [0,1] range (linear probability model; LPM) or transforming them into the required range using a linear discriminant
model (LDM).39 If the model is treated as a logistic regression and the coefficients are estimated using maximum likelihood,
then the predicted probability that Bik = 1 is chosen for p∗ik. In prior work, the logistic regression approach has used a scobit or
logit link function, with or without an interaction term (β3).5, 12, 36 Finally, an estimate can be obtained by entropy maximization
methods, including the polytope method (Poly)21, 40 or bipartite configuration model (BiCM).16 In this study, we evaluate the
accuracy and speed of these methods for computing p∗ik.

Methods
To evaluate accuracy, we begin by enumerating all the members of a small BFDSM. For example, given an agent degree
sequence of [1,1,2] and an artifact degree sequence of [1,1,2], BFDSM contains 5 members (see Table 1A). Second, from
this complete enumeration, we compute the probabilities we wish p∗ik to approximate (i.e., Pr(B∗ik = 1) for B∗ ∈ BFDSM, see
Table 1B). Third, we compute p∗ik using each of nine methods (see Table 1C for the BiCM method). Finally, we quantify the
accuracy with which p∗ik approximates the desired probabilities using the absolute mean difference for all i,k. In the example
shown in Table 1, BiCM’s accuracy for these degree sequences is 0.028. That is, on average p∗ik chosen using BiCM deviates
from the desired probabilities by ± 0.028. Because evaluating accuracy in this way requires enumerating all members of
BFDSM, it is possible only for short degree sequences that define BFDSM with small cardinality. We focus on degree sequences
ranging in length from 2 to 5, which define 384 unique BFDSM ranging in cardinality from 4 to 2040.

(A) Members of BFDSM

1 0 0
0 0 1
0 1 1

0 0 1
1 0 0
0 1 1

0 0 1
0 0 1
1 1 0

0 0 1
0 1 0
1 0 1

0 1 0
0 0 1
1 0 1

(B) Desired probabilities (C) p∗ik computed using BiCM
0.2 0.2 0.6
0.2 0.2 0.6
0.6 0.6 0.8

0.216 0.216 0.568
0.216 0.216 0.568
0.568 0.568 0.863

Table 1. SDSM probabilities given agent and artifact degree sequences [1,1,2]

After identifying each method’s accuracy, we evaluate the computational running time of the four most accurate methods by
using them to choose p∗ik for bipartite graphs defined by up to 3162 agents and up to 3162 artifacts, and thus requiring choosing
up to 10,000,000 probabilities.

Results
Figure 1A shows the accuracy of each method’s computation of p∗ik. Each gray line plots the accuracy of each method for a
single BFDSM, while the red line plots the mean accuracy of each method over all 384 BFDSM. We find that choosing p∗ik using
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Figure 1. (A) Accuracy and (B) speed computing p∗ik using different methods.

a logistic regression with an interaction term (i.e., (Scobit-I and Logit-I)) is on average least accurate,5, 12 while choosing p∗ik
using entropy maximization (i.e., BiCM and Poly) is on average most accurate.3, 21

Figure 1B shows the number of seconds required to compute p∗ik using a 2.3 GhZ Intel i7 processor. Among the two most
accurate methods, BiCM is several orders of magnitude faster than Polytope. When computing more than 104 probabilities,
BiCM is also faster than the two slightly less accurate Logit and LDM methods. In the largest case we evaluated, computing 107

probabilities, BiCM took only about 0.3 seconds. Therefore, we use BiCM for choosing p∗ik when extracting SDSM backbones
in the remaining studies because it is both the most accurate and fastest.

Study 2: Statistical power of SDSM
Ensemble backbone models require the specification of a statistical significance level α , which determines how uncommonly
large an observed edge weight Pi j must be when compared to edge weights P∗i j arising from an ensemble in order for a
corresponding edge to be included in the backbone. For a given model, smaller values of α represent more stringent criteria
for retaining edges, and therefore yield sparser backbones. Although FDSM and SDSM define their respective ensembles by
constraining both agent and artifact degree sequences, and thus aim to yield similar backbones, a given α does not necessarily
represent the same level of stringency in these two models. Because the SDSM allows variation in the degree sequences of
B∗ ∈ BSDSM, the distribution of P∗i j is wider. These wider distributions mean that the SDSM provides a more conservative test
of edge weight significance than FDSM, or alternatively the SDSM has less statistical power to detect significant edges than
FDSM.

A concrete example serves to illustrate this difference. In economic geography, it is common to study the world city
network using a bipartite projection where two cities are linked to the extent that firms maintain locations in both of them. The
Globalization and World Cities (GaWC) dataset has been widely-used in this context, and takes the form of a bipartite network
recording the presence or absence of 100 firms (artifacts) in 196 cities (agents) in the year 2000.2, 22 In this bipartite network,
the agent degrees are right-tailed because most cities contain only a few firms, while a few cities (e.g., New York) contain many.
Likewise, the artifact degrees are also right tailed because most firms maintain locations in only a few cities, while a few firms
(e.g., KPMG) maintain locations in many.

Figure 2A illustrates the distribution of the Milan-Paris edge weight in projections arising from BFDSM and BSDSM of
which the observed bipartite network is a member (i.e., the random variable P∗i j). These distributions allow a researcher to
decide whether Milan and Paris’s observed number of co-located firms is significantly large, and therefore whether Milan and
Paris should be connected in a world city network backbone. The SDSM distribution is wider than the FDSM distribution,
which has implications for whether the Milan-Paris edge will be included in a backbone extracted at a given significance
level using each model. In the observed data, there are 26 firms co-located in Milan and Paris (i.e., Pi j = 26). The probability
of observing the same or larger edge weight from the FDSM ensemble is 0.0033, which is less than 0.05

2 , and therefore a
Milan-Paris edge is deemed significant by the FDSM model and is included in the FDSM backbone extracted at α = 0.05. In
contrast, the probability of observing the same or larger edge weight from the SDSM ensemble is 0.0275, which is not less
than 0.05

2 , and therefore a Milan-Paris edge is not deemed significant by the SDSM model and is not included in the SDSM
backbone extracted at α = 0.05. This difference in statistical power leads the SDSM backbone to be sparser than the FDSM
backbone (density = 0.004 vs. 0.012), and means that these two backbones are dissimilar (Jaccard = 0.36).
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Figure 2. Statistical power of SDSM. (A) Distribution of weights for the Paris-Milan edge in projections derived from FDSM
and SDSM ensembles. (B) Similarity of an FDSM backbone extracted at α = 0.05 to SDSM backbones extracted at various α

from an empirical bipartite network (green line) and from 100 synthetic bipartite networks (purple line = mean, purple region =
10th–90th percentile).

In this study, we investigate SDSM’s statistical power relative to FDSM, and specifically whether extracting an SDSM
backbone using a more liberal (i.e., larger) α makes it more similar to an FDSM backbone extracted at α = 0.05.

Methods
To evaluate SDSM’s statistical power and the effect of significance levels on the similarity of SDSM and FDSM backbones, we
first extracted the FDSM backbone from the GaWC bipartite network at α = 0.05. We then extracted several SDSM backbones
from the GaWC bipartite network at 0.01≤ α ≤ 0.3 in 0.001 increments, each time computing the Jaccard index (J) to measure
the similarity between the SDSM and FDSM backbones. After comparing SDSM and FDSM backbones extracted from the
empirical GaWC bipartite network, we repeat this process using 100 synthetic bipartite networks with the same dimensions
(196×100), density (0.08) and right-tailed agent and artifact degree distributions.

Results
The green line in Figure 2B shows the Jaccard similarity between an FDSM backbone extracted from the empirical GaWC
network at α = 0.05 and SDSM backbones extracted at the significance levels shown on the x-axis. We find that an SDSM
backbone achieves its maximum similarity to the FDSM backbone (J = 0.81) when it is extracted using the more liberal
significance level of α = 0.12. Returning to the example in Figure 2A, using this more liberal significance level would result in
the Milan-Paris edge being deemed significant and included in the SDSM backbone because its SDSM p-value 0.0275 < 0.12

2 .
Because this more liberal significance level results in the inclusion of additional edges, the new SDSM backbone extracted at
α = 0.12 has a density (0.01) close to that of the FDSM backbone extracted at α = 0.05 (0.012).

The purple line in Figure 2B shows the mean Jaccard similarity between an FDSM backbone extracted using α = 0.05 and
SDSM backbones extracted using 0.01≤ α ≤ 0.3 from 100 bipartite networks generated to resemble the empirical GaWC
network. The shaded purple region shows the 10th and 90th percentile of Jaccard similarities of these backbones. We find that
these synthetic networks behave similarly to the empirical network. Specifically, SDSM and FDSM backbones extracted from a
low-density 196×100 bipartite network with right-tailed degree distributions achieve a maximum similarity of 0.49 < J < 0.76
when the FDSM backbone is extracted using α = 0.05 and the SDSM backbone is extracted using α = 0.14. This is promising
because it suggests that, given the characteristics of an empirical bipartite network, it may be possible to select a significance
level for extracting a computationally-efficient SDSM backbone that closely resembles a computationally-infeasible FDSM
backbone.

Study 3: Backbone equivalence under varying degree distributions
Agent and artifact degree distributions are a key feature of a bipartite network, and are known to have implications for bipartite
projections.9, 21, 22 The FDSM is particularly appealing because it allows decisions about the significance of edges in a projection
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Degree Distribution Authors (agents) Papers (artifacts)
Right-tailed ∼ β (1,10) Most write some papers, but a few are

prolific (most departments).
Most papers are sole-authored, but
some are written by large teams (e.g.,
sociology).

Left-tailed ∼ β (10,1) Most are prolific, but some are inactive
(elite departments).

Most papers are written by large
teams, but some are sole-authored
(e.g., physics).

Uniform ∼ β (1,1) There is substantial diversity in schol-
arly output (e.g., interdisciplinary de-
partments).

There is substantial diversity in the
size of authorship teams (e.g., an en-
tire university).

Constant ∼ β (10000,10000) There are strong norms about how
many papers an author should have
(e.g., for performance evaluations).

There are strong norms about how
many authors a paper should have
(e.g., senior/lead & junior)

Normal ∼ β (10,10) Scholarly output varies around some
typical level.

Authorship teams vary around some
typical size.

Table 2. Bipartite degree distributions, with examples in the context of a scholarly authorship bipartite network

to be conditioned on both bipartite degree sequences, thereby taking into account these important features. However, because
the computational requirements of the FDSM make it impractical for extracting the backbone from most bipartite projections, it
is often necessary to use a different backbone model. In this study, we evaluate the equivalence of an FDSM backbone and
backbones extracted using more computationally efficient models. We perform this comparison for backbones extracted from
bipartite networks characterized by five types of degree distributions: right-tailed, left-tailed, normal, constant, and uniform.

For the sake of concreteness, in this section we use the example of a bipartite network in which authors (agents) are linked
to the papers they have written (artifacts). The projection of such a network yields a co-authorship network in which the edge
weight between a pair of authors indicates their number of co-authored papers.4 These edge weight values will depend heavily
on the distribution of papers written by authors (i.e., the agent degree sequence), and on the distribution of authors on each
paper (i.e., the artifact degree sequence). Different distributions describe different kinds of scholarly environments as shown
in Table 2. The choice of a backbone model affects how and whether these distributions are considered, and in this example
affects the extent to which decisions about the significance of two authors’ number of co-authored papers consider the scholarly
environment. The FDSM compares their observed number of co-authored papers to the number that might be observed in
alternative realizations of the same environment, while other backbone models relax the extent to which the environment is held
constant.

Methods
We evaluate similarities among the backbones extracted using different models by comparing backbones extracted from
synthetic 100×100 bipartite networks with a density of 0.1. Following our example, these synthetic bipartite networks might
represent a college of 100 faculty who collectively wrote 100 papers, where each individual had a 10% chance of being an
author on each paper. First, we generate separate agent and artifact degree sequences that sum to 1000 and that approximately
follow one of the beta distributions in Table 2. Second, we generate a bipartite network with these agent and artifact degree
sequences using the Gale-Ryser algorithm.41 Third, we extract five different backbones from the generated bipartite network,
using the fixed fill model, fixed row model, fixed column model, stochastic degree sequence model, and fixed degree sequence
model; in all cases we use α = 0.05. Finally, we compute the similarity of the first four backbones to the FDSM backbone
using a Jaccard index. We repeat this process 100 times for each of the 25 possible combinations of agent and artifact degree
distributions.

Results
The heatmaps in Figure 3 illustrate the similarity between an FDSM backbone and a backbone extracted using an alternative
model. The rows of each heat map correspond to different agent degree distributions, and the columns correspond to different
artifact degree distributions, in the synthetic bipartite networks from which the backbones were extracted. The lightest patches
identify conditions under which a given backbone model yields a backbone that is similar to what would be obtained using
the computationally costly FDSM, while darker patches identify conditions under which these two backbones differ. We find
that when agent degrees are constant (i.e., every agent has the same degree) and artifact degrees are constant or left-tailed, all
backbone models yield essentially the same backbone as FDSM (Mean J = 0.999). However, beyond this special case, which
is likely to be rare in empirical data, similarity to FDSM-extracted backbones varies.
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As expected, the similarity of backbones extracted using FRM and FDSM depends primarily on the distribution of artifact
degrees, not agent degrees (see Figure 3B). For example, for any agent degree distribution, these two models yield very different
backbones when artifact degrees follow a right-tailed distribution (Mean J = 0.186), but very similar backbones when artifact
degrees follow a normal distribution (Mean J = 0.863). This occurs because both models exactly control for agent degrees,
however FDSM also controls for artifact degrees, while FRM does not.

A similar but rotated pattern emerges when considering the FCM: the similarity of backbones extracted using FCM and
FDSM depends primarily on the distribution of agent degrees, not artifact degrees (see Figure 3C). For any artifact degree
distribution, these two models yield very different backbones when agent degrees follow a right-tailed or uniform (Mean
J = 0.084) distribution , but more similar backbones when agent degrees follow a left-tailed distribution or are constant (Mean
J = 0.617). This occurs because both models exactly control for artifact degrees, however FDSM also controls for agent
degrees, while FRM does not. However, there is a notable exception to this general pattern: when artifact degrees follow a
uniform distribution, FCM and FDSM always yield different backbones (Mean J = 0.151).

The conditions under which the FFM yields FDSM-similar backbones occur at the intersection of the conditions under
which the FRM and FCM both yield FDSM-equivalent backbones (see Figure 3A). When artifact degrees follow a right-tailed
distribution and/or the agent degrees follow a right-tailed or uniform distribution, then FFM and FDSM backbones differ (Mean
J = 0.1). In contrast, for other combinations of degree distributions, FFM and FDSM backbones are more similar (Mean
J = 0.724).

Finally, as expected based on the findings from study 2, we observe that the SDSM generally yields different backbones
than FDSM when both are extracted at α = 0.05 (see Figure 3D). Specifically, except in the narrow case where agent degrees
are constant and artifact degrees are constant or left-tailed (Mean J = 1), SDSM and FDSM backbones exhibit only modest
similarity (Mean J = 0.314). This lack of similarity or equivalence occurs because SDSM offers a less statistically powerful
(or more conservative) test of edges statistical significance than FDSM, and therefore retains fewer edges in the backbone.
However, findings from study 2 also suggested that careful selection of the significance level used for extracting an SDSM
backbone can yield results more similar to FDSM.

To explore this possibility, we repeated the analysis reported in figure 3D, finding that when a suitably more liberal (i.e.,
larger) significance level α is used to extract an SDSM backbone, the resulting SDSM backbone is very similar to an FDSM
backbone extracted at α = 0.05 (see Figure 4A). Specifically, for backbones extracted from bipartite networks with any agent or
artifact degree distributions, these two backbones tend to be nearly equivalent (Mean J = 0.865). This suggests that in principle
the fast SDSM can be used to obtain a close approximation of a computationally-infeasible FDSM backbone from any bipartite
network.

In practice, using SDSM to obtain an FDSM-like backbone requires selecting an α value for the SDSM that corresponds to
α = 0.05 in the FDSM. We observe that there are three distinct values of such an ‘optimal’ α that depend on agent and artifact
degree distributions (see Figure 4B). First, when agent degrees are constant, a value only slightly higher than 0.05 (Mean
= 0.062, SD = 0.021) achieves the best approximation of an FDSM backbone. Second, when artifact degrees are constant,
a value roughly double (Mean = 0.09, SD = 0.022) achieves the best approximation of an FDSM backbone. Finally, when
neither agent nor artifact degrees are constant, which is likely in most empirical bipartite networks, a value roughly 2.5 times
larger (Mean = 0.13, SD = 0.014) achieves the best approximation of an FDSM backbone. Although further work is needed to
facilitate the a priori selection of an α that allows an SDSM backbone to closely approximate an FDSM backbone, these results
suggest that under the most common circumstances (i.e., when there is variation in degrees) α ≈ 0.13 may be appropriate.

Study 4: Recovery of community structure
Studies 1-3 examine the backbones extracted from synthetic random bipartite networks; however, empirical bipartite networks
are generally not random. For backbones of bipartite projections to be useful, they must be able to capture this non-random
structure. Community structure – the clustering of nodes into groups such that within-group edges are more common than
between-group edges – is among the most widely studied patterns in unipartite networks.42 In this study, we evaluate the extent
to which backbones extracted using different models reflect a known community structure that is encoded in the bipartite data
from which they are extracted. Prior work has shown that SDSM and FDSM backbones extracted from a bipartite network
representing bill co-sponsorship in the 114th session of the US Senate more clearly captured the known partisan community
structure than an FRM backbone.21 For the sake of concreteness, we use this context as an example in this section, but we
extend this prior work by considering a broader range of backbone models, and by examining their ability to recover community
structures from bipartite data containing varying levels of evidence for this structure.

Methods
We investigate the ability for backbones to recover a known community structure in three steps. First, we simulate a 200×1000
bipartite network with a density of 0.1 and right-tailed agent and artifact degree distributions. We focus on a bipartite
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Figure 4. (A) Given agent and artifact degree distributions, there exists a statistical significance level α that maximizes the
similarity between an SDSM backbone extracted at this level and an FDSM backbone extracted at α = 0.05, and (B) when
used yields an SDSM backbone that is very similar to the corresponding FDSM backbone.

network with more artifacts than agents to ensure that these data contain sufficient information to encode potential community
memberships. We focus on a bipartite network with right-tailed degree distributions because they are common in many
empirical unipartite43 and bipartite networks.5, 6, 22 This synthetic bipartite network could represent a legislative body composed
of 200 legislators casting votes on 1000 bills, where any given legislator had a 10% chance of voting in favor of any given bill.
The right-tailed degree distributions capture the fact that most legislators vote in favor of only a few bills, and that most bills
receive the support of only a few legislators, which is typical of legislative bodies. The backbone of a projection of such a
bipartite network would represent a network of collaboration or ideological alignment among legislators.5

Second, we incorporate evidence of communities in this bipartite network by randomly assigning each agent and each
artifact to one of two groups. We then shuffle the edges, preserving the degree distributions, such that a given fraction of edges
W are within-group, connecting an agent and artifact from the same group. Figure 5A provides graphical depictions of the
matrices describing synthetic bipartite networks at two values of W . In each plot, the rows represent agents assigned to group
A or B, the columns represent artifacts assigned to group A or B, and a cell is shaded black if the row agent is connected
to the column artifact. When W = 0.5, agents in a given group are equally likely to associate with artifacts in either group,
placing ≈ 0.5 of the edges (i.e., shaded cells) in the diagonal blocks and ≈ 0.5 of the edges in the off-diagonal blocks. In
contrast, when W = 0.8, agents in a given group are much more likely to associate with artifacts from their own group than
artifacts in the other group, placing ≈ 0.8 of the edges in the diagonal blocks and ≈ 0.2 of the edges in the off-diagonal blocks.
Returning to our example, the groups could represent political parties: each legislator belongs to one of two parties (i.e., there
are conservative and liberal legislators), and each bill advances the agenda of one of these parties (i.e., there are conservative
and liberal bills). When W = 0.5, a conservative legislator is equally likely to vote for conservative and liberal bills, while
when W = 0.8, a conservative legislator is four-times more likely to vote for a conservative bill than a liberal bill.

Finally, we extract a backbone from the bipartite network using a given model and compute the backbone’s modularity Q
with respect to the agents’ group assignments. If a backbone model is able to recover the community structure from evidence
in the bipartite network, then we expect a positive association between W and Q, and more specifically we expect that as W
approaches 1 (i.e., agents are associated only with artifacts from their own group) Q will approach 0.5 (i.e., a backbone with
distinct communities).44 In the legislative example, if legislators are bipartisan in their voting patterns (i.e., W = 0.5), then
legislators should not be clustered by party in the backbone (i.e., Q≈ 0). In contrast, if legislators are strongly partisan in their
voting patterns (i.e., W = 0.8), then legislators should be clustered by party in the backbone (i.e., Q≈ 0.5).

We repeat these three steps 10 times for 0.5 ≤W ≤ 0.8 in 0.05 increments. When evaluating the SDSM backbone, we
consider both a backbone extracted using the conventional significance level of α = 0.05 and one extracted at the more liberal
α = 0.13, which study 3 suggests yields a backbone similar to FDSM.

Results
Figure 5B shows the modularity (y-axis; with respect to known community memberships) of backbones extracted using
different models from bipartite networks with different fractions of within-community edges (x-axis). All six lines increase
monotonically, confirming that all backbone models yield backbones that can recover a known community structure. However,
there is notable variation among the models. As evidence of community structure grows stronger in the bipartite network, the
modularity of backbones extracted using the FFM and FCM slowly increase, but reach average values of only Q = 0.15 and
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0.18 (respectively), even when the evidence of such a structure is quite strong (i.e., when W = 0.8). Backbones extracted using
the FRM display a similar pattern, but achieve a higher average value when W is large (Q = 0.39).

In contrast, backbones extracted using FDSM and SDSM are virtually indistinguishable in their ability to recover the known
community structure, and do so very well. As evidence of a community structure grows stronger in the bipartite network, the
modularity of backbones extracted using these models rapidly increases. When the evidence of community structure is strong
(i.e., when W = 0.8), these backbones have very high modularity (mean Q = 0.49). However, even when there is only modest
evidence of community structure in the bipartite network (e.g., when W = 0.65), these backbones are still able to identify the
community structure and have a distinctively high modularity (mean Q = 0.37).

Figure 5C illustrates the difference between two backbone models’ abilities to recover a known community structure, when
evidence of that structure is modest in the bipartite data from which the backbone is extracted (W = 0.65). In both plots,
agents from group A (e.g., conservatives, in the legislative example) are colored red, while agents from group B (e.g., liberals,
in the legislative example) are colored blue. The FDSM-extracted backbone clearly places agents from different groups in
separate clusters. In contrast, the FCM-extracted backbone is unable to distinguish this group structure and fails to cluster
agents according to their known group memberships. These findings suggest that although all backbone models can yield
backbones that recover a known community structure, SDSM and FDSM backbones are able to detect this structure more
clearly and from a weaker signal.

Discussion
Bipartite networks can be used to represent a wide range of phenomena in the social and natural worlds including interspecies
competition, global trade, scientific advances, and legislative deliberation. Likewise, projections of bipartite networks, which
take the form of co-occurrence networks, can be useful for inferring unipartite networks that would otherwise be difficult
to measure directly. Several models have been proposed for extracting the backbone of bipartite projections, and thus for
making such inferences, including the fixed fill model (FFM) fixed row model (FRM), fixed column model (FCM), fixed degree
sequence model (FDSM), and stochastic degree sequence model (SDSM). In this paper we have systematically compared
these models in terms of their relative accuracy, speed, statistical power, similarity, and ability to recover a known community
structure.

In study 1, we examined several methods for choosing the probabilities necessary for applying the stochastic degree
sequence model (SDSM), finding that the bipartite configuration model (BiCM) is both the fastest and most accurate. In
study 2, we examined the statistical power of the SDSM relative to the fixed degree sequence model (FDSM), finding that the
SDSM can be viewed as a statistically less powerful (or more conservative) variant of the FDSM. In study 3, we examined
the similarity of an FDSM-extracted backbone to backbones extracted using other models, finding that the SDSM and FDSM
extract very similar backbones from bipartite networks with a wide range of possible degree distributions when an appropriate
significance level α is chosen. Finally, in study 4, we examined the ability for backbones extracted using different models to
recover a known community structure, finding that although all models can recover the structure, SDSM and FDSM can detect
a community structure more clearly and from a weaker signal.
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Based on these findings, and with the goal of offering researchers some guidance in extracting the backbones of bipartite
projections, we offer three recommendations. First, we recommend the stochastic degree sequence model (SDSM) for extracting
the backbones of bipartite projections because it is fast, controls for both agent and artifact degree sequences, and yields
modular backbones when the bipartite data contains even modest evidence of within-community clustering. Second, when the
SDSM is used, we recommend that the cell-filling probabilities p∗ik be chosen using the Bipartite Configuration Model (BiCM)
because it is faster and more accurate than any other currently available method. Third, when an FDSM backbone extracted at
the α = 0.05 significance level is desired but computationally infeasible, we recommend extracting an SDSM backbone at the
α = 0.13 significance level, which we observe is very similar when there is variation in the agent and artifact degree sequences.
The models and options necessary to adopt these recommendations are implemented in the backbone package for R.21

These findings and recommendations must be viewed in light of the fact that, due to the computational requirements of
the FDSM and of extracting a large number of backbones across the four studies, these studies have relied on small synthetic
bipartite networks ranging in size from 3× 3 (study 1) to 200× 1000 (study 4). However, in practice bipartite networks
may be several orders of magnitude larger. For example, a bipartite network used to infer collaborations in the US House
of Representatives includes 435 agents (representatives) and over 6000 artifacts (bills),5, 40 while a bipartite network used to
infer movie recommendations includes 17,770 agents (films) and nearly 500,000 artifacts (viewers).15 Future research should
explore whether these findings extend to backbones extracted from such large bipartite networks. Limitations of existing
backbone models also point to directions for future research. First, using the FDSM will generally be computationally infeasible
in practice because the distribution of P∗i j arising from BFDSM must be estimated via numerical simulation. Identifying this
distribution’s probability mass function, which is known for the other ensembles (see Supplementary Text S1), would facilitate
the use of this otherwise attractive model; however, this is a well-studied problem and so is probably very hard to solve. Second,
all the ensemble models we have considered impose constraints on the degree sequences, but other types of constraints may
also be useful. For example, in some contexts it may be necessary to constrain all members of an ensemble to contain a 0 in a
particular cell (e.g., to represent that an author was not alive to co-author a paper, or a legislator was not present to co-sponsor a
bill). These limitations and future directions notwithstanding, the results presented above provide a starting point for further
development of backbone models, and provide applied researchers with some practical guidance and a preliminary rationale for
adopting the stochastic degree sequence model.
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Supplementary information
S1 Probability Mass Functions of projection edge weights under ensemble backbone

models
In the subsections below, we derive the probability mass functions of P∗i j used by ensemble backbone models to evaluate the
statistical significance of the weight of edge Pi j in a bipartite projection. We use the following notation:

• Let B be an m×n bipartite matrix, with a vector of row sums R = (r1, . . . ,rm), a vector of column sums C = (c1, . . . ,cn),
and f cells containing a 1. So

f =
m

∑
i=1

ri =
n

∑
j=1

c j.

• Let BM be the ensemble of all m×n matrices B∗ = (B∗i j) that obey the constraints of the respective model. In all models,
the probability distribution on BM is uniform except in the stochastic case.

• Let P∗i j be a random variable equal to (B∗B∗T )i j for all B∗ ∈ BM. Note that we have

P∗i j = B∗i1B∗j1 +B∗i2B∗j2 + · · ·+B∗inB∗jn. (1)

S1.1 Fixed Fill Model (FFM)
Let the fixed fill model constrain all B∗ ∈ BFFM to contain the same number of 1s (i.e. fill) as B.

Theorem S1.1. Under the fixed fill model, the distribution of P∗i j for i 6= j satisfies

Pr(P∗i j = k) =

(
n
k

)
∑
r

2n−k−r
(

n− k
r

)(
(m−2)n

f −n− k+ r

)
(

mn
f

) . (2)

Proof. For the denominator we need to compute the cardinality #BFFM. If B∗ ∈BFFM then B∗ has mn entries of which f must
be chosen to be ones. So

#BFFM =

(
mn
f

)
.
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For the numerator, suppose P∗i j = k. We see from equation (1) that there are exactly k columns c where B∗ic = B∗jc = 1. There
are
(n

k

)
ways to choose these columns. Now define the following parametrs:

p = number of coumns c where B∗ic = 1 and B∗jc = 0,

q = number of coumns c where B∗ic = 0 and B∗jc = 1,

r = number of coumns c where B∗ic = 0 and B∗jc = 0.

The nunber of ways to pick the columns counted by these parameters from the n− k columns which do not contains ones in
both rows is the trinomial coefficients

( n−k
p,q,r

)
. Now we have used 2k+ p+q ones in rows i and j. So there are f −2k− p−q

left to distribute to the remaining m−2 rows. And these rows have (m−2)n entries. So the number of possibilities for these
remaining ones is

( (m−2)n
f−2k−p−q

)
. Thus the total number of choices from this and the previous paragraph is(

n
k

)
∑

p+q+r=n−k

(
n− k
p,q,r

)(
(m−2)n

f −2k− p−q

)
=

(
n
k

)
∑

p+q+r=n−k

(
n− k

r

)(
n− k− r

p

)(
(m−2)n

f −n− k+ r

)

=

(
n
k

)
∑
r

(
n− k

r

)(
(m−2)n

f −n− k+ r

)
∑
p

(
n− k− r

p

)

=

(
n
k

)
∑
r

2n−k−r
(

n− k
r

)(
(m−2)n

f −n− k+ r

)
as desired.

For even modestly large B, computing equation (2) involves values larger than can be handled by some programs. In
practice, we use logs to make these computations practical.

We now show that the sum in the numerator of this probability is related to the famous Jacobi orthogonal polynomials. This
sum is a terminating hypergeometric series. Given a real number a and a nonnegative integer r the corresponding Pochhammer
symbol or rising factorial is

(a)r = a(a+1)(a+2) · · ·(a+ r−1).

Note that if a is an integer with −r < a ≤ 0 then (a)r = 0 because the product contains 0 as a factor. Given real numbers
a1,a2, . . . ,ap and b1,b2, . . . ,bq as well as a variable z, the corresponding hypergeometric series is

pFq

[
a1 a2 . . . ap
b1 b2 . . . bq

;z
]
= ∑

r≥0

(a1)r(a2)r · · ·(ap)r

(b1)r(b2)r · · ·(bq)r

zr

r!
.

Note that if any of the ai are negative integers then, because of the remark above, this series will terminate and become a
polynomial in z.

To convert a binomial coefficient into Pochhammer symbols, we write(
n
r

)
=

(n)(n−1) · · ·(n− r+1)
r!

=
(−1)r(−n)(−n+1) · · ·(−n+ r−1)

(1)r

=
(−1)r(−n)r

(1)r
.

The following identity will also be useful

(a)b+r = (a)(a+1) · · ·(a+b−1)× (a+b)(a+b+1) · · ·(a+b+ r−1)
= (a)b(a+b)r.

We now return to the sum in the numerator of equation (2). We will ignore the factor of 2n−k since it is constant with
respect to the sum and so can be pulled outside. For simplicity of calculation we will also use the substitutions

s = (m−2)n, t = f −n− k.
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Thus we have

∑
r

2−r
(

n− k
r

)(
(m−2)n

f −n− k+ r

)
= ∑

r

(
n− k

r

)(
s

t + r

)
(1/2)r

= ∑
r

(−1)r(k−n)r

(1)r
· (−1)t+r(−s)t+r

(1)t+r
(1/2)r

= (−1)t
∑
r

(k−n)r(−s)t(−s+ t)r

(1)t(t +1)r

(1/2)r

(1)r

=
(−1)t(−s)t

(1)t
∑
r

(k−n)r(−s+ t)r

(t +1)r

(1/2)r

r!

=

(
s
t

)
2F1

[
k−n − s+ t

t +1 ;
1
2

]
We are indebted to Marko Petkovšek [personal communication] for pointing out that this 2F1 is, up to a factor, a specialization

of a Jacobi polynomial. Given a nonnegative integer ` and real numbers α,β the associated Jacobi polynomial is

P(α,β )
` (z) =

(
α + `

`

)
2F1

[
−` `+α +β +1

α +1 ;
1− z

2

]
To make these 2F1 polynomials agree we can let `= n− k, α = t = f −n− k,

β =−s+ t− (`+α +1) = k− (m−1)n−1

and z = 0. With these substitutions we get

∑
r

2−r
(

n− k
r

)(
(m−2)n

f −n− k+ r

)
=

(
(m−2)n
f −n− k

)
(

f −2k
n− k

) P( f−n−k, k−(m−1)n−1)
n−k (0).

S1.2 Fixed Row Model (FRM)
Let the fixed row model constrain all B∗ ∈ BFRM to have the same row sums as B.

Theorem S1.2. Under the fixed row model, the distribution of P∗i j for i 6= j is hypergeometric and satisfies

Pr(P∗i j = k) =

(
r j

k

)(
n− r j

ri− k

)
(

n
ri

) .

Proof. The total number of ways to pick ri of the n columns for ones in the ith row and r j of the n columns for ones in the jth
row is(

n
ri

)(
n
r j

)
=

(
n
ri

)
n!

r j!(n− r j)!
. (3)

So that will go in the denominator of the desired probability.
For the numerator we follow the same line of reasoning as in the previous proof, where the parameters therein can be

expressed as

p = ri− k,

q = r j− k,

r = n− ri− r j + k.
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So we have a total of(
n
k

)(
n− k
p,q,r

)
=

n!
k!(ri− k)!(r j− k)!(n− ri− r j + k)!

(4)

choices.
Dividing equation (4) by (3) and cancelling n! gives

Pr(P∗i j = k) =

r j!
k!(r j− k)!

·
(n− r j)!

(ri− k)!(n− ri− r j + k)!(
n
ri

) =

(
r j

k

)(
n− r j

ri− k

)
(

n
ri

) .

as desired.

S1.3 Distribution of projection edge weights under the Fixed Column Model (FCM)
Let the fixed column model constrain all B∗ ∈ BFCM to have the same column sums as B.

Let X1, . . . ,Xn be independent Bernoulli random variables. Let the probability of success for Xi be

Pr(Xi = 1) = pi.

The random variable

X = X1 + · · ·+Xn (5)

is said to have the Poisson binomial distribution with parameters p1, . . . , pn.

Theorem S1.3. Under the fixed column model, the distribution of P∗i j for i 6= j is Poisson binomial with parameters

p1 =
c1(c1−1)
m(m−1)

, p2 =
c2(c2−1)
m(m−1)

, . . . , pn =
cn(cn−1)
m(m−1)

.

Proof. The B∗ik are all either zero or one and are independent in different columns when only the column sums are fixed. So as
k varies, the products B∗ikB∗jk are independent Bernoulli random variables. Comparing equations (1) and (5), we see that the
distribution of P∗i j is Poisson binomial.

If column k has column sum c = ck then all zero-one vectors with sum c are equally likely for that column of B∗. So there
are
(m

c

)
possible kth columns. The number of ways to have a success is the number of possible columns which have ones in

both positions i and j where i 6= j. So the number of choices is the number of ways to choose the remaining c−2 ones in that
column from the other m−2 positions, that is,

(m−2
c−2

)
. Thus

pk = Pr(B∗ikB∗jk = 1) =

(
m−2
c−2

)
(

m
c

) =
c(c−1)

m(m−1)

which finishes the demonstration.

S1.4 Stochastic Degree Sequence Model (SDSM)
In the stochastic degree sequence model, BSDSM consists of all binary m×n matrices. A method is then chosen to generate
probabilities p∗ik. Finally, matrices B∗ ∈BSDSM are generated using these probabilities for independent Bernoulli trials, where
B∗ik is filled with a one with probability p∗ik and zero otherwise.

Theorem S1.4. Under the stochastic degree sequence model, the distribution of P∗i j for i 6= j is Poisson binomial with parameters

p1 = p∗i1 p∗j1, . . . , pn = p∗in p∗jn.

Proof. The fact that the distribution is Poisson binomial follows immediately from the independence assumption on the Pr(B∗ik)
and equation (1). Furthermore, the probability that the kth variable is one is

pk = Pr(B∗ikB∗jk = 1) = Pr(B∗ik = 1)Pr(B∗jk = 1) = p∗ik p∗jk.

So we are done.
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