
Europ . J. Combinatorics (l980p, 67-76

Congruences Derived from Group Action
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Dedicated to G. Polya, in friendship and admiration.

1. INTRODUCTION

Since the beginning of this century the development of group theory has been
dominated by the notion of representation, and the seemingly more specialized theory of
group actions (permutations) has been given short shrift. To be sure, every action of a
group can be considered as a particular representation by matrices, but in this setting some
of the finer structure of the original permutations is lost.

There are signs that the tables may be turning. Topology, ergodic theory, combinatorics
and sundry other subjects abound with problems that cannot be dismissed by group
characters alone. To name but one instance, the Burnside algebra yields more structural
information than the Grothendik ring, as Solomon was first to note [11].

An important problem in combinatorics is to enumerate unlabeled objects, i.e.
equivalence classes of "labeled" objects under a group of automorphisms. Since Polya 's
fundamental paper of 1937 [6], it has been wrongly believed that all the necessary
information is given by the cycle index of a permutation group. However, in the same year,
Witt's enumeration of the dimensions of free Lie algebras [13] displayed the need for more
detailed invariants. The same need arose in Rota's generalization of Spitzer's probabalistic
formula [8]. In both these instances the problem is that of enumerating aperiodic elements
of a group action (definition below) and this lies beyond the scope of the cycle index.

The idea for the solution of this problem bears a resemblance to Galois theory, an
approach first fully presented by Rota and Smith [9]. Whenever a group G acts on a set ,
one can define certain special subgroups associated with this action which we call periodic
subgroups (vide below). The periodic subgroups form a lattice, in general smaller than the
lattice of all subgroups of G, and this lattice is analogous to the lattice of normal subfields of
a field extension. Mobius inversion over the lattice of periods gives an explicit expression
for the number of aperiodic functions on the underlying set . One obtains, as a special case,
proofs of congruences due to Fermat, Lucas and others.

In this paper we show that similar congruences can be derived for any group of
permutations whatsoever (Theorem 3.2 below). We are also led to define an analog of the
Euler </J function for a general group action and to derive corresponding congruences. We
surmise that other number theoretic functions can also be so generalized. Thus it is seen
that the lattice of periods may be a useful enumerative invariant of a group action.

2. PRELIMINARIES

In this section we present a sketch of some useful results from a theory of enumeration
developed by Rota and Smith. The reader is referred to [9] for a more detailed exposition.

Consider the set [n] = {l, 2, . . . , n} and a group G of permutations of [n], i.e. G is a
subgroup of the symmetric group rJn • We will use CT to denote an arbitrary element of G,
and for it: [n] we will write CTi for the image of i under CT.
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Let Il; be the lattice of all partitions of [n] (ordered by refinement) and let La be the
lattice of all subgroups of G (ordered by inclusion). Define a mapping T/ : La -+ Il; as
follows: each subgroup H ~ G is mapped to the partition 71' = T/ (H) where i, j E [n] are in
the same block of 71' if and only if ai = j for some a E H. Also consider the map 8 :Il; -+ La
defined by

8(71') = {ali and ai are in the same block of 71' for all i E [n]}.

It is easy to verify that 8(71' ) is indeed a subgroup of G.
From these definitions we see that for all subgroups H and partitions 71':

H ~ (JT/(H)

71'~T/8(71' ) .

It follows that we have a coclosure operator on Il; given by iT = T/8(71'), i.e. the mapping
71' -+ iT is idempotent, iT.;;;; 71', and 71') .;;;; 71'2 implies iT) .;;;; iT2' We can describe iT as the coarsest
partition less than 71' whose blocks are the orbits of some subgroup of G. The coclosed
partitions, called periods, form a lattice g> (G, [n]) ; in other words the set {71' E Il; 171' = iT}
forms a lattice when ordered by refinement. This lattice is fundamental in reflecting the
interaction of G with [n].

Now consider functions I: [n]-+X where X = {Xl. X2 , ... , xa } . The group G acts on
these functions by defining

(al)(i) =I(a - 1i) .

The kernal of I is the partition 71'f = ker I where i, j E [n] are in the same block of 71'f if and
only if l(i) =l(j) . The coclosure of 71'f is called the Gsperiod of I in [n] and is denoted

per 1= iTf·

Thus per I is the coarsest partition of [n] satisfying the two conditions
(i) the blocks of per I are the orbits of some subgroup of G, and

(ii) I is constant on each block of per I.
We will be particularly concerned with functions whose G-period is 0, the minimal

element of g>(G, [n]). Such functions will be called aperiodic. In this regard the following
result is important.

PROPOSITION 2.1. The number 01aperiodic [unctions is divisible by o(G), the order 01
G.

PROOF. Let I be aperiodic and consider the set GI = {alia E G} . We claim that GI has
o(G) distinct elements. To show this it suffices to prove that of 7f:. I for any a E G. But if
al =I then we can consider the partition 71' = T/(H) where H is the subgroup generated by
a. Clearly 71' 7f:. 0 and 71'';;;; ker I. Hence ii "'"per I and iT = 71' 7f:. 0 which contradicts the fact
that I is aperiodic.

Now we can find aperiodic functions II. h. ... ,II such that the sets GIl. Gh, ... , Gil
form a partition of the set of all aperiodic functions . Since each of these sets contain o(G)
elements, we are done.
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3. GENERATING FUNCTIONS

It is convenient to consider the elements XI, X2, •.• ,Xa of X as independent indeter
minates. Thus for each function [ :[n] ~X we can form the monomial

n

M([) - n [(.) - '1'2 'a- I -XlX2 ",X a
i=l

where rj is the number of elements of [n] mapped to x, by f.
More generally, let fJi be any family of functions [: [n] ~X which is proper in the sense

that if [ E fJi and a E G then of E fJi. Examples of proper families include the family of all
functions from [n] to X, the family of all onto functions from [n] to X, etc. For each family
we have the generating function

M(fJi) = L M(f).
reff'

Now let 1T be a partition in the lattice of periods £iJ(G, [n ]), so if = 1T, and let fJi be a
proper family. Two generating functions that will play an important role in the sequel are
defined by

A(1T) =M({f E fJilper[= 1T})

and

B(1T) = M({f E fJilper[?31T}).

Note that A(O) enumerates aperiodic functions. Also note that

B(O) = L A(1T).
-rre 9"(0. [n])

(3.1)

,.,. (1Tl) for 1T > O.

To isolate A(O) we must invert the sum (3.1). Let u be the Mobius function of the lattice
£iJ(G, [n]) (an exposition of the theory of Mobius inversion can be found in [7]). Then u is
defined inductively on each 1T E £iJ(G, [n]) by

,.,.(0) = 1

""(1T) =-
1Tl<'1r

-rrl e9"(O,[n])

It follows that we can rewrite (3.1) as

A(O) = L ""(1T)B(1T).
-rre9"(O.[n])

We can now strengthen Proposition 2.1 to:

THEOREM 3.2. For any proper family

L ,.,.(1T)B(1T) = O(modo(G)).
-rre9"(O.[n])

PROOF. We need to show that the coefficient of each term in the generating functions
A(O) is divisible by o(G). If c . xllx;2 ... x:a is such a term then c is the number of [E fJi
which map rj of the elements of [n] to Xj' Since fJi is proper we have G[ s; fJi and it follows
from the proof of Proposition 2.1 that IG[I = o(G). Hence we can partition the functions
counted by c into equivalence classes each containing o(G) elements.

In order to utilize Theorem 3.2 to derive other congruences it is useful to give an explicit
expression for B(1T). If 1T has blocks BI, B 2 , • • • , B, then per [?31T if and only if [ is
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constant on each B ;. Hence
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,
B(1T) = n (X~Bi l +xJfil + .. .+x!:" I)

;= 1
(3.3)

when g; is the family of all functions from En] to X. We will now consider some specific
examples.

4. CYCLIC GROUPS

Let C; be the subgroup of COn generated by the cycle (1,2, ... , n). Then the lattice of
periods @l(Cm En]) is isomorphic to the lattice of subgroups of Cm which is in turn
isomorphic to the lattice of divisors of n.

In the simplest case we have n = pm, where p is a prime, so that @l(Cm En]) is merely a
chain. Letting 1T' be the atom of this chain, we see that the Mobius function takes the values

JL(O) = 1

JL(1T') =-1

JL (1T) =0 if 1T > 1T'.

Now 1T' has blocks BI,B2 , • •• ,Bp m - l where B;={i,i+pm-l,i+2pm-I , . . . ,
i + (p _1)pm-I}. Hence we obtain from (3.3) the generating function

B(1T') = (x f + x~ + ... + x~) pm-l

for the proper family of all functions from [pm] to x. Also B(O) = (Xl + X2 + . . . + xa)pm SO

Theorem 3.2 becomes

L JL(1T)B(1T) = (Xl + X2 + ... + xa)pm - (xf + x~ + ... + x~vm-l == O(mod pm). (4.1)

Equation (4.1) immediately yields certain congruence properties of multinomial
coefficients.

PROPOSITION 4.2

where by convention a multinomial coefficient containing a non-integral fraction has the
value zero.

By repeated application of Proposition 4.2 we obtain

COROLLARY 4.3. If the greatest common divisor g.c.d. (it, i 2, •• • , t.;v") =pk then

m m-k

( . . p . ) == ( . / k • /p k • / k)(mOd pm-k+l)
II, 12, ... , la 11 P , 12 P , .. . , la P

== O(modr :»
In the case of binomial coefficients, i.e. a = 2, Corollary 4.3 gives the best possible result.
In other words if pic = g.c.d. (it, i 2, pm) then -

d m-k+lf( v" )an p . .
It, 12
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In particular if 1<a<p then S(pm,a)==

(see for example Krummer [5]). However, for larger values of 'a ' the power of p dividing

( . . pm . ) can easily exceed pm.
110 '2, ••• , la

If we now set Xl = X2 = ... = Xa = 1 in (4.1) then the congruence reduces to aP
"' 

a" ... - 1 == 0 (mod pm) or

PROPOSITION 4.4. a P'" == aP"'-\mod pm).

For the special case m = 1 we have the well-known result

COROLLARY 4.5 (FERMAT'S THEOREM). a" == a (mod p) .

We can also obtain Euler's generalization of Corollary 4.5 :

COROLLARY 4.6 (EULER). If g.c.d. (a, n) = 1 and 4J (n) ~ I{d: 0 < d < nand g.c.d. ·
(d, n) = 1}/ then a4>(n)== 1(mod n).

It follows that a4> (n )== 1 (mod pT'). Similarly a4> (n) == 1 (mod P:"') for any i, so a4>(n) ==
1 (mod DiP:"').

By restricting ourselves to the proper family of onto functions we can obtain
congruences for the Stirling numbers of the second kind , S(n, a). Equation (4.1) is
replaced by

where we are taking Xl = X2 = . . . = Xa = 1 in B(-7T ).

PROPosmON 4.7. If k = La/pJ, the greatest integer e: a/p, then

Repeated application of Proposition 4.7 yields:

COROLLARY 4.8. If k = la/pJ then

sto"; a) == si«:'; a) (mod pm-k-r+l).
o(modp).

Returning to the lattice @>(Cn, En]) where n is an arbitrary integer, we have a period 'lTd
for each divisor d of n. Furthermore 'lTd has blocks B}, B 2 , •• • , B nl d where

B, = {i, i +~, i +2~, . .. .i+ (d -1)~}.

Hence for the proper family of all functions from [n] to X we have

It follows that

L fJ,(7Td)B(7Td) = L fJ,(d)(xf + x~ + .. . + x:rld
Tl"d din

(4.9)

(4.10)
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where JL(d) is the classical Mobius function of number theory, i.e.

JL(d) = 0 if d is not square free

JL (d) =(_1)k if d is the product of k distinct primes.

The following propositions and corollaries are derived from equation (4.10) in much the
same way as the preceding results for n = p'", In view of this similarity, their proofs have
been omitted.

PROPOSITION 4.11

(
n/d )L JL(d) . /d . /d = O(mod n).

din '1, ... , la

COROLLARY 4.12. If g =g.c.d. (;1, ... , i; n) then

( n ) ( n)=0 mod- .
i-, .. ., i; g

COROLLARY 4.13. If g.c.d. (;1. ... , ia , n) =pk for some prime p then

( n ) ( nlp" )( n ). . =. k • k mod~ .
11, ... ,la Idp , ... ,Ia/p P

PROPOSITION 4.14. Ldln JL (d)a n/d = O(mod n).

PROPOSITION 4.15. Ldln JL(d)' a !S(n/d, a) = O(mod n). In particular if a <p where p
is the smallest prime divisor of n then Ld'n JL (d) . S(n/d, a) = O(mod n).

One consequence of the above results is a strengthening of Lucas' congruence for
binomial coefficients, which states that (ap") = a (mod p).

COROLLARY 4.16 (GENERALIZED LUCAS' THEOREM)

(;) =a(mod ap).

PROOF. Since g.c.d.(p, (a -1)p, ap) =p, Corollary 4.13 yields

(;) = (~)(mOd ap).

5. THE SYMMETRIC GROUP

If C§n is the full symmetric group then the lattice of periods [JJ>(C§n, [n]) isjust the lattice of
all partitions of [n]. The Mobius function of this lattice is well known (see [7]): if 7T is a
partition of [n] having r, blocks of size i, 1 :s;; i :s;; n, then

n

JL(1T) = IT [(_1)i-l(;_1)!]';.
i=l

(5.1)
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Furthermore the generating function (3.3) becomes

B(17") =Il (xi +x~ +.. .+x~)',
;
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(5.2)

when Xl = X2 = ...X a = 1.
Associated with each partition 17" of the set [n] we have a corresponding partition A of

the integer n where r. parts of A are equal to i. A convenient notation for such partitions of
n is A I- n where A = (l", 2\ . . . , n'n).

PROPOSITION 5.3

I [ n! (-l)'.a'] == O(mod n!)
.\I- n n .,. I

I ' . ri o

i

where

A = (1", 2'2, ... , n'n), r =I rjo and r, =I r2j.
j j

PROOF. If we let 17"A be the number of partitions of [n] associated with a given partition A
of n then

n!
17"A=----

n(i!)"(rd)
i

Using equations (5.1), (5.2) and (5.4) we have

I JL(17")B(17")= I 17"A[n(-l);-I(i-1)!] "a'
Tr E9"('§n.[nJ) AI-n ;

= I ~(-l)"a'
AI- n

(5.4)

where I Tr e9"('§n,[n]l JL (17" )B(17") == O(mod 0 (<§n))'
Every permutation 0" E <§n has a unique decomposition into disjoint cycles. If this

decomposition has r. cycles of length i (1:s;; i:s;; n) we say that 0" has type A =
(1\ 2'2, .. . , n'r).

COROLLARY 5.5. Suppose n ~2 and let a.be the number ofa E <§n whose decomposition
contains an even number of cycles of even length. Similarly let (To be the number of 0" E <§n
having an odd number of even length cycles, then a; =0"0 =n !/2.

PROOF. The number of 0" E <§n of type A is

n!

Setting a = 1 in Proposition 5.3 we obtain a, - 0"0 == O(mod n I), but since 0 < O"e, 0"0 < n! we
must have tr, - 0"0 =O. Also a; + (To=n! and the corollary follows.
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If we restrict our attention to functions from [n] onto X then

B(7T)= a !S(n, a)

when Xl =X2 =... =X a =1. In this case Proposition 5.3 is replaced by:

PROPOSITION 5.6

L [ n! (-I)'ra IS(n, a)] == O(mod n!) .
M-n IT «r, I

I' . ri o
i

6. THE cP FUNCfION

In this section we introduce a generalization of the classical Euler cP function used in
Corollary 4.6. Given a period 7T E Pl'(O, [n]) we define

cP(7T) = I{gEO: the cycles of g are exactly the blocks of 7Tll.
If 0 =C; and 7T = 7Td then

(6.1)

where the second cP is Euler's function.
From the work of Rota and Smith [9] it follows that the equivalence classes of functions

under the action of 0 are enumerated by

1---- L cP(7T)B(7T)
0(0) ."e9"(G,[n])

(cf. Theorem 3.2). Hence:

THEOREM 6.2

L cP(7T)B(7T) == O(mod 0(0» .
."e9"(G.[n]1

Applying Theorem 6.2 to the case 0 = Cn we obtain, via equations (4.9) and (6.1),

PROPOSITION 6.3. Ldln cP(d)(xt + x~ + ... + X~)"/d == O(mod n) where cP(n) =
I{d: 0< d < nand g.c.d.id, n) = Ill.

COROLLARY 6.4. For all non-negative integersill iz, ... , ia such that i 1 + i 2 +. . .+ ia =
n:

(
n/d )L cP(d) . /d . /d . /d == O(mod n)

din /1 , /2 , ••• , la

and

L cP(d)an
/
d ==O(mod n),

din

and for the proper family of onto functions:

PROPOSITION 6.5. L in cP(d)aIS(n/d,a) == O(mod n).
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Considering G = CSm the symmetric group, we can calculate </J(11') explicitly. If B is a
block of 11', IBI = i, then there are (i -I)! cycles in CSn that are transitive on B. Thus

</J(11') =n(i _I)!"
i

(6.6)

where ri of the blocks of 11' have size i. Comparing (6.6) with (5.1) we see that </J(11') =
11L(11')/. Hence Theorem 6.2 provides the following analogs of Propositions 5.3 and 5.6.

PROPOSITION 6.7

'" [n! ,]'- --a == O(mod n!)
A>-n n .,- ,ir.:

i

h '-(1" 2'2 'n)-,"were 1\ - , , • • • , n , r - '-j rj.

PROPOSITION 6.8

L [~a!s(n, a)]] ==O(mod n!).
A>-n n »r, Iir.:

i

7. FURTHER WORK

(1) The methods of this paper can be extended to arbitrary finite abelian groups by
considering them as direct products of cyclicgroups . Wreath products also yield interesting
results. These considerations will be presented in a future paper [10].

(2) Can congruences be obtained from the alternating group? Here the major obstruc
tion is a precise description of the lattice of periods.

(3) Ira Gessel [2] has considered the action of a group on the vertices of a labeled graph.
Among other things, this technique yields congruences for the Stirling numbers of both
kinds.

(4) Since every group action gives rise to a representation, we can consider the
corresponding character X. What relationship exists between X and the Mobius function
IL? Specifically, can one express one function in terms of the other?

(5) It would be interesting to examine the action of a group on sets of pairs, triples, or
even n-tuples. As a special case one could obtain congruences for di- and multigraphs,

(6) For what groups, G, is the lattice of periods modular? Semi-modular? Super
solvable? (See Stanley [12] for definitions.)

(7) Since IL and </J can be interpreted in an arbitrary lattice of periods, one would suspect
that other number theoretic functions can be so generalized. In particular, T and A are
likely candidates.
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