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Abstract

Bipartite projections are used in a wide range of network contexts including politics (bill co-

sponsorship), genetics (gene co-expression), economics (executive board co-membership),

and innovation (patent co-authorship). However, because bipartite projections are always

weighted graphs, which are inherently challenging to analyze and visualize, it is often useful

to examine the ‘backbone,’ an unweighted subgraph containing only the most significant

edges. In this paper, we introduce the R package backbone for extracting the backbone of

weighted bipartite projections, and use bill sponsorship data from the 114th session of the

United States Senate to demonstrate its functionality.

Introduction

Networks are useful for studying many different phenomena in the natural and social worlds,

but network data can be difficult to collect directly. As a result, it is common for research to

measure an unobserved unipartite network of interest using a bipartite projection in which the

edges capture whether (or the extent to which) two vertices co-participate in a relevant event.

For example, friendship networks are measured using event co-attendance [1], political net-

works are measured using bill co-sponsorship [2], executive networks are measured using

board co-membership [3], scholarly collaboration networks are measured using paper co-

authorship [4], knowledge networks are measured using paper co-citation [5], and genetic net-

works are measured using gene co-expression [6]. Indeed, some have gone so far as to argue

that “every one-mode network can be regarded as a projection of a bipartite network” [7, see

also [8, 9]].

However, there are several challenges to studying bipartite projections. Two of these chal-

lenges arise from the projection function itself. First, the projection function “transforms the

problem of analysing a bipartite structure into the problem of analysing a weighted one, which

is not easier” [10, p. 34-35]. Second, bipartite projections introduce topological characteristics

such as inflated clustering, such that the projection of “even a random [bipartite] network—

one that has no particular structure built into it at all—will be highly clustered” [11, p. 128].

Two additional challenges arise from characteristics of the bipartite data, which are usually

lost in the projection transformation. First, when transforming a bipartite graph into a unipar-

tite graph via projection, information about the artifacts responsible for edges between vertices
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is lost [10], in particular, one no longer knows which artifact(s) gave rise to a given edge and

therefore no longer knows whether the artifact(s) are large or small (i.e. the column sums of

the bipartite matrix). This is important because co-participation in large artifacts provides

more information about the relationship between two vertices than co-participation in small

artifacts [12]. For example, observing two people attending the same small party provides

more information about a potential social relationship between them than observing these

individuals attending the same large gathering. Similarly, observing two legislators co-sponsor-

ing the same unpopular bill (i.e. one that is co-sponsored by no one else) provides more infor-

mation about a potential political relationship between them than observing these legislators

co-sponsoring the same popular bill (i.e. one that is co-sponsored by many others also).

Second, bipartite projection also involves the loss of information about the individual verti-

ces, in particular, one no longer knows how many artifacts a given vertex participated in (i.e.

the row sums of the bipartite matrix). This information is important to consider because the

scale of each edge weight in a bipartite projection is driven by the number of artifacts partici-

pated in by the two vertices it connects [12]. For example, on average the number of events co-

attended by two people who each attend many events will be larger (on average) than the num-

ber of events co-attended by two people who each attend few events. Similarly, on average the

number of bills co-sponsored by two legislators who each sponsor many bills will be larger (on

average) than the number of bills co-sponsored by two legislators who each sponsor few bills.

Therefore, what counts as a ‘large’ or ‘small’ number of co-attendances or co-sponsorships

depends in part on the total number of attendances or sponsorships of both members of a

dyad. As we will see, the backbone extraction methods we consider cope with these challenges

by controlling for the row and column sums of the bipartite matrix associated with the bipar-

tite graph in question.

For these reasons, it is often useful to extract and study the backbone of a bipartite projec-

tion. The backbone is an unweighted (i.e. an edge is either present or absent) or signed (i.e. an

edge can be positive, negative, or absent) graph that preserves only the most “significant”

edges from the weighted bipartite projection. Multiple methods of backbone extraction exist

for bipartite projections [12], but until now there has not been a single software package that

implements these methods. In this paper, we introduce and demonstrate version 1.2.2 of

the backbone R package, which implements four backbone extraction methods—a univer-

sal threshold, a hypergeometric model, a stochastic degree sequence model, and a fixed degree

sequence model—in a common framework that facilitates their use. It is possible to install the

package in R [13] from the Comprehensive R Archive Network (CRAN), load it for use, and

verify its version number using:

> install.packages(“backbone”)
> library(backbone)
> sessionInfo()[[“otherPkgs”]][[“backbone”]][[“Version”]]
[1] “1.2.2”
Further information regarding the CRAN distribution is available at https://CRAN.R-

project.org/package=backbone. Additional materials relating to backbone, including papers,

presentations, workshop materials, and data sets are available at http://www.zacharyneal.com/

backbone. Replication data and code for the examples presented below are available at https://

osf.io/myje5/.

Graph theory preliminaries

A graph G is a set of objects called vertices, together with a set of 2-element subsets of the verti-

ces which are called edges. An edge between vertices i and j can be denoted as e = ij. If there
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exists an edge e = ij between vertices i and j, we say that i and j are adjacent. The degree of ver-

tex i is the number of edges of the form ij for some j. The adjacency matrix of a graph G with

n vertices is an n × nmatrix G = [Gij] where Gij = 1 if an edge is present between vertex i and

vertex j, or Gij = 0 if that edge is absent. We call a graph weighted if each edge has an associ-

ated numeric value, and unweighted otherwise. In the weighted case Gij = w(ij) where w(ij) is

the weight of the edge e = ij. We make no distinction between a graph and its adjacency

matrix.

We call a graph bipartite if the set of vertices can be partitioned into two sets U andW such

that each edge of the graph is of the form ij where i 2 U and j 2W. The sets U andW are called

independent, meaning there are no edges present within the sets. These graphs can be repre-

sented by a biadjacencymatrix, B. This matrix uses rows to represent vertices in the set U and

columns to represent vertices in the setW. We set Bij = 1 if there is an edge between vertex i of

U and vertex j ofW, and set Bij = 0 otherwise. As with graphs, we conflate a bipartite graph

with its biadjacency matrix. The row sum of the ith row of the biadjacency matrix, denoted Ri,
is equal to the degree of the ith vertex in the set U. Similarly, the column sum of the j column

of B, denoted Cj, is the degree of the jth vertex inW.

We can use bipartite graphs to study social networks where the vertices of U are agents

(e.g., people), the vertices ofW are artifacts (e.g., events), and edges represent the affiliation of

a person with an artifact. These bipartite networks are often also called affiliation networks or

two-mode networks. To transform this data into a weighted graph, we project the bipartite

adjacency matrix B by multiplying it by its transpose B>. This produces a weighted graph

G = BB> called the bipartite projection, where Gij is equal to the number of artifacts ofW with

which both i and j are affiliated when i 6¼ j. The value Gii is equal to the total number of arti-

facts with which i is affiliated. Let

Mij ¼ minðGii;GjjÞ � ðjWj � maxðGii;GjjÞÞ:

The value of each off-diagonal entry Gij is bounded by

maxð0;MijÞ � Gij � minðGii;GjjÞ:

Bipartite projections are of interest in social network analysis because they allow us to con-

struct a network from artifact affiliations, which are often easier to obtain than taking a survey

of the network members. If the number of members of the network is large, getting complete

and reliable information regarding relationships between members can involve long and

repetitive survey techniques which can lead to survey fatigue and costly field work. Addition-

ally, in some settings, individuals may be reluctant to provide information about their relation-

ships. Moreover, in historical contexts, a survey of long-deceased network members is simply

not possible. In these cases, it is often beneficial and easier to collect bipartite network infor-

mation, such as event attendance, then project to infer a weighted network between the social

figures.

Because bipartite projections are weighted, and because what counts as a ‘large’ or ‘small’

weight can differ for each edge, it can be useful to reduce this information by focusing on an

unweighted subgraph that contains only the most important edges. We call this subgraph a

backbone of G, which we denote as G0.
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Backbone extraction methods

The simplest approach to extracting a backbone of bipartite projections applies a single, uni-

versal threshold T to all edges such that:

G0ij ¼
1 if Gij > T

0 if Gij � T
:

8
<

:

For example, a threshold value of T = 0 indicates that as long as a pair of vertices are affiliated

with at least one of the same artifacts (i.e. they have a nonzero edge weight), an edge between

them will be present in the backbone. We call this type of backbone binary. It is also possible

to extract a signed backbone by selecting distinct upper T+ and lower T− thresholds, T−< T+,

such that

G0ij ¼

1 if Gij > Tþ

� 1 if Gij < T �

0 if T � � Gij � Tþ

:

8
>>><

>>>:

However, backbones extracted using universal thresholds are very dense and clustered, and

therefore tend to be uninformative [10, 12].

An alternative approach to backbone extraction, and the approach that backbone is

designed to facilitate, identifies important edges to be retained in the backbone using a statisti-

cal test that compares an edge’s observed weight to the distribution of its weights under a null

model. Given a null model that can generate a distribution of an edge’s weights G�ij, it is possi-

ble to compute the probability that an edge’s observed weight is in the upper (PðG�ij � GijÞ) or

lower (PðG�ij � GijÞ) tail of this distribution, and therefore not likely to be the result of such a

null model. Using these probabilities and a significance level α for the test, a signed backbone

can be extracted such that:

G0ij ¼

1 if PðG�ij � GijÞ < a=2

� 1 if PðG�ij � GijÞ < a=2

0 otherwise

:

8
>>><

>>>:

In many cases, a simpler binary backbone may be more useful, which can be achieved by dis-

carding the negative edges such that:

G0ij ¼
1 if PðG�ij � GijÞ < a=2

0 if PðG�ij � GijÞ � a=2
:

8
<

:

However, whether a binary or signed backbone is extracted, a two-tailed significance test is

used because, for any given edge, the observed value in the projection could be in either tail of

the null distribution.

The challenge to using the statistical approach to backbone extraction lies in defining a suit-

able null model and computing the required probabilities (i.e. edge-wise p-values). A family of

nine null models can be defined by the constraints they place on the row and column sums in

a random bipartite graph B�: The row sums in B�, and separately the column sums in B�, can

be unconstrained, constrained to match those in B on average, or constrained to match those

in B exactly [14, 15]. Let R be a set of restrictions on the row and column vertex degrees
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corresponding to one of these nine possibilities, and let ℬðRÞ be the space of all bipartite

graphs B� which satisfy those conditions. This approach to backbone extraction compares the

values Gij, the bipartite projection of interest, to the distributions that describe G�ij ¼ ðB
�B�>Þij

for all bipartite graphs B� 2 ℬðRÞ. Here, we focus on three sets of restrictions ℬðRÞ, defining

three distinct null models: (1) the hypergeometric model, in which row sums are constrained

to match those in B exactly, but column sums are unconstrained; (2) the stochastic degree

sequence model, in which both row and column sums are constrained to match those in B on

average; and (3) the fixed degree sequence mode, in which both row and column sums are

constrained to match those in B exactly.

Hypergeometric Model (HM)

The hypergeometric model constrains the row sums in B� as equal to their values in B (i.e.

fixed), but places no constraints on the column sums [16, 17]. The distribution of (B�B
�>)ij for

all bipartite graphs B� 2 ℬðRÞ is given by the hypergeometric distribution.

The hypergeometric distribution is a discrete probability distribution that models the prob-

ability of having k “successes” in a random sample of size n (drawn without replacement) from

a population of size N, where K of the objects are considered successes. The probability mass

function is given by

P X ¼ kð Þ ¼

�K
k

��N � K
n � k

�

�N
n

�

where X is the random variable of the distribution.

In the case of a bipartite projection, let B� be a bipartite graph with independent sets U
andW. Let U = {u1, u2, . . ., um}. We denote the neighborhood of a vertex i by N(i), meaning

the set of vertices to which i is adjacent. Then entry G�ij ¼ ðB
�B�>Þij is the number of vertices

in N(ui) which are also in N(vj). So the corresponding distribution is hypergeometric with

population N = |W|, sample size n = |N(ui)|, K = |N(uj)| possible “successful” objects, and

k = |N(ui) \ N(uj)| successes.

This method ensures that both i and j are affiliated with the same number of artifacts we’ve

observed in the original data, but the number of individuals that are affiliated with each artifact

may vary. From the probability mass function we can find the probability of i and j participat-

ing in at least Gij events (for positive backbone edges) or at most Gij events (for negative back-

bone edges).

Stochastic Degree Sequence Model (SDSM)

The stochastic degree sequence model constrains B� so that its expected row sums and expected
column sums equal those observed in B [12]. That is, for any given B�, each row and column

sum may be higher or lower than what is observed in B, but if one takes the average over all the

possible B� of the sum of a given row or column then one obtains the corresponding sum in B.

When B� is generated by filling the B�ij with the outcomes of independent Bernoulli trials, the

distribution of (B�B
�>)ij for all bipartite graphs B� 2 ℬðRÞ is given by a Poisson binomial dis-

tribution [18]. A Bernoulli trial is a random variable with exactly two outcomes, often referred

to as “success” and “failure”, or “1” and “0.” The Poisson binomial distribution is the distribu-

tion of a sum of independent Bernoulli trials. We let pk be the probability of success of the kth

trial and call the pk the parameters of the distribution. When the probability of success on each

Bernoulli trial is equal, this reduces to the ordinary binomial distribution.
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The Poisson binomial distribution models the probability of getting k successes in n trials,

where each trial has a specific probability for success [18, 19]. To apply the Poisson binomial

distribution to compute PðG�ij � GijÞ we must first determine the independent probabilities

PðB�ij ¼ 1Þ. There are several ways to determine PðB�ij ¼ 1Þ, including simple equations such as

(Ri × Cj)\∑B where ∑B is the sum of each entry of the biadjacency matrix of B [15, 18], and pre-

dicted probabilities from binary outcome models [12]. These older methods are available in

the backbone package, but here we introduce and describe the polytopemethod [20].

The polytope method revolves around creating a convex set. A subset C of Rn is convex if

for any a, b 2 C, the line segment joining a and b is also in C. The convex hull of a set points

A � Rn, conv(A), is the smallest convex set containing A. When A is a finite set, the convex

hull of A is called the polytope generated by A.

Consider allm × nmatrices in ℬðRÞ as vectors inRmn, where ℬðRÞ is all zero-one matrices

with the same row and column sums as B. Let this set of vectors be A and consider the convex

hull of A. As matrices, we see that conv(A) is the set of matrices inRm�n with the same row and

column sums as ℬðRÞ, with all entries constrained between 0 and 1.

From this set of matrices, we find the matrixMmax that maximizes the entropy function

HðMÞ ¼
X

i;j

Mij ln
1

Mij
þ ð1 � MijÞ ln

1

1 � Mij

 !

on conv(A). The functionH is strictly concave and conv(A) is a convex set which guarantees a

unique solution to the maximization. The matrixMmax is then used as a matrix of probabilities

where PðB�ij ¼ 1Þ is equal to (Mmax)ij.

Once we have the matrix of probabilities Pij ¼ PðB�ij ¼ 1Þ we note that, since G� = B�B
�>,

G�ij ¼ B
�
i1B
�
j1 þ B

�
i2B
�
j2 þ � � � þ B

�
inB
�
jn:

Furthermore, since the probabilities are independent,

PðB�ikB
�
jk ¼ 1Þ ¼ PðB�ik ¼ 1ÞPðB�jk ¼ 1Þ ¼ PikPjk:

It follows that G�ij is Poisson binomial with parameters p1 = Pi1 Pj1, . . ., pn = Pin Pjn.
Computing the exact cumulative distribution function for a Poisson binomial distribution

is difficult. However, the Poisson binomial distribution is well-approximated by a refined nor-

mal distribution [19], which we use in the stochastic degree sequence model.

Fixed Degree Sequence Model (FDSM)

The fixed degree sequence model constrains both the row and column sums in B� to be equal

to their values in B (i.e. both are fixed) [21]. The probability distribution that describes

(B�B
�>)ij for all bipartite graphs B� 2 ℬðRÞ is unknown, and thus an approximate distribution

is constructed via simulation:

1. Construct a bipartite graph B� that represents a random draw from ℬðRÞ.

2. Project B� (i.e. compute B�B
�>) to obtain a random weighted bipartite projection G�.

3. Repeat steps 1 and 2 N times to sample the space of possible G�ij.

The matrix multiplication required in step 2 is computationally expensive but straightfor-

ward [22]. However, the random sampling of a B� from ℬðRÞ in step 1 is more challenging.

Several methods have been suggested, including Markov Swap methods [23] and Sequential

Importance Sampling [24], but in the fixed degree sequence model we use the curveball

PLOS ONE Backbone: An R package for extracting the backbone of bipartite projections

PLOS ONE | https://doi.org/10.1371/journal.pone.0244363 January 6, 2021 6 / 20

https://doi.org/10.1371/journal.pone.0244363


algorithm [25], which is one of the fastest algorithms that has been proven to randomly sample

[[26, see also [27]].

Applying backbone to the US Senate

We illustrate the use of the R backbone package to extract the backbone of a network of bill

co-sponsorship relations among Senators in the 114th session of the United States Senate.

This context provides insight into how the backbone package works because both prior

research [2, 28–31] and media accounts [32] of the current US political climate provide us

with a priori expectations about what structure a properly extracted backbone should have.

Specifically, given conditions of partisanship and polarization, we should expect to see posi-

tive relationships form primarily between those in the same political party, and accordingly a

relatively large modularity statistic computed from a partition of the network’s nodes by

political party. In visualizations of the extracted backbones, we depict Republican senators by

red vertices, and both Democratic and Independent senators who are left-leaning and cau-

cused with Democrats by blue vertices. Although we discuss signed backbones in the text, for

visual clarity we only provide figures for binary backbones which contain positive edges. Pos-

itive relations of collaboration between two Republicans are red, between two Democrats are

blue, and for all other pairs are purple. Replication data and code are available at https://osf.

io/myje5.

Data

The data consists of 100 senators and the 3589 bills that they have sponsored or co-sponsored

in the 114th session of Congress [33]. This data takes the form of a bipartite graph B, where the

two independent sets of vertices are the senators (agents) and the bills (artifacts). Each edge

connects one senator to one bill. Specifically, Bij = 1 if senator i sponsored or co-sponsored bill

j, and otherwise is 0. Below we examine the data set. Notice that the row names correspond to

each senator (including their party affiliation and the state they represent) and the column

names refer to the bill number.

> set.seed(19)
> library(backbone)
> senate <- read.csv(“S114.csv”, row.names = 1, header = TRUE)
> senate <- as.matrix(senate)
> dim(senate)
[1] 100 3589
> senate[1:5, 1:5]

sj9 sj8 sj7 sj6 sj5
Alexander, L. (TN-R) 0 1 0 1 0
Boxer, B. (CA-D) 0 0 0 0 1
Cantwell, M. (WA-D) 0 0 0 0 1
Carper, T. (DE-D) 0 0 0 0 1
Cochran, T. (MS-R) 0 1 0 1 0
A weighted graph G can be constructed from B via bipartite projection, where G = BB> and

Gij contains the number of bills that both senator i and senator j sponsored. Notice the graph

is now 100 rows by 100 columns.

> G <- senate%�%t(senate)
> dim(G)
[1] 100 100
> G[1:5, 1:2]
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Alexander, L. (TN-R) Boxer, B. (CA-D)
Alexander, L. (TN-R) 141 10
Boxer, B. (CA-D) 10 303
Cantwell, M. (WA-D) 15 82
Carper, T. (DE-D) 12 55
Cochran, T. (MS-R) 40 25
The projected graph G now indicates that Senator Lamar Alexander sponsored a total of

141 bills in the 114th session. Among these 141 bills, 10 were co-sponsored with Senator Bar-

bara Boxer, and 15 were co-sponsored with Senator Maria Cantwell.

We can use the values of graph G to observe differences between those with similar or dis-

similar ideology. Below, we compare the number of bills co-sponsored by two individuals with

similar political ideology, Senators Cory Booker and Elizabeth Warren, versus those with dis-

similar ideology, Senators Ted Cruz and Bernie Sanders. The results are consistent with the

expectation that legislators sharing a similar ideology engage in more co-sponsorships.

> G[“Booker, C. (NJ-D)”, “Warren, E. (MA-D)”]
[1] 98
> G[“Cruz, T. (TX-R)”, “Sanders, B. (VT-I)”]
[1] 5
The differences in the number of bills co-sponsored prompts an important underlying

question: how many bills do two senators have to co-sponsor before we would be justified in

concluding they are political collaborators? Similarly, how few bills do they have to co-sponsor

before we would be justified in concluding they are political opponents? These questions are

what the backbone package seeks to answer.

Extracting a universal threshold backbone: Universal()

The simplest approach to backbone extraction applies a single threshold T to all edges. A

threshold value of 0 indicates that as long as a pair of vertices are affiliated with at least one of

the same artifacts (i.e. they have a nonzero edge weight), their relationship should be counted.

However, this can lead to extremely dense and uninformative networks, as we will show with

our example data. In any case, if using a single threshold value T is desired, this can be done in

the backbone package by using the universal() function. This function allows the user

to extract an unweighted backbone by selecting a single threshold T, or extract a signed back-

bone by selecting upper and lower thresholds T+ and T−.

Using the senate data set, we use the universal() function to compute a backbone

with a single threshold of 0. Thus if two senators have co-sponsored one or more bills, there

will be an edge between them. Notice that our backbone graph is represented by a square adja-

cency matrix with 0-1 entries.

> universalbb1 <- universal(senate, upper = 0,
bipartite = TRUE)
> universalbb1$backbone[1:5, 1:2]

Alexander, L. (TN-R) Boxer, B. (CA-D)
Alexander, L. (TN-R) 0 1
Boxer, B. (CA-D) 1 0
Cantwell, M. (WA-D) 1 1
Carper, T. (DE-D) 1 1
Cochran, T. (MS-R) 1 1
This universal threshold backbone requires approximately 0.01 seconds to extract (all run-

ning times are reported for a 2.3 Ghz Quad-Core Intel Core i7). Plotting this backbone using
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the igraph package [34] reveals that it is extremely dense as only 1 pair of senators out of the

total 4950 unique pairs have not sponsored at least one bill together (see Fig 1). Accordingly,

this universal threshold backbone is uninformative about the underlying structure of the net-

work. Moreover, partitioning this backbone into two groups by political party yields a modu-

larity near zero, which indicates that this backbone does not reflect the partisan polarization

known to exist in the US Senate.

To create a signed backbone, we can apply both an upper and lower threshold value. The

following code will return a backbone where the positive edges indicate two senators co-spon-

sored more than 1 standard deviation above the mean number of co-sponsored bills and nega-

tive edges indicate two senators co-sponsored less than 1 standard deviation below the mean

number of co-sponsored bills. The graph of the positive edges of this backbone can be seen in

Fig 2.

> universalbb2 <- universal(senate, upper = function(x) mean
(x)+sd(x),

lower = function(x) mean(x)-sd(x), bipar-
tite = TRUE)

This universal threshold backbone requires approximately 0.01 seconds to extract. The

resulting graph in Fig 2 is much less dense than when using an upper threshold of 0.

Fig 1. The positive backbone of the US Senate co-sponsorship network with edges retained between two senators

if they sponsored at least 1 bill together.

https://doi.org/10.1371/journal.pone.0244363.g001
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Additionally, the polarized structure of the Senate by political party is visible, and is confirmed

by a larger modularity (M = 0.277). However, it still does not necessarily reveal the underlying

structure of the network among legislators. In this case, “the application of a threshold to the

global weight distribution. . .belittles nodes with a small [degree],” resulting in a backbone that

preserves edges only among legislators who sponsor many bills, and treating legislators who

sponsor few bills as isolates [35, p. 6484]. To obtain meaningfully sparse graphs that do not

ignore the multi-scalar character of node degrees we must allow the threshold to vary for dif-

ferent edges. To improve our backbone results, we move to methods of bipartite projection

backbones that rely on a distinct threshold value for each pair of vertices.

Extracting a null model backbone: Backbone.extract()

Instead of using a universal threshold to determine a backbone, the backbone package per-

mits using a model that is based on a statistical test, such as the hypergeometric model, sto-

chastic degree sequence model, or fixed degree sequence model. To use these methods in

backbone, one first calls to a null model function (hyperg(), sdsm(), or fdsm())

which finds the probability of observing an edge with the observed weight in a corresponding

null model, returning an object of class ‘backbone.’ This object is then supplied to

Fig 2. The positive backbone of the US Senate co-sponsorship network with edges retained between two senators

if they sponsored more bills together than one standard deviation above the mean.

https://doi.org/10.1371/journal.pone.0244363.g002

PLOS ONE Backbone: An R package for extracting the backbone of bipartite projections

PLOS ONE | https://doi.org/10.1371/journal.pone.0244363 January 6, 2021 10 / 20

https://doi.org/10.1371/journal.pone.0244363.g002
https://doi.org/10.1371/journal.pone.0244363


backbone.extract(), which performs the hypothesis test for a given significance value

and returns a backbone graph. The user can input bipartite graph objects of class ‘matrix’,

‘sparseMatrix’, ‘Matrix’, ‘igraph’, ‘network’, and ‘edgelist’ (a matrix of two columns), and can

choose the type of backbone returned by specifying the desired class in backbone.
extract().

The backbone.extract() function allows the user to input the backbone class object

and obtain either a signed or positive backbone. The backbone.extract() function has

five arguments: matrix, signed, alpha, class, narrative, and fwer. The matrix
argument takes a backbone object generated by hyperg(), sdsm(), or fdsm() and

returns a backbone graph of class = class using a two-tailed significance test with signifi-

cance value α = alpha. If the signed parameter is set to TRUE then a signed backbone is

returned, if it is set to FALSE then a positive backbone is returned. If the narrative param-

eter is set to TRUE then suggested narrative text for a manuscript, including possible citations,

is displayed.

Extracting the backbone of a bipartite projection involves conducting an independent sta-

tistical test on ℓ =m(m − 1)/2 edges in the projection, wherem is the number of vertices in the

bipartite projection. Because each of these tests is independent, this can inflate the familywise

error rate beyond the desired alpha. The fwer parameter offers two ways to correct for this:

the classical Bonferroni correction is applied when fwer = ‘bonferroni’, and the more

powerful Holm-Bonferroni correction is applied when fwer = ‘holm’ [36].

Hypergeometric backbone: Hyperg(). To apply the hypergeometric distribution to a

bipartite graph, one uses the hyperg() function. The hyperg() function returns a back-

bone class object that contains: a positive matrix with (i, j) entry equal to the probability

that G�ij is equal to or above the corresponding entry in G, and a negative matrix with (i, j)
entry equal to the probability that G�ij is equal to or below the corresponding entry in G, and a

summary data frame with includes the name of the model, number of rows and columns in

the adjacency matrix of the input graph, skew of the row and columns, and running time of

the model.

> hypergprobs <- hyperg(senate)
Finding the distribution using hypergeometric distribution
> hypergbb <- backbone.extract(hypergprobs, alpha = .01)
The hypergeometric backbone requires approximately 0.02 seconds to extract. We can now

examine how this method has changed the appearance of our network, focusing only on the

positive edges of the signed backbone in Fig 3. We can see that the hypergeometric function

has reduced the density of our network and that we begin to see some of the two party struc-

ture that is inherent in the United States Senate. The known polarized structure is also appar-

ent, which is reflected in this network’s modularity (M = 0.215).

Specifically, for our example, the hypergeometric function will fix the number of bills that

each senator sponsors, while allowing each bill to be sponsored by a varying number of sena-

tors. The function will compute the probability of each senator sponsoring at least (or at most)

the observed number of bills when the bills which they sponsor were chosen randomly.

The stochastic degree sequence model: Sdsm(). The sdsm() function returns a back-

bone object containing the same objects as hyperg(): matrices positive and negative
containing probabilities under the stochastic degree sequence model, as well as a summary
data frame.

In the context of the senate co-sponsorship matrix, the stochastic degree sequence model

will compare our observed values to a distribution where each senator sponsors roughly the

same number of bills, and each bill is sponsored by roughly the same number of people.
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Here we use the polytope model, the default in backbone v1.2.2, to compute the

probabilities for the Poisson binomial distribution.

> sdsm <- sdsm(senate)
Finding the distribution using SDSM with polytope model.
> sdsmbb <- backbone.extract(sdsm, narrative = TRUE, alpha =

.01)
Suggested manuscript text and citations:
From a bipartite graph containing 100 agents and 3589 arti-

facts, we obtained the weighted bipartite projection, then
extracted its signed backbone using the backbone package (Doma-
galski, Neal, & Sagan, 2021). Edges were retained in the back-
bone if their weights were statistically significant
(alpha = 0.01) by comparison to a null Stochastic Degree
Sequence Model (Neal, 2014).
Domagalski, R., Neal, Z. P., and Sagan, B. (2021). backbone:

An R Package for Backbone Extraction of Weighted Graphs. PLoS
ONE.
Neal, Z. P. (2014). The backbone of bipartite projections:

Inferring relationships from co-authorship, co-sponsorship,

Fig 3. The positive backbone of the US Senate co-sponsorship network under the hypergeometric model.

https://doi.org/10.1371/journal.pone.0244363.g003
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co-attendance and other co-behaviors. Social Networks, 39, 84-
97.https://doi.org/10.1016/j.socnet.2014.06.001

The SDSM backbone requires approximately 45 seconds to extract using the polytope

model. We are able to see more of the partisan structure that is suggested to be present in the

US Senate in Fig 4, and this visualization provides more information than the extremely dense

graph found using a universal threshold. Moreover, the known polarized structure of the US

Senate is particularly evident, and confirmed by the much larger modularity (M = 0.471).

The fixed degree sequence model: Fdsm(). The fixed degree sequence model first con-

structs a random bipartite graph B� that preserves both degree sequences using the curveball

algorithm [14]. This bipartite graph B� is then projected to obtain a random weighted bipartite

projection G� = B�B
�>. These two steps are repeated a number of times to sample the space of

possible G�ij. At each iteration, we compare Gij to the value of G�ij and keep a record of how

often it was above, below, or equal to the generated value. The fdsm() function returns a

backbone object containing a matrix object positive of the proportion of times G�ij is equal

to or above the corresponding entry in G, and a matrix object negative containing the pro-

portion of times G�ij is equal to or below the corresponding entry in G, and a summary data

frame as in hyperg() and sdsm().

Fig 4. The positive backbone of the US Senate co-sponsorship network under the stochastic degree sequence

model.

https://doi.org/10.1371/journal.pone.0244363.g004
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The function can also save each value of G�ij for a given i, j. This is useful for visualizing an

example of the empirical null edge weight distribution generated by the model. The values i, j
correspond to the row and column indices of a cell in the projected matrix and can be input as

either numeric values or a string containing the row names. These values are returned in the

list dyad_values.

Using the fixed degree sequence model on the senate data set will allow us to compare our

observed values to a distribution where each senator sponsors the exact same number of bills

and each bill is sponsored by the exact same number of people. We can find the backbone

using the fixed degree sequence model as follows:

> fdsm <- fdsm(senate, trials = 1000, dyad = c(“Booker, C.
(NJ-D)”,

“Warren, E. (MA-D)”))
Approximating the distribution using Curveball FDSM
Estimated time to complete is 81 secs
The dyad_values output is a list of the G�ij values for each of the 1000 trials, where i =

“Booker, C. (NJ-D)” and j = “Warren, E. (MA-D)”. These values correspond to the number of

bills Senators Booker and Warren would be expected to co-sponsor when we create a random

bipartite graph with the curveball algorithm where: (a) the number of bills sponsored by Sena-

tor Booker, by Senator Warren, and all other Senators was fixed, and (b) the number of sena-

tors sponsoring each bill was fixed. We can compare their actual number of co-sponsorships,

98, to what is generated under our null model. We can view a histogram of the expected co-

sponsorships generated in each of the 1000 trials as follows (see Fig 5):

> hist(fdsm$dyadvalues, freq = FALSE, xlab = “Number of Co-
Sponsorships”)
> lines(density(fdsm$dyadvalues))
To extract the backbone, we supply the backbone.extract() function with the pro-

portion matrices positive and negative.

> fdsmbb <- backbone.extract(fdsm, alpha = 0.01, signed = TRUE)
The FDSM backbone, based on 1000 Monte Carlo samples, requires approximately 81 sec-

onds to extract. Using the fixed degree sequence model allows us to see more of the partisan

structure we assume to be present in the United States Senate in Fig 6. This expected partisan

structure is confirmed by the backbone’s high modularity (M = 0.468).

Backbone model comparison and selection

As the above examples illustrate, the backbone package can be used to extract several differ-

ent backbones using different backbone models. Table 1 compares the five backbones

extracted above, in terms of running time, modularity, and structural similarity (expressed as a

Pearson correlation coefficient).

The universal and hypergeometric backbones are very fast to extract because they rely only

on arithmetic and straightforward parametric distributions. In contrast, the FDSM is relatively

slow because it must empirically approximate edge weight probability distributions using

Monte Carlo methods and repeated matrix multiplication. The SDSM occupies a middle-

ground in computational complexity because, while it does not require costly Monte Carlo

methods or repeated matrix multiplication, it does involve estimation of cellwise probabilities

and a more complex parametric distribution (i.e. Poisson-Binomial).

Accuracy of these backbones is difficult to assess directly, however because the US Senate is

known to be polarized along political party lines, the magnitude of the backbone’s modularity

when partitioned by political party provides an indicator of the extent to which each backbone
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reproduces this known structure. A universal threshold backbone where T = 0 fails to capture

this polarized structure at all, while a universal threshold backbone where T = M + SD and a

hypergeometric backbone begin to capture this structure. However, the SDSM and FDSM

backbones are best able to reproduce the known partisan polarization in the US Senate.

Examining the Pearson correlation coefficient computed on the vectorized adjacency

matrices of these backbones quantifies their pairwise structural similarity. The universal

threshold backbone where T = 0 is minimally correlated with any other backbone, reflecting

the fact that its very dense structure is unlike the other sparser backbones. The universal

threshold backbone where T = M + SD shares some edges in common with backbones gener-

ated using HM, SDSM, and FDSM (r = 0.47 − 0.51), and the hypergeometric backbone is even

Fig 5. A histogram of the expected co-sponsorships between Senators Cory Booker and Elizabeth Warren under the fixed degree sequence

model (1000 samples). A positive edge between Booker and Warren would be preserved in the FDSM backbone because their actual number of

co-sponsorships (98) is statistically significantly larger.

https://doi.org/10.1371/journal.pone.0244363.g005
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more similar to those generated by SDSM and FDSM (r = 0.71 − 0.73). Notably, the SDSM

and FDSM backbones are nearly identical (r = 0.96).

Collectively, these comparisons suggest that SDSM performs best in the US Senate example:

it accurately reproduces the known polarized structure, but more quickly than FDSM. How-

ever, specific characteristics of the bipartite data should guide backbone extraction model

selection in other contexts. First, because it imposes no controls on any characteristics of the

data, the universal thresholdmodel is suitable only when the row sums of the bipartite matrix

Fig 6. The positive backbone of the US Senate co-sponsorship network under the fixed degree sequence model.

https://doi.org/10.1371/journal.pone.0244363.g006

Table 1. Comparison of US Senate backbones.

Backbone model Timea Modularityb Pearson correlation

Universal (T = 0) 0.01 -0.005 —

Universal (T = M + SD) 0.01 0.277 0.01 —

Hypergeometric 0.02 0.215 0.14 0.47 —

SDSM 45 0.471 -0.01 0.51 0.71 —

FDSM (1000 samples) 81 0.468 -0.00 0.50 0.73 0.96 —

a In seconds, using a 2.3 Ghz Quad-Core Intel Core i7.
b Based on a partition by political party affiliation.

https://doi.org/10.1371/journal.pone.0244363.t001
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exhibit limited variation or this variation is not theoretically meaningful and the column sums

of the bipartite matrix exhibit limited variation or this variation is not theoretically meaning-

ful. These conditions are unlikely to occur in practice, however in cases where the universal

threshold model is appropriate, the threshold value should be chosen based on theory. Second,

because it imposes controls on the row sums only, the hypergeometricmodel is suitable when

the row sums of the bipartite matrix exhibit meaningful variation, but the column sums do

not. Finally, because they impose controls on both the row and column sums, the stochastic
degree sequence model and fixed degree sequence model are suitable when both the row sums

and the column sums of the bipartite matrix exhibit meaningful variation. This is likely to be

the most common case for most empirical bipartite data.

As the comparisons in Table 1 illustrate, the SDSM may be regarded as a fast approximation

of the FDSM. Its speed derives from the fact that it only approximately controls for row and

column sums, while FDSM exactly controls for row and column sums. Therefore, the choice

between SDSM and FDSM depends on two related practical considerations. First, it depends

on the size of the data: except for relatively small bipartite data, FDSM will often be impracti-

cally slow. Second, it depends on the desired precision of the p-values quantifying each edge’s

statistical significance, which for FDSM are constrained by the number of Monte Carlo sam-

ples to 1/samples. This can be problematic when the familywise error rate is controlled using a

Bonferroni or Holm-Bonferroni correction because these corrections require high-precision

p-values. For example, in the Senate network there are 4950 edges that must be tested during

backbone extraction, and thus 4950 independent statistical tests. To achieve statistical signifi-

cance at a familywise error rate of 0.05 via a Bonferroni correlation, an edge’s statistical signifi-

cance must be p< 0.00001. Achieving this level of precision among p-values using FDSM

would require drawing at least 100,000 Monte Carlo samples. Therefore, if a specific family-

wise error rate is desired, FDSM will be impractically slow even for relatively small bipartite

data. For these reasons, while further research is needed to determine the quality of SDSM’s

approximation of FDSM, SDSM will often be a suitable backbone extraction model choice.

Discussion

We have presented four methods—universal threshold, HM, SDSM, and FDSM—for identify-

ing significant links in a weighted bipartite projection, and thus for extracting its binary or

signed backbone. We have also introduced and demonstrated the R backbone package,

which implements these methods in a common framework facilitating their use. Together, the

methods and package offer ways for researchers to reduce the structural artifacts (e.g., exces-

sive density and clustering) and complexity of bipartite projections, making them easier to

analyze and visualize. This is likely to be most useful in cases where the researcher is interested

in an unobserved unipartite network that is not simply a bipartite projection of something

(e.g., a social network), but that can be inferred (even with some error) from observed bipartite

data (e.g., co-behaviors).

There are two important cases where backbone is not appropriate and should not be

used. First, if the research question can be answered by directly analyzing the original bipartite

graph, or the central message can be communicated by visualizing the original bipartite graph,

then it is not necessary and indeed may be misleading to examine a bipartite projection or its

backbone. In these cases, researchers should instead use tools designed for the analysis of

bipartite networks, including for example bipartite extensions of ERGM [37] and SIENA [38].

Second, it is possible to obtain a weighted (via projection) or unweighted (via backbone)

square symmetric matrix from any bipartite data, however this does not imply that the matrix

can be meaningfully analyzed as a network. Treating a square symmetric matrix obtained via
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projection or backbone extraction as a network requires an explicit conceptual rationale for

why the sharing of artifacts by a pair of agents provides information about those agents’ rela-

tionship with each other, and a description of what kind of relationship this is. In some cases,

the rationale may be simple and straightforward: social events and other venues offer opportu-

nities for people to meet and interact, so observing two people attending many of the same

events may indirectly provide information about the possibility of a social relationship

between them [1]. In other cases—for example, psychological networks in which clinical

symptoms (the ‘agents’) are linked because they co-occur in patients (the ‘artifacts’) [39]—the

rationale is less obvious [40, 41].

Even when backbones of bipartite projections are used in appropriate ways, there remain a

number of open questions that should guide future research in this area and future develop-

ment of the backbone package. First, although the backbone package implements four

methods for extracting the backbone of bipartite projections, we know little about how the

backbones generated by these methods differ from one another. We have briefly explored a

comparison of the backbones generated by these methods in the context of the US Senate, but

more formal comparisons and empirical comparisons in other contexts are necessary. Second,

to the extent that these methods are intended to provide insight into an unobserved but under-

lying unipartite network, we know little about which backbone extraction methods do so most

accurately. Future research should develop methods for establishing the validity of these back-

bone methods, for example, by comparing extracted backbones to ground-truth unipartite net-

works. While these remain open questions, the availability of the backbone package makes it

possible to begin answering them, and also provides a platform for implementing methods

and exploring similar questions in the more general case of extracting the backbone of non-

projection weighted graphs.
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