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WW
e begin at the beginning with some basic
definitions. Let N and P denote the nonnegative
and positive integers, respectively. Given n 2 N,

we will use the notation ½n� ¼ f1; 2; . . .;ng for the interval
of the first n positive integers.

A (combinatorial) graph G ¼ ðV ; EÞ consists of a finite
set of vertices V and a set of edges E, each edge connecting
a pair of distinct vertices. If edge e connects vertices u and
v, then we write e ¼ uv or e ¼ vu and call u, v the end-
points of e. Alternatively, we say that u and v are adjacent.
As an example, on the left in Figure 1 we have a graph G
with vertex set V ¼ fu; v;w; xg and edge set
E ¼ fuv;ux; vx; vwg.

Given a set S, a coloring of G by S is a function
j : V ! S. Figure 1 displays colorings of G using the set
S ¼ ½3�. For example, the coloring in the middle has jðvÞ ¼
jðxÞ ¼ 1 and jðuÞ ¼ jðwÞ ¼ 2. (A coloring function need
not be surjective.) We say that a coloring j is proper if for
each edge e ¼ uv of G, we have jðuÞ 6¼ jðvÞ. Returning to
Figure 1, we see that the middle coloring is not proper,
since vx has jðvÞ ¼ jðxÞ. But it is easy to check that the
coloring j0 on the right is proper.

Proper colorings are the subject of the famous four color
theorem. If S is a finite set, then we use #S or |S| for the

cardinality of S. The chromatic number of G, denoted by
vðGÞ, is the minimum #S such that there exists a proper
coloring j : G ! S. Going back yet again to the graph in
Figure 1, we see that vðGÞ ¼ 3. Indeed, j0 is a proper col-
oring with three colors. And no proper coloring exists with
fewer colors, because of the triangle fuv; vx; xug, which
requires three colors. A graph is called planar if it can be
drawn in the Cartesian plane so that none of its edges cross.
Here is the landmark theorem of Appel and Haken (as-
sisted by Koch).

THEOREM 1 (The four color theorem [3, 4]). If G is a

planar graph, then vðGÞ � 4.

This theorem is striking for several reasons. First of all,
there is no such bound for arbitrary graphs. For consider

the complete graph Kn, which has n vertices and all n
2

� �

possible edges. A drawing of K4 appears on the left in
Figure 2. (The crossing of two edges in the middle of the
graph is not a vertex.) Clearly, vðKnÞ ¼ n, which can be as
large as desired. Second, the result for planar graphs had
been conjectured for over one hundred years. Finally, the
proof was the first to use computers in an integral way,
since the number of cases involved was too large for a
human to check. The reader interested in the history of the
four color theorem is encouraged to consult Robin Wilson’s
excellent book [24].

Finding vðGÞ is an extremal task, since it involves min-
imization. In this article, we will be interested in a
corresponding enumeration problem that was first studied
by George Birkhoff [5]. Given a graph G ¼ ðV ;W Þ and
t 2 N, the corresponding chromatic polynomial is defined

Figure 1. A graph and two colorings.
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by

PðGÞ ¼ PðG; tÞ ¼ #fj : V ! ½t� j j is properg:
Note that we could have used any set S with #S ¼ t in
place of [t] and gotten the same count. Also, it is not clear
why we are calling this a polynomial. But let us compute it
for our perennial example in Figure 1. We will color the
vertices in the order u, v, w, x. Since u is the first vertex
colored, any of the t elements in [t] could be used. So there
are t choices for u. When we color v, it can be any color
except the one used on u. This gives t � 1 choices. Simi-
larly, there are t � 1 choices for w. Finally, when coloring x,
we see that it is adjacent to the two previously colored
vertices u and v. Furthermore, u and v are different colors,
since they are also adjacent. This means that there are t � 2
possible remaining colors for x. Putting all these counts
together, we see that the number of proper colorings of G
is

PðG; tÞ ¼ tðt � 1Þðt � 1Þðt � 2Þ ¼ t4 � 4t3 þ 5t2 � 2t: ð1Þ

Notice that this is a polynomial in t, the number of colors! It
turns out that this is always the case, which explains why
P(G; t) is called the chromatic polynomial.

However, it is not true that one can always count the
colorings as we did above and so obtain a polynomial
whose roots are nonnegative integers. To see what could
go wrong, consider the n-cycle Cn, which has n vertices
that can be ordered as v1; v2; . . .; vn and n edges viviþ1,
where i is taken modulo n. A copy of the cycle C4 is shown
on the right in Figure 2. Let us now try coloring C4 in the
order u, v, w, x. As before, there are t choices for u, and
t � 1 for v and w. But we now have a problem trying to
color x, for this vertex has edges to both u and w. But since
u and w are not adjacent, we do not know whether they
were assigned the same color. There is an elegant way
around this difficulty called deletion–contraction, which we
will discuss in the next section.

We should also note that there is a simple relationship
between the chromatic number and the chromatic poly-
nomial. Specifically, vðGÞ is the smallest positive integer
such that PðG; vðGÞÞ 6¼ 0. To see this, note that if
0 \ t \ vðGÞ, then by definition of v, there are no proper
colorings of G with t colors. So, since P(G; t) counts the
number of such colorings, it must evaluate to zero. On the
other hand, there must be at least one proper coloring of G
with t ¼ vðGÞ colors. It follows that PðG; vðGÞÞ[ 0.

The rest of this article is organized as follows. In the next
section, we will introduce the method of deletion–con-
traction. It will be used to prove that P(G; t) is always a
polynomial in t as well as to compute the chromatic poly-
nomial of C4. We will also exhibit a combinatorial

interpretation of the coefficients of P(G; t) in terms of cer-
tain sets of edges of G that are said to contain no broken
circuit. One of the amazing things about P(G; t) is that it
often appears in contexts that seem to have nothing to do
with graph coloring, or even with graphs! Three examples
of this will be given below. We will end with a section
giving more information about the chromatic polynomial,
including connections with symmetric functions and with
algebraic geometry.

Why Is It a Polynomial?
In this section we will prove that P(G; t) is actually a
polynomial in t using the deletion–contraction method. We
will also define NBC (no broken circuit) sets and use them
to describe the coefficients of this polynomial.

If G ¼ ðV ; EÞ is a graph and e 2 E, then deleting e from G
gives a graph G n e on the same vertex set with edges the set
difference E n feg. The central graph in Figure 3 shows the
result of deleting the edge e ¼ vx fromour canonical graphG.
The contraction of e ¼ vx inG, denoted byG/e, is obtainedby
collapsing the edge to a new vertex v0, where v0 is adjacent to
all the vertices that were adjacent to either v or x. All other
vertices and edges stay the same inG/e. The graphon the right
in Figure 3 illustrates G/vx. Note also that the two edges uv
and ux in G become a single edge uv0 in G/vx. Since both
G n e and G/e have fewer edges than G, the next result is a
perfect recurrence for induction on the number of edges.

LEMMA 2 (Deletion–contraction lemma) Given a graph

G ¼ ðV ; EÞ and e 2 E, we have

PðGÞ ¼ PðG n eÞ � PðG=eÞ:

PROOF We will prove this result in the form

PðG n eÞ ¼ PðGÞ þ PðG=eÞ: ð2Þ

Suppose e ¼ vx. Since v and x are no longer adjacent in
G n e, the proper colorings j of this graph are of two types:
those in which jðvÞ 6¼ jðxÞ and those in which
jðvÞ ¼ jðxÞ. But if j is proper on G n e and also satisfies
jðvÞ 6¼ jðxÞ, then j is a proper coloring of G. Conversely,
every proper coloring of G gives rise to a proper coloring of
G n e, where jðvÞ 6¼ jðxÞ. So these colorings of G n e are
counted by P(G).

Now consider the proper colorings j of G n e with

jðvÞ ¼ jðxÞ. Such a coloring can be lifted to a proper

coloring j0 of G/e, where j0ðwÞ ¼ jðwÞ for w 6¼ v0, and

j0ðv0Þ is the common color assigned to v and x by j. As with

K4
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u v

C4

x w

u v

Figure 2. The complete graph K4 and the cycle C4.
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Figure 3. Deletion and contraction.

204 THE MATHEMATICAL INTELLIGENCER



colorings of the first type, this produces a bijection between

the proper colorings of G/e and those of G n e with

jðvÞ ¼ jðxÞ. It follows that the number of colorings in this

case is P(G/e). Combining the two possibilities yields

equation (2) and proves the lemma. (

It is now easy to prove Birkhoff’s fundamental result
about the chromatic polynomial.

THEOREM 3 ([5]). Let G ¼ ðV ; EÞ be a graph with#V ¼ n.

Then P(G; t) is a polynomial in t of degree deg PðG; tÞ ¼ n.

PROOF We will induct on m ¼ #E. If m ¼ 0, then G is just a

set of n vertices. Since there are no edges, each vertex can be

colored independently in any of tways. So in this case, PðG; tÞ
¼ tn, which certainly satisfies the requirements of the theorem.

Now suppose that m[ 0; so E is nonempty. Pick any

e 2 E. By the deletion–contraction lemma, we have

PðGÞ ¼ PðG n eÞ � PðG=eÞ. By induction, PðG n eÞ is a

polynomial in t of degree n, since G n e and G have the

same number of vertices. We also have that P(G/e) is a

polynomial in t. But it has one fewer vertex than G and so is

of degree n� 1. The proof is completed by observing that

the difference of a polynomial of degree n and one of

degree n� 1 is a polynomial of degree n. (

Deletion–contraction is also a useful tool when it comes
to computing chromatic polynomials. Recall that we were
not able to compute PðC4Þ for the 4-cycle in the previous
section. But after deleting and contracting one of its edges e,
the computation is reduced to graphs to which we can apply
the vertex-by-vertex technique used earlier. Specifically,

P

( e )
= P

( )
− P

( )

= t(t − 1)3 − t(t − 1)(t − 2)

.= t(t − 1) t2 − 3t + 3

Note that unlike the polynomial in t computed earlier,
this one has complex roots.

Since P(G; t) is a polynomial, one would like a
description of its coefficients. This was done by Hassler
Whitney [23]. Fix a total ordering e1 \ e2 \ � � � \ em of
the edge set E. A broken circuit of G is a subset B � E
obtained by removing the smallest edge from the edge set
of some cycle of G. Consider our usual graph G with edges
labeled as in Figure 4 and ordered by b \ c \ d \ e.
Then G has a unique cycle C with edges fb; c;dg. The
corresponding broken circuit is fc;dg. We call A � E an
NBC (short for ‘‘no broken circuit’’) set if A does not contain
any broken circuit of G. In our example, these are exactly
the edge sets not containing fc;dg. Let

nbckðGÞ ¼ #fA � E j A is an NBC set with k edgesg:

Making a chart of these numbers for our example graph
gives the following result for k ¼ 0; . . .; 4:

NBC sets with k edgesk nbck (G)

0 1

1 {b}, {c}, {d}, {e} 4

2 {b,c}, {b,d}, {b,e}, {c,e}, {d,e} 5

3 {b,c,e}, {b,d,e} 2

4 None 0

∅

By comparing the last column to the coefficients of
P(G; t) as calculated in (1), the reader should have a con-
jecture in mind.

THEOREM 4 ([23]). For every graph G ¼ ðV ; EÞ with#V ¼
n and every total order on E, we have

PðG; tÞ ¼
Xn
k¼0

ð�1Þk nbckðGÞ tn�k:

This theorem is remarkable, since it implies that the num-
bers nbckðGÞ do not depend on the ordering given to the
edge set, even though the actual NBC sets may be different.
It also makes calculating certain coefficients of P(G; t) very
easy. For example, nbc0ðGÞ ¼ 1, because of the empty
edge set. So P(G; t) is monic. Furthermore, since a cycle has
at least three edges, every broken circuit has at least two. It
follows that all single edges are NBC, and thus the coeffi-

cient of tn�1 is �jEj.

Three Applications
We will now look at three theorems in which the chromatic
polynomial makes a surprising appearance. These are
results of Richard P. Stanley [19] on acyclic orientations,
Thomas Zaslavsky [25] on hyperplane arrangements, and
Joshua Hallam and Bruce Sagan [11] on increasing forests
(later improved upon by Hallam, Sagan, and Jeremy Martin
[10]).

A digraph, or directed graph, D ¼ ðV ;AÞ consists of a set
of vertices V and a set of arcs A such that each arc goes
from one vertex to another. If arc a goes from vertex u to

vertex v, then we write a ¼ uv�!. For example, the arc set

for the digraph O in Figure 5 is A ¼ f uv�!; vx�!; xu�!; wv�!g. A
directed cycle v1; v2; . . .; vn in a digraph is defined analo-
gously to a cycle in a graph, where one insists that there be
an arc from vi to viþ1 for all i modulo n. A digraph without
cycles is said to be acyclic. In Figure 5, the digraph O has a
cycle u, v, x, while O0 is acyclic.

G

b

c
d

e

C

b

c
d

B

c
d

Figure 4. A broken circuit.
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Given a graph G ¼ ðV ; EÞ, an orientation of G is a
digraph obtained by replacing each edge uv by one of its

two possible orientations uv�! and vu�!. The two digraphs in
Figure 5 are both orientations of our standard example
graph G in Figure 1. Clearly, the number of orientations of

G is 2#E . But what if we require the orientations to be
acyclic? Let

OðGÞ ¼ fO j O is an acyclic orientation of Gg:
Returning to our standard example, we see that there are 23

orientations of the (undirected) cycle u, v, x. Of these, two
of them create a directed cycle, one going clockwise and

the other counterclockwise. So there are 23 � 2 ¼ 6 acyclic
orientations of this part of G. As for the edge vw, it can be
oriented either way without producing a cycle. So for this
graph, #OðGÞ ¼ 6 � 2 ¼ 12. We will now do something
completely crazy. Let’s plug t ¼ �1 into the chromatic
polynomial of G as computed in (1). This gives

PðG;�1Þ ¼ ð�1Þ4 � 4ð�1Þ3 þ 5ð�1Þ2 � 2ð�1Þ ¼ 12:

This is the same 12 as the previous one.

THEOREM 5 ([19]). For every graph G ¼ ðV ; EÞ with

#V ¼ n, we have

PðG;�1Þ ¼ ð�1Þn#OðGÞ:

It is not at all clear what it means to color a graph with �1
colors. However, we can make some combinatorial sense
of this result. By Theorem 4, we have

PðG;�1Þ ¼
Xn
k¼0

ð�1Þk nbckðGÞð�1Þn�k ¼ ð�1Þn
Xn
k¼0

nbckðGÞ:

So one could give a combinatorial proof of Theorem 5 by
constructing a bijection between the NBC sets of G and its
acyclic orientations, as was done by Andreas Blass and
Bruce Sagan [6].

We now turn to hyperplane arrangements. Let R denote
the set of real numbers. A hyperplane H in R

n is a subspace
of dimension n� 1. Note that as a subspace, a hyperplane
must go through the origin. A hyperplane arrangement is
just a finite set of hyperplanes H ¼ fH1;H2; . . .;Hkg. For
example, in R

2, the hyperplanes are just lines through
(0, 0), and the arrangement H ¼ fy ¼ 2x; y ¼ �x} is
shown in Figure 6 (without the coordinate axes for clarity
in what comes later). The regions of an arrangement H are
the connected components that remain after one removes
the hyperplanes of the arrangement from R

n. Let RðHÞ be
the set of regions ofH. So in Figure 6, RðHÞ consists of four

regions. Indeed, every arrangement of k hyperplanes in R
2

has 2k regions, but things get more complicated in R
n.

At first blush, these concepts seem to have nothing to do
with the chromatic polynomial. But wait! Suppose G ¼
ðV ; EÞ is a graph with V ¼ ½n�. Note that we are now using
an interval of integers for the labels of the vertices, not for
the colors of a coloring. Write

R
n ¼ fðx1; x2; . . .; xnÞ j xi 2 R for all i 2 ½n�g:

We can now associate with G an arrangement of hyper-
planes in R

n defined by

HðGÞ ¼ fxi ¼ xj j ij 2 Eg:

So each edge of G gives rise to a hyperplane obtained by
setting the coordinate functions of its endpoints equal. As
an example, suppose G has V ¼ ½3� and E ¼ f12; 23g. Then
the corresponding arrangement would be HðGÞ ¼ fx1 ¼
x2; x2 ¼ x3g in R

3. Notice that the number of regions of
HðGÞ is 4 in this case. It is also easy to see that

PðG; tÞ ¼ tðt � 1Þ2, so that PðG;�1Þ ¼ �4. Again, this is
not an accident.

THEOREM 6 ([25]). For every graph G ¼ ðV ; EÞ with

V ¼ ½n�, we have

PðG;�1Þ ¼ ð�1Þn �#RðHðGÞÞ:

On reading the two previous theorems back to back, the
reader may suspect that they are related. In fact, there is a
bijection between acyclic orientations of G with vertices
labeled by [n] and regions of its hyperplane arrangement.
Every hyperplane xi ¼ xj determines two half-spaces,

namely xi \ xj and xi [ xj . Consider these as corre-

sponding to the arcs ij
!

and ji
!
, respectively. One can then

show that an orientation O of G is acyclic if and only if the
intersection of the associated half-spaces is nonempty and
thus a region of HðGÞ.

For our third application, we will need a few more
definitions from graph theory. A subgraph of G ¼ ðV ; EÞ is
a graph G0 ¼ ðV 0; E 0Þ with V 0 � V and E 0 � E. We say that
G0 is spanning if V 0 ¼ V . In this case, we often identify G
with its edge set, since the set of vertices is fixed. In Fig-
ure 7 we see our usual example graph with the vertices
relabeled by [4], as well as two spanning subgraphs F ¼
f12; 24g and F 0 ¼ f14; 24g. A path from u to v in G is a
sequence of distinct vertices P : u ¼ v1; v2; . . .; vn ¼ v,
where viviþ1 2 E for i 2 ½n� 1�. Returning to Figure 7, we

y = 2xy = −x

Figure 6. A hyperplane arrangement in R
2.

O

x w

u v

O

x w

u v

Figure 5. Two orientations of the graph G in Figure 3.
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see that P : 4, 1, 2, 3 is a path from 4 to 3 in G. We call G
connected if for every pair of vertices u, v there is a path
from u to v. More generally, the components of G are the
connected subgraphs that are maximal with respect to
inclusion. So a connected graph has one component. The
graph G in Figure 7 is connected, but the subgraphs F and
F 0 are not. Both of these subgraphs have two components.

A graph F is a forest if it contains no (undirected) cycles.
The components of F are called trees. Trees can be char-
acterized by the fact that for every pair of vertices there is a
unique path between them. So F and F 0 in Figure 7 are
spanning forests of G. Let F be a forest with V ¼ ½n�, so that
we can compare the sizes of the vertex labels. We say that F
is increasing if the vertex labels of every path starting at the
minimum vertex in its component tree form an increasing
sequence. So the forest F in Figure 7 is increasing. Indeed,
in the tree with one vertex, there is only the path 3, which is
trivially increasing. Note that a similar argument shows that
every tree with only one or two vertices satisfies the
increasing condition. Regarding the tree with three vertices
in F, all paths from the minimum vertex 1 are subpaths of
1, 2, 4. And this is an increasing sequence. On the other
hand, the forest F 0 is not increasing, since 1, 4, 2 is a path
starting at 1 that is not an increasing sequence.

Given G with vertices [n], consider the integers

isfkðGÞ ¼ #fF j F is an increasing spanning

forest of G with k edgesg
with generating function

ISFðGÞ ¼ ISFðG; tÞ ¼
Xn
k¼0

ð�1Þk isfkðGÞ tn�k:

Note that although our notation doesn’t show it, isfkðGÞ
depends on how the vertices of G are labeled. Also, it is not
clear why we have introduced the signs in ISF ðGÞ or why

we made isfkðGÞ the coefficient of tn�k rather than tk. But
this will become obvious shortly. Let us compute the
generating function for G as in Figure 7. First of all,
isf0ðGÞ ¼ 1, because the spanning graph with no edges has
only single vertex trees, which are all increasing. Next,
is f1ðGÞ ¼ #E ¼ 4, since every single edge is increasing.

There are 4
2

� �
¼ 6 ways to choose a spanning forest with

two edges, of which only the F 0 in Figure 7 is not
increasing. So isf2ðGÞ ¼ 6� 1 ¼ 5. Similarly, one com-
putes that isf3ðGÞ ¼ 2. Finally, isf4ðGÞ ¼ 0, since the only
spanning subgraph of G with four edges is G itself, which is
not even a forest. Putting everything together, we obtain

G

4 3

1 2

F

4 3

1 2

F

4 3

1 2

Figure 7. A graph G and two spanning forests F ; F 0.

ISFðG; tÞ ¼ t4 � 4t3 þ 5t2 � 2t;

a polynomial that we have seen previously!
But before we explore the connection between

ISFðG; tÞ and P(G; t), we wish to mention a nice factor-
ization of the former. As usual, suppose G ¼ ðV ; EÞ has
V ¼ ½n� and define the following edge sets:

Ej ¼ EjðGÞ ¼ fij 2 E j i \ jg
for j 2 ½n�. Note that we always have E1 ¼ £, since there
are no vertices with label smaller than 1. Also, the Ej par-

tition E in that E ¼ ]j2½n�Ej . In our usual example,

E1 ¼ £; E2 ¼ f12g; E3 ¼ f23g; E4 ¼ f14; 24g:
These sets give rise to the polynomial

Y4
j¼1

ðt �#EjÞ ¼ ðt � 0Þðt � 1Þðt � 1Þðt � 2Þ ¼ t4 � 4t3 þ 5t2 � 2t ;

which by now should be very familiar. This is explained by
the next result.

THEOREM 7 ([11]). For every graph G ¼ ðV ; EÞ with

V ¼ ½n�, we have the following:

(a) The subgraph F of G is an increasing spanning forest if
and only if jF \ Ej j � 1 for all j 2 ½n�.

(b) We have ISFðG; tÞ ¼
Qn

j¼1ðt �#EjÞ.

Note that part (b) of this theorem follows directly from part
(a). For expanding the product shows that the coefficient of

tn�k is (up to sign) the number of ways of choosing k edges
of G with no two coming from the same Ej .

There are at least two reasons why one cannot always
have ISFðG; tÞ ¼ PðG; tÞ. For one thing, the former
depends on which labels are given to the vertices, while the
latter does not. And we have seen that PðC4Þ has complex
roots, while the previous result shows that the roots of
ISFðGÞ are always nonnegative integers. So the question
becomes, when are the two polynomials equal? The answer
has to do with the notion of a perfect elimination ordering.

Given G ¼ ðV ; EÞ, the graph induced by W � V is
defined as

G½W � ¼ G nW 0 ;

where W 0 is the complement of W in V, and deletion of
multiple edges is defined just as it was for a single edge.
Another description of G½W � is that it is the subgraph of G
with vertex set W and all possible edges of G whose end-
points are in W. For example, in Figure 7, the graph
G½1; 2; 4� is a 3-cycle, while G½2; 3; 4� is the path 3, 2, 4.

We say that G ¼ ðV ; EÞ has a perfect elimination
ordering if there is an ordering of V as v1; v2; . . .; vn such
that for all j 2 ½n�, the induced subgraph G½Vj � is complete,

where
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Vj ¼ fvi j i \ j and vivj 2 Eg :
This definition may seem strange to those seeing it for the
first time. But it is a useful concept, for example, as a
characterization of chordal graphs. Suppose the vertices of
the graph G in Figure 7 are ordered in the natural way as
1, 2, 3, 4. Then the corresponding Vj are just the vertices

smaller than j in the edges of Ej , which gives

V1 ¼ £; V2 ¼ f1g; V3 ¼ f2g; V4 ¼ f1; 2g:

Clearly, the graphs G½Vj � for j � 3 are complete, since G½£�
is the empty graph, and G½V � is just v for each single vertex
v. Finally, G½V4� is the edge 12, which is also a complete
graph. So we have a perfect elimination ordering, which
presages the next theorem.

THEOREM 8 ([11]). Let G be a graph with V ¼ ½n�.We have

PðG; tÞ ¼ ISFðG; tÞ if and only if the natural order on [n] is

a perfect elimination ordering of G.

Going Further
We will now discuss even more striking results related to
the chromatic polynomial. These will include a general-
ization to symmetric functions and connections with
algebraic geometry.

Credit Where Credit Is Due

For pedagogical reasons, the results presented in the pre-
vious section gave only a partial picture of the various
authors’ contributions. Here we will take a wider view.

Since the chromatic polynomial of G ¼ ðV ; EÞ at t ¼ �1
has a nice combinatorial interpretation, one might ask what
happens at negative integers in general. Let t 2 P and let
j : V ! ½t� be a coloring that is not necessarily proper. Also
consider an acyclic orientation O ¼ ðV ;AÞ of G. We say that
O and j are compatible if

uv�! 2 A ) jðuÞ � jðvÞ:

So O is like a gradient vector field, always pointing from
lower to higher values of j. Stanley’s full theorem is as
follows.

THEOREM 9 ([19]). For every graph G ¼ ðV ; EÞ with#V ¼
n and for every t 2 P, we have

PðG;�tÞ ¼ ð�1Þn �#fðO; jÞ j O and j are compatibleg:

Note that this result implies Theorem 5. For if t ¼ 1, then
there is only one coloring j : V ! ½1�. And this coloring is
compatible with every acyclic orientation. So in this case,
the number of compatible pairs is just the number of
acyclic orientations. Sagan and Vatter [17] have given a
bijective proof of Theorem 9.

Regarding Theorem 6, there is actually a stronger result,
which holds for every hyperplane arrangement. Given an
arrangement H, consider all the subspaces S of Rn that can

be formed by intersecting hyperplanes in H. This includes
R

n itself, which is the empty intersection. Partially order the
subspaces by reverse inclusion to form a poset (partially
ordered set) called the intersection lattice ofH and denoted
by LðHÞ. Note that Rn is the minimum element of LðHÞ. For
every finite poset P with a minimum element 0̂, there is an
associated function l : P ! Z called the Möbius function of
P, defined recursively by

lðxÞ ¼
1 if x ¼ 0̂;

�
P

y \ x lðyÞ otherwise.

(

This map is a vast generalization of the Möbius function
from number theory, and more information about it can be
found in the texts of Sagan [16] and Stanley [22]. We can
now form the characteristic polynomial of H, which is the
generating function

vðH; tÞ ¼
X

S2LðHÞ
lðSÞ tdim S :

It turns out that if H ¼ HðGÞ for some graph G, then
vðH; tÞ ¼ PðG; tÞ. Here is the full strength of Theorem 6.

THEOREM 10 ([25]). For every hyperplane arrangement H
in R

n, we have

vðH;�1Þ ¼ ð�1Þn �#RðHÞ:

Hallam, Martin, and Sagan were able to improve on The-
orem 8. Let G ¼ ðV ; EÞ be a graph with V ¼ ½n� and define

ISF kðGÞ ¼ fF j F is an increasing spanning forest of

G with k edgesg :
So #ISF kðGÞ ¼ isfkðGÞ. Since V ¼ ½n� and E is a set of
pairs of vertices, order E lexicographically, whereby each
e ¼ ij 2 E is listed with i \ j. Let

NBCkðGÞ ¼ fA � E j A is an NBC set with k edgesg ;
so that #NBCkðGÞ ¼ nbckðGÞ. Also let

NBCðGÞ ¼
[n
k¼0

NBCkðGÞ:

THEOREM 11 ([10]). Let G ¼ ðV ; EÞ be a graph with V ¼
½n� and E ordered lexicographically. For all k 2 N, we have

ISF kðGÞ � NBCkðGÞ;

with equality for all k if and only if the natural order on [n]
is a perfect elimination order.

In [10], the authors also generalize both Theorems 7
and 8 to certain pure simplicial complexes of dimension d.
When d ¼ 1, the graphical results are recovered.

Chromatic Symmetric Functions

Stanley [21] generalized the chromatic polynomial to a
symmetric function. Let x ¼ fx1; x2; x3; . . .g be a countably
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infinite set of variables. A formal power series f ðxÞ is said to
be symmetric if it is of bounded degree and invariant under
permutations of the variables. For example,

f ðxÞ ¼ 7x1x
2
2 þ 7x2x

2
1 þ 7x1x

2
3 þ � � � � 2x1x2x3 � 2x1x2x4 � 2x1x3x4 � � � �

is symmetric, since all monomials of the form xix
2
j have

coefficient 7, and all monomials of the form xixjxk have

coefficient �2.
Consider colorings of a graph G ¼ ðV ; EÞ using the

positive integers j : V ! P. Associated with each such
coloring is its monomial

xj ¼
Y
v2V

xjðvÞ:

Going back to our faithful example graph in Figure 1, the

middle coloring has xj ¼ x2
1x

2
2 , while the one on the right

has xj
0 ¼ x1x

2
2x3. We now define the chromatic symmetric

function of G to be

XðGÞ ¼ XðG; xÞ ¼
X

j:V!P

xj ;

where the sum is over proper colorings j : V ! P. As an
example, consider the path P as shown in Figure 8. There
are no proper colorings of P with a single color. Suppose
we wish to use the two colors 1 and 2. Then there are two

possibilities, as shown in the figure, which contribute xj ¼
x2
1x2 and xj

0 ¼ x1x
2
2 to X(P). The same argument shows that

we get a term xix
2
j for every distinct i; j 2 P. Now consider

using three colors on P, say 1, 2, and 3. Then every bijec-
tion j : V ! ½3� is proper. There are six such maps, for a
contribution of 6x1x2x3. Again, the choice of these three
particular colors is immaterial, so we get a term 6xixjxk for

every three positive integers i, j, k. Putting everything
together, we obtain

XðPÞ ¼
X

i;j distinct

x2
i xj þ 6

X
i;j;k distinct

xixjxk ;

which is a symmetric function. In general, X(G) is sym-
metric, because permuting colors in a proper coloring
leaves it proper.

Note also that XðG; xÞ generalizes P(G; t) in the fol-
lowing way. Set

x1 ¼ x2 ¼ � � � ¼ xt ¼ 1 and xi ¼ 0 for i[ t: ð3Þ

Then each xj equals 0 or 1, and the latter happens only
when j uses colors in [t]. So under this substitution,

XðG; xÞ ¼
X

j:V!½t�
1 ¼ PðG; tÞ ;

by definition of the chromatic polynomial.
One can now prove symmetric function generalizations

of results about chromatic polynomials and also theorems
about X(G) that do not have analogues for P(G). To illus-
trate, we give an analogue of Whitney’s NBC theorem.
Define

cðGÞ ¼ number of components of G:

Note that if G ¼ ðV ; EÞ with #V ¼ n and A 2 NBCkðGÞ,
then A is a forest, since if A contained any cycle, it would
contain the corresponding broken circuit. And A is a
spanning subgraph, so cðAÞ ¼ n� k. Thus we can rewrite
Theorem 4 as

PðG; tÞ ¼
Xn
k¼0

X
A2NBCkðGÞ

ð�1Þk tn�k ¼
X

A2NBC
ð�1Þ#A tcðAÞ:

ð4Þ
Symmetric functions form an algebra whose bases are
indexed by partitions, which are weakly decreasing
sequences k ¼ ðk1; k2; . . .; klÞ of positive integers called
parts. Consider the power sum symmetric function basis
defined multiplicatively by

pn ¼ xn
1 þ xn

2 þ xn
3 þ � � �

for n 2 P and

pk ¼ pk1pk2 � � � pkl :
As illustrations, we have

p3 ¼ x3
1 þ x3

2 þ x3
3 þ � � �

and

pð3;3;1Þ ¼ p3p3p1 ¼ x3
1 þ x3

2 þ x3
3 þ � � �

� �2ðx1 þ x2 þ x3 þ � � �Þ:

Note that using the substitution (3) yields pn ¼ t and

pk ¼ tl , where l is the number of parts of k. For every graph
G, there is a corresponding partition kðGÞ whose parts are
just the vertex sizes of the components of G. As an exam-
ple, in Figure 7 we have kðFÞ ¼ kðF 0Þ ¼ ð3; 1Þ. The usual
substitution shows that the following result generalizes
Whitney’s theorem in the form (4).

THEOREM 12 ([21]). For every graph G ¼ ðV ; EÞ and total

order on E, we have

XðG; xÞ ¼
X

A2NBC
ð�1Þ#A pkðAÞ:

However, the symmetric function does not always mirror
the polynomial. Let T be a tree with n vertices. Then it is

easy to see that for all such trees, PðT ; tÞ ¼ tðt � 1Þn�1. It
seems as if the opposite may be true for X(T; t). We call two
graphs isomorphic if they yield the same graph once the
labels on the vertices are removed. For example, the two
forests in Figure 7 are isomorphic. For more information

P

u w

v

κ

1 1

2

κ

2 2

1

Figure 8. A path and two of its colorings.
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about the following conjecture, the reader can consult
[2, 13, 14].

CONJECTURE 13 ([21]). If T and T 0 are nonisomorphic

trees, then

XðT ; xÞ 6¼ XðT 0; xÞ:

Ira Gessel [9] introduced quasisymmetric functions, which
are an important refinement of symmetric functions.
Recently, John Shareshian and Michelle Wachs [18] showed
that there is a quasisymmetric refinement of XðG; xÞ. This
quasisymmetric function has important connections with
Hessenberg varieties in algebraic geometry.

Log-Concavity

A sequence of real numbers a0;a1; . . .;an is said to be log-
concave if

a2
k � ak�1akþ1

for all 0 \ k \ n. As an example, the nth row of Pascal’s
triangle,

n

0

� �
;

n

1

� �
; . . .;

n

n

� �
;

can easily be shown to be log-concave using the formula
for binomial coefficients in terms of factorials. Log-concave
sequences abound in combinatorics, algebra, and geome-
try. See the survey articles by Stanley [20], Brenti [8], and
Brändén [7] for a host of examples. We call a polynomial

pðtÞ ¼
P

k � 0 akt
k log-concave if its coefficient sequence is

log-concave. In 2012, June Huh stunned the combinatorial
world by proving the following result, using deep methods
from algebraic geometry, which generalizes a conjecture of
Ronald Read [15] from 1968.

THEOREM 14 ([12]). For every graph G, we have that

P(G; t) is log-concave.

By developing a combinatorial version of Hodge theory,
Karim Adiprasito, June Huh, and Eric Katz [1] were able to
extend this result by proving the log-concavity of the
characteristic polynomial of a matroid (a combinatorial
object that generalizes both graphs and vector spaces).
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