Errata for the 2nd edition of
“The Symmetric Group”

In the list that follows p/l (respectively, p//l) refers to the lth line from the top (respectively, bottom) of page p. Also, $A \leftarrow B$ means A is to be replaced by B.

ix/3: Eition \leftarrow Edition
12//15: epresentation \leftarrow representation
12//3: $X(e) \leftarrow X(\epsilon)$
16//10: add “for all $w \in W$” to the definition of W^\perp
20/7: $T \leftarrow A$
21/3: $H \leftarrow H$
35/1–2: This is only true if the field has characteristic zero or is relatively prime to |G|.
35//1: $A \sim B \leftarrow A = B$
36//11–12: Replace the first two sentences by “Now suppose $\chi = \psi$ so we can take $A = B$.”
37/9: orthogonality relations \leftarrow “orthogonality relations” with respect to the bilinear form $\langle \cdot, \cdot \rangle'$.
39/6: 13 \leftarrow 15
50/8: The proof given in the exercise is only valid if the field has characteristic zero or is relatively prime to |G|.
51//4: One does not need to use the fact that C_n is normal in D_n.
64/1: linearity by conjugate linearity \leftarrow conjugate linearity by linearity
64//1: add “or 0” at the end of the last sentence
65/3–4: dominance lemma \leftarrow Dominance Lemma
65/5–6: Replace this sentence by “If $\lambda = \mu$, suppose first that two elements in the same row of s are also in the same column of t. Then, by part 4 of the Sign Lemma, $\kappa_t\{s\} = 0$. If no such pair of elements exist then, by the same argument which established the Dominance Lemma, $\{s\} = \pi\{t\}$ for some $\pi \in C_t$.”
65/9: $\{s_i\}$ should be all boldface
65/19: exits \leftarrow exist
65/10: $\sum_i \pm c_i e_t \leftarrow \sum_i d_i e_t$ where $d_i = \pm c_i$ or 0
65//2: $\{s_i\}$ should be all boldface
66//16: The sum should be over $\lambda \geq \mu$
69/10: $(k, l)\{s\}$ has fewer inversions than $\{s\} \leftarrow (k, l)s$ has fewer inversions than s
70/13: is is \leftarrow is
70//11: $e_{\pi t} \leftarrow (\text{sgn } \pi)e_{\pi t}$
73//7: $[\pi t] \triangleright [t] \leftarrow [\pi t] \triangleright [t]$
77//11: $\{t_i\} \leftarrow \{t^i\}$
79/5: Here and in the rest of this section $\mathbb{C}[T_{\lambda\mu}]$ should be $\mathbb{C}T_{\lambda\mu}$
81/6: cyclicity \leftarrow cyclicity of
83//15: $T_{\lambda\mu} \leftarrow T_{\lambda\mu}^0$
84//6–7: T_2 should be boldface in four places
85/7: In “some T appearing” the T should be boldface
One can not use an arbitrary ordering of the tableaux. Instead compute the row word \(\pi_t \), as defined on page 101, for each tableau \(t \) and then order the tableaux by the lexicographic ordering of their row words.

Case 1: \(y = m \).

Subcase 2b: \(u \neq v \).

Throughout the example, the 5 and the 6 should be interchanged.

The first line of \(P(\pi) \) should be 1 3 5 6 8.

The sum should only be over \(n \)-vertex lower order ideals of the infinite binary comb which is the partial order on the set \(P \cup \{ 1', 2', 3', \ldots \} \) with the usual total order on \(P \) together with \(i' \) covering \(i \) for all \(i \geq 1 \).

Thus \(p' \) starts weakly to the east of \(p'' \). By the same arguments as in Lemma 4.3, \(p \) stays to the east of \(p' \). Since \(p' \) reaches the east end of row \(i' = i \) by assumption, so must \(p \) — Thus \(r' \) starts weakly to the east of \(r'' \). By the same arguments as in Lemma 4.2.3, \(r' \) stays to the east of \(r'' \). Since \(r'' \) reaches the east end of row \(i'' = i \) by assumption, so must \(r' \)

155/11: \(x_1^{\mu_1} x_2^{\mu_2} \cdots x_m^{\mu_l} \leftarrow x_1^{\mu_1} x_2^{\mu_2} \cdots x_1^{\mu_l} \)

157/5: the the row \(\leftarrow \) the row

160/8: describes \(\leftarrow \) describe

161/8: \(i, j \leftarrow \) distinct \(i, j \)

165/15: \(h_{i-j} \leftarrow h_{j-i} \)

176/7: \(s_\mu(x)s_\nu(y)s_\lambda(z) \leftarrow s_\mu(x)s_\lambda(z) \)

180/8: (the number of rows of \(\xi \))-1 \(\leftarrow \) the number of rows of \(\xi \) below the first row

180/7: \(\alpha \setminus \alpha \leftarrow \alpha \setminus \alpha_1 \)
192/2: meet ,if \(\rightarrow \) meet, if
194 equation (5.4): \(a_1 < a_1 \rightarrow a_1 < a_2 \)
194–195: In some books these two pages are switched
215/13: \(B_2 \rightarrow B_2 \)
215/14: subsets \(\rightarrow \) nonempty subsets
216/16: These components \(\rightarrow \) The components of the subgraph \(F \)
216//7: that both \(\rightarrow \) that
217/17: \(v_n, v_1 \in E(T) \rightarrow v_n v_1 \in E(T) \) where \(n \geq 3 \).
217//15: neighbors \(v \rightarrow \) neighbors of \(v \)
221//4: \((n - k)I \rightarrow (n - 2k)I \)
227//12: [Scü 76] \(\rightarrow \) [Scü 77]
227//6: Stn \(\rightarrow \) Sta

Thanks to Simcha Barkai, Seth Chaiken, Brian Chan, Akex Chandler, Sam Clearman, Niklas Eriksen, Jonathan Farley, Darij Grinberg, Yuval Khachatryan, Nicholas Mayers, Yves de Montaudouin, Kelvin Souza de Oliveira, Margaret Readdy, and Yaokun Wu, for catching some of these errors.