Errata for
“Combinatorics: The Art of Counting”
(Revised September 1, 2023)

In the list that follows p/l (respectively, p//l) refers to the lth line from the top (respectively, bottom) of page p, ignoring figures. Also, $A \leftarrow B$ means A is to be replaced by B.

3//17 set of tiles \leftarrow sequence of tiles
3//10 $T_0 \leftarrow \#T_0$
3//9 $T_1 \leftarrow \#T_1$
17
22/9–10 Let i be the smallest such index and let j be the first index after i where repetition occurs. \leftarrow Let j be the smallest index such that v_j equals an earlier vertex in the sequence and let v_i be that earlier vertex.
28//2 std $\sigma \leftarrow$ std σ'
37/16–17 bijection, that is, when $n = k \leftarrow$ bijective and $n = k$ are positive integers
49/6 Rogers-Remanujan \leftarrow Rogers-Ramanujan
47//11 andis \leftarrow is
59/8 Gessle \leftarrow Gessel
61, two lines above Proposition 2.6.1: matrix $C(G) \leftarrow$ matrix $C = C(G)$
69/2 Gessle \leftarrow Gessel
79/13 We induct on k where the case $k = 0$ is left to the reader. If $k > 0 \leftarrow$ We do a double induction on k, l where the cases $k = 0$ and $l = 0$ are left to the reader. When $k, l > 0$
82/18 the that range \leftarrow that the range
84/15 for any $n \leftarrow$ for $n = 1$
85/9 $n > N \leftarrow k > N$
100/16 to the enumerating \leftarrow to enumerating
102//17 $A \supseteq B \leftarrow A \not\supseteq B$
104/11 Exercise 14(b) of Chapter 1 \leftarrow Exercise 19(b) of Chapter 2
104/14 $\phi^{-1}(O') = 1 \leftarrow \#\phi^{-1}(O') = 1$
104/15 $\phi^{-1}(O') = 2 \leftarrow \#\phi^{-1}(O') = 2$
104/17 $\phi^{-1}(O') = 2 \leftarrow \#\phi^{-1}(O') = 2$
104/21 $\phi^{-1}(O') = 2 \leftarrow \#\phi^{-1}(O') = 2$
109//4 Use part (b) \leftarrow Use parts (a) and (b)
110//6 two way \leftarrow two ways
113//15 $b > \min B_j \leftarrow b > \min B_{i+1}$
114/1–9 Throughout this exercise, one should use the inversion statistic, inv, rather than the major index, maj.
120//15 $\pi_k \leftarrow \pi_{k+1}$
120//14 k is odd $\leftarrow k$ is even
120//10 k is odd $\leftarrow k$ is even
120//9 even $k \leftarrow$ odd k
136/14 show that \leftarrow show that, for $n \geq 1$,
136/16 show that \leftrightarrow show that, for $n \geq 0$,
143/5 upper-order ideals \leftrightarrow Upper-order ideals
145/13 $X/Y \leftrightarrow Y/X$ (in two places)
150/10 finite \leftrightarrow finite, nonempty
151/10 $z, y, z \leftrightarrow x, y, z$
172/2 right-hand \leftrightarrow bottom
173/14 $y \in I(x) \leftrightarrow y \in I(X)$
177/8 $12(c) \leftrightarrow 12(a)$
180 & ff Use f_ϕ for F_ϕ so there can be no confusion with the factorial function of P.
182/18 Add at the end of the sentence: for s with real part greater than 1.
192/17 function \leftrightarrow which is an analytic continuation of the series definition of $\zeta(s)$
194/3 a poset $P \leftrightarrow$ a finite poset P
197/2 we say \leftrightarrow we saw
205/5 since cycles commute \leftrightarrow since disjoint cycles commute
224/10 Gessle \leftrightarrow Gessel
227/14 Gessel \leftrightarrow Gessel
231/14 to be replace \leftrightarrow to be replaced
231/17 to be replace $c':=c \leftrightarrow c:=c'$
237/1 $x^{\text{des } \pi} \leftrightarrow x^{\text{des } \pi} + 1$
238/13 Note \leftrightarrow Recall that linear extensions were defined in Section 5.5. Note
240/7 (7.23) yields. \leftrightarrow (7.23) yields
242/5 $r_{\pi_k} \leftrightarrow r_{\pi_k}(P_{k-1})$
245/16 $P_{k-1} \leftrightarrow P_{k-1}$, assuming $j \geq 2$. When $j = 1$, a similar proof will work
244/14 $stU \leftrightarrow shU$
268/17 $7M_{121} \leftrightarrow M_{121}$
269/10 impose by $\alpha \leftrightarrow$ imposed by α
278/7 $\sigma \in \mathfrak{S}_n(\Pi) \leftrightarrow \sigma \in \mathfrak{A}_n(\Pi)$
278/14 $\sigma \in \mathfrak{S}_n(\Pi) \leftrightarrow \sigma \in \mathfrak{A}_n(\Pi)$

Thanks to Eli Bagno, David Garber, Cullen Haselby, Shalom Eliahou, John Lentfer, Tamsen McGinley, Astrid Olave-Herrera, Nick Ovenhouse, Ankit Sahu, and Philip B. Zhang for catching some of these errors.