Errata for
“Combinatorics: The Art of Counting”
(Revised September 1, 2023)

In the list that follows p/l (respectively, p/l) refers to the lth line from the top (respectively, bottom) of page p, ignoring figures. Also, A ← B means A is to be replaced by B.

3//17 set of tiles ← sequence of tiles
3//10 \(T_0 \) ← \#\(T_0 \)
3//9 \(T_1 \) ← \#\(T_1 \)
17

22/9–10 Let \(i \) be the smallest such index and let \(j \) be the first index after \(i \) where repetition occurs. ← Let \(j \) be the smallest index such that \(v_j \) equals an earlier vertex in the sequence and let \(v_i \) be that earlier vertex.

28//2 std \(\sigma \) ← std \(\sigma' \)
37/16–17 bijection, that is, when \(n = k \) ← bijective and \(n = k \) are positive integers
49/6 Rogers-Remanujan ← Rogers-Ramanujan
47//11 andis ← is
59/8 Gessle ← Gessel
61, two lines above Proposition 2.6.1: matrix \(C(G) \) ← matrix \(C = C(G) \)
69/2 Gessle ← Gessel
79/13 We induct on \(k \) where the case \(k = 0 \) is left to the reader. If \(k > 0 \) ← We do a double induction on \(k, l \) where the cases \(k = 0 \) and \(l = 0 \) are left to the reader. When \(k, l > 0 \)
82/18 the that range ← that the range
84/15 for any \(n \) ← for \(n = 1 \)
85/9 \(n > N \) ← \(k > N \)
100/16 to the enumerating ← to enumerating
102//17 \(A \ 6 \supseteq B \) ← \(A \not\supseteq B \)
104/11 Exercise 14(b) of Chapter 1 ← Exercise 19(b) of Chapter 2
104/14 \(\phi^{-1}(O') = 1 \) ← \(\#\phi^{-1}(O') = 1 \)
104/15 \(\phi^{-1}(O') = 2 \) ← \(\#\phi^{-1}(O') = 2 \)
104/17 \(\phi^{-1}(O') = 2 \) ← \(\#\phi^{-1}(O') = 2 \)
104/21 \(\phi^{-1}(O') = 2 \) ← \(\#\phi^{-1}(O') = 2 \)
109//4 Use part (b) ← Use parts (a) and (b)
110//6 two way ← two ways
113//15 \(b > \min B_j \) ← \(b > \min B_{i+1} \)
114/1–9 Throughout this exercise, one should use the inversion statistic, inv, rather than the major index, maj.
120//15 \(\pi_k \) ← \(\pi_{k+1} \)
120//14 \(k \) is odd ← \(k \) is even
120//10 \(k \) is odd ← \(k \) is even
120//9 even \(k \) ← odd \(k \)
136/14 show that ← show that, for \(n \geq 1 \),
136/16 show that \leftarrow show that, for $n \geq 0$,
143//5 upper-order ideals \leftarrow Upper-order ideals
145/13 $X/Y \leftarrow Y/X$ (in two places)
150/10 finite \leftarrow finite, nonempty
151/10 $z, y, z \leftarrow x, y, z$
172/2 right-hand \leftarrow bottom
173/14 $y \in I(x) \leftarrow y \in I(X)$
173/16 $I(X) \to (X) \leftarrow I(X) \to I(X)$
177//8 $12(c) \leftarrow 12(a)$
180 & ff Use f_{ϕ} for F_{ϕ} so there can be no confusion with the factorial function of P.
182//20 $s \in \mathbb{C} \leftarrow s$ is an integer greater than 1
182//18 Add at the end of the sentence: for s with real part greater than 1.
192//17 function \leftarrow which is an analytic continuation of the series definition of $\zeta(s)$
184//3 a poset $P \leftarrow$ a finite poset P
190//2 $\#\mathcal{O} \mid \#X \leftarrow \#\mathcal{O} \mid \#G$
193//5 $4^2 \leftarrow 2^4$
197//2 we say \leftarrow we saw
205/5 since cycles commute \leftarrow since disjoint cycles commute
222//13 $\sum_{l(\lambda)=n} \sum_{t(\lambda)=n} \leftarrow \sum_{l(\lambda)=n}$
224//10 Gessle \leftarrow Gessel
227//14 Gessle \leftarrow Gessel
228//7 Gessle \leftarrow Gessel
231/14 to be replace \leftarrow to be replaced
231/17 to be replaced $c' := c \leftarrow c := c'$
237//1 $x^{\text{des}\pi} \leftarrow x^{\text{des}\pi} + 1$
238//13 Note \leftarrow Recall that linear extensions were defined in Section 5.5. Note
240/7 (7.23) yields. \leftarrow (7.23) yields
242/5 $r_{\pi_k} \leftarrow r_{\pi_k}(P_{k-1})$
245/16 $P_{k-1} \leftarrow P_{k-1}$, assuming $j \geq 2$. When $j = 1$, a similar proof will work
244//14 st $U \leftarrow$ sh U
268//17 $7M_{121} \leftarrow M_{121}$
269//10 impose by α \leftarrow imposed by α
278/7 $\sigma \in \mathfrak{S}_n(\Pi) \leftarrow \sigma \in \text{Av}_n(\Pi)$
278//14 $\sigma \in \mathfrak{S}_n(\Pi) \leftarrow \sigma \in \text{Av}_n(\Pi)$

Thanks to Eli Bagno, David Garber, Cullen Haselby, Shalom Eliahou, John Lentfer, Tamsen McGinley, Astrid Olave-Herrera, Nick Ovenhouse, Ankit Sahu, Jenny Zhan, and Philip B. Zhang for catching some of these errors.