5.1 The Remainder and Factor Theorems; Synthetic Division

In this section you will learn to:

- understand the definition of a zero of a polynomial function
- use long and synthetic division to divide polynomials
- use the remainder theorem
- use the factor theorem

Example 1: Use long division to find the quotient and the remainder: $5593 \div 27$

Steps for Long Division:

1. 2. 3. 4.

Example 2: Use the "Steps for Long Division" to divide each of the polynomials below.

$$x-5) x^2 - 2x - 35$$
 $(7-11x - 3x^2 + 2x^3) \div (x-3)$

Example 3: Check your answer for the division problems in Example 2.

then

The Division Algorithm: If f(x) and d(x) are polynomials where $d(x) \neq 0$ and degree d(x) <degree f(x),

If r(x) = 0 then d(x) and q(x) are **factors** of f(x).

 $f(x) = d(x) \cdot q(x) + r(x)$

Example 4: Perform the operation below. Write the remainder as a rational expression (remainder/divisor).

$$\frac{2x^5 - 8x^4 + 2x^3 + x^2}{2x^3 + 1}$$

<u>Synthetic Division</u> – Generally used for "short" division of polynomials when the divisor is in the form x - c. (Refer to page 506 in your textbook for more examples.)

Example 5: Use both long and short (synthetic) division to find the quotient and remainder for the problem below.

 $(2x^3 - 11x + 7) \div (x - 3)$

Example 6: Divide $\frac{x^3+8}{x+2}$ using synthetic division.

Example 7: Factor $x^3 + 8$ over the real numbers. (Hint: Refer to Example 6.)

Remainder Theorem	Factor Theorem
If the polynomial $f(x)$ is divided by $(x - c)$, then the remainder is $f(c)$.	Let $f(x)$ be a polynomial.
	If $f(c) = 0$, then $(x - c)$ is a factor of $f(x)$.
	If $(x - c)$ is a factor of $f(x)$, then $f(c) = 0$.
	If $(x-c)$ is a factor of $f(x)$ or if $f(c) = 0$,
	then c is called a zero of $f(x)$.

Example 8: $f(x) = 3x^3 + 4x^2 - 5x + 7$. Find f(-4) using

(a) synthetic division.

(b) the Remainder Theorem.

Example 9: Solve the equation $2x^3 - 3x^2 - 11x + 6 = 0$ given that -2 is a zero of $f(x) = 2x^3 - 3x^2 - 11x + 6$.

5.1 Homework Problems:

For Problems 1-5, use long division to find each quotient, q(x), and remainder, r(x).

1.
$$(x^2 - 2x - 15) \div (x - 5)$$

2. $(x^3 + 5x^2 + 7x + 2) \div (x + 2)$

3.
$$(6x^3 + 7x^2 + 12x - 5) \div (3x - 1)$$

4. $\frac{x^4 - 81}{x - 3}$
5. $\frac{18x^4 + 9x^3 + 3x^2}{3x^2 + 1}$

For Problems 6 - 11, divide using synthetic division.

6. $(2x^{2} + x - 10) \div (x - 2)$ 7. $(5x^{3} - 6x^{2} + 3x + 11) \div (x - 2)$ 8. $(x^{2} - 5x - 5x^{3} + x^{4}) \div (5 + x)$ 9. $\frac{x^{7} + x^{5} - 10x^{3} + 12}{x + 2}$ 10. $\frac{x^{4} - 256}{x - 4}$ 11. $\frac{x^{5} - 2x^{4} - x^{3} + 3x^{2} - x + 1}{x - 2}$

For Problems 12 - 16, use synthetic division and the Remainder Theorem to find the indicated function value.

12.
$$f(x) = x^3 - 7x^2 + 5x - 6; f(3)$$

13. $f(x) = 4x^3 + 5x^2 - 6x - 4; f(-2)$
14. $f(x) = 2x^4 - 5x^3 - x^2 + 3x + 2; f\left(-\frac{1}{2}\right)$
15. $f(x) = 6x^4 + 10x^3 + 5x^2 + x + 1; f\left(-\frac{2}{3}\right)$

16. Use synthetic division to divide $f(x) = x^3 - 4x^2 + x + 6$ by x + 1. Use the result to find all zeros of f.

- 17. Solve the equation $2x^3 5x^2 + x + 2 = 0$ given that 2 is a zero of $f(x) = 2x^3 5x^2 + x + 2$.
- 18. Solve the equation $12x^3 + 16x^2 5x 3 = 0$ given that $-\frac{3}{2}$ is a zero (root).

5.1 Homework Answers: 1.
$$q(x) = x+3$$
 2. $q(x) = x^2 + 3x + 1$ 3. $q(x) = 2x^2 + 3x + 5$
4. $q(x) = x^3 + 3x^2 + 9x + 27$ 5. $q(x) = 6x^2 + 3x - 1$; $r(x) = -3x + 1$ 6. $q(x) = 2x + 5$
7. $q(x) = 5x^2 + 4x + 11$; $r(x) = 33$ 8. $q(x) = x^3 - 10x^2 + 51x - 260$; $r(x) = 1300$
9. $q(x) = x^6 - 2x^5 + 5x^4 - 10x^3 + 10x^2 - 20x + 40$; $r(x) = -68$ 10. $q(x) = x^3 + 4x^2 + 16x + 64$
11. $q(x) = x^4 - x^2 + x + 1$; $r(x) = 3$ 12. -27 13. -4 14. 1 15. $\frac{7}{9}$
16. $x^2 - 5x + 6$; $x = -1, 2, 3$ 17. $\left\{-\frac{1}{2}, 1, 2\right\}$ 18. $\left\{-\frac{3}{2}, -\frac{1}{3}, \frac{1}{2}\right\}$

5.3 Roots of Polynomial Equations

In this section you will learn to:

- find zeros of polynomial equations
- solve polynomial equations with real and imaginary zeros
- find possible rational roots of polynomial equations
- understand properties of polynomial equatins
- use the Linear Factorization Theorem

Zeros of Polynomial Functions are the values of *x* for which f(x) = 0. (Zero = Root = Solution = *x*-intercept (if the zero is a real number))

Example 1: Consider the polynomial that only has 3 and $\frac{1}{2}$ as zeros.

- (a) How many polynomials have such zeros?
- (b) Find a polynomial that has a leading coefficient of 1 that has such zeros.
- (c) Find a polynomial, with integer coefficients, that has such zeros.

If the same factor (x - r) occurs k times, then the zero r is called a zero with **multiplicity** k. **Even Multiplicity** \rightarrow Graph **touches** x-axis and turns around. **Odd Multiplicity** \rightarrow Graph **crosses** x-axis.

Example 2: Find all of the (real) zeros for each of the polynomial functions below. Give the multiplicity of each zero and state whether the graph crosses the *x*-axis or touches (and turns at) the *x*-axis at each zero. Use this information and the Leading Coefficient Test to sketch a graph of each function

(a)
$$f(x) = x^3 + 2x^2 - 4x - 8$$
 (b) $f(x) = -x^4 + 4x^2$ (c) $g(x) = -x^4 + 4x^3 - 4x^2$

The Rational Zero Theorem: If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ has *integer* coefficients and $\frac{p}{q}$ (reduced to lowest terms) is a rational zero of f, then p is a factor of the constant term, a_0 , and q is a factor of the leading coefficient, a_n .

Example 3: List all **possible** rational zeros of the polynomials below. (Refer to Rational Zero Theorem on

Page 1 of this handout.)

(a) $f(x) = -x^5 + 7x^2 - 12$ Possible Rational Zeros:

(b) $p(x) = 6x^3 - 8x^2 - 8x + 8$ Possible Rational Zeros:

Example 4: Find all zeros of $f(x) = 2x^3 - 5x^2 + x + 2$.

Example 5: Solve $x^4 - 8x^3 + 64x - 105 = 0$.

Linear Factorization Theorem:

If
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
, where $n \ge 1$ and $a_n \ne 0$, then
 $f(x) = a_n (x - c_1)(x - c_2) \dots + (x - c_n)$, where $c_1, c_2, c_3, \dots, c_n$ are complex numbers.

Example 6: Find all complex zeros of $f(x) = 2x^4 + 3x^3 + 3x - 2$, and then write the polynomial f(x) as a **product of linear factors**.

f(x) =_____

Properties of Polynomial Equations:

Given the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$.

- 1. If a polynomial equation is of degree *n*, then counting multiple roots (multiplicities) separately, the equation has *n* roots.
- 2. If a + bi is a root of a polynomial equation ($b \neq 0$), then the imaginary number a bi is also a root. In other words, imaginary roots, if they exist, occur in **conjugate pairs**.

Example 7: Find all zeros of $f(x) = x^4 - 4x^2 - 5$. (Hint: Use factoring techniques from Chapter 1.) Write f(x) as a product of linear factors.

f(x) =_____

- **Example 8:** Find a third-degree polynomial function, f(x), with real coefficients that has 4 and 2*i* as zeros and such that f(-1) = 50.
 - Step 1: Use the zeros to find the factors of f(x).
 - Step 2: Write as a linear factorization, then expand/multiply.

Step 3: Use f(-1) = 50 to substitute values for x and f(x).

- Step 4: Solve for a_n .
- Step 5: Substitute a_n into the equation for f(x) and simplify.

Step 6: Use your calculator to check.

5.3 Homework Problems:

For Problems 1 - 4, use the Rational Zero Theorem to list all possible rational zeros for each function.

1.
$$f(x) = x^3 + 3x^2 - 6x - 8$$

2. $f(x) = 2x^4 + 3x^3 - 11x^2 - 9x + 15$
3. $f(x) = 3x^4 - 11x^3 - 3x^2 - 6x + 8$
4. $f(x) = 4x^5 - 8x^4 - x + 2$

For Problems 5 - 8, find the zeros for the given functions.

5.
$$f(x) = x^3 - 2x^2 - 11x + 12$$

6. $f(x) = 2x^3 - 5x^2 + x + 2$
7. $f(x) = 2x^3 + x^2 - 3x + 1$
8. $f(x) = x^3 - 4x^2 + 8x - 5$

For Problems 9 - 12, solve each of the given equations.

- 9. $x^3 2x^2 7x 4 = 0$ 10. $x^3 - 5x^2 + 17x - 13 = 0$ 11. $2x^3 - 5x^2 - 6x + 4 = 0$ 12. $x^4 - 2x^2 - 16x - 15 = 0$
- 11. $2x^3 5x^2 6x + 4 = 0$ 12. $x^4 - 2x^2 - 16x - 15 = 0$

For Problems 13-16, find an *nth* degree polynomial function, f(x), with real coefficients that satisfies the given conditions.

13. n = 3; 1 and 5*i* are zeros; f(-1) = -10414. n = 4; 2, -2, and *i* are zeros; f(3) = -15015. n = 3; 6 and -5 + 2i are zeros; f(2) = -63616. n = 4; *i* and 3*i* are zeros; f(-1) = 20

5.3 Homework Answers: 1. $\pm 1, \pm 2, \pm 4, \pm 8$ 2. $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}$ 3. $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}$ 4. $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{4}$ 5. -3, 1, 4 6. $-\frac{1}{2}, 1, 2$ 7. $\frac{1}{2}, \frac{-1\pm\sqrt{5}}{2}$ 8. $1, \frac{3\pm i\sqrt{11}}{2}$ 9. $\{-1, 4\}$ 10. $\{1, 2\pm 3i\}$ 11. $\{\frac{1}{2}, 1\pm\sqrt{5}\}$ 12. $\{-1, 3, -1\pm 2i\}$ 13. $f(x) = 2x^3 - 2x^2 + 50x - 50$ 14. $f(x) = -3x^4 + 9x^2 + 12$ 15. $f(x) = 3x^3 + 12x^2 - 93x - 522$ 16. $f(x) = x^4 + 10x^2 + 9$

Page 5 (Section 5.3)