5.1 The Remainder and Factor Theorems; Synthetic Division

In this section you will learn to:

- understand the definition of a zero of a polynomial function
- use long and synthetic division to divide polynomials
- use the remainder theorem
- use the factor theorem

Example 1: Use long division to find the quotient and the remainder:

Steps for Long Division:

1.
2.
3.
4.

Example 2: Use the "Steps for Long Division" to divide each of the polynomials below.

$$
x - 5 \longdiv { x ^ { 2 } - 2 x - 3 5 } \quad (7 - 1 1 x - 3 x ^ { 2 } + 2 x ^ { 3 }) \div (x - 3)
$$

Example 3: Check your answer for the division problems in Example 2.

The Division Algorithm: If $f(x)$ and $d(x)$ are polynomials where $d(x) \neq 0$ and degree $d(x)<$ degree $f(x)$, then

$$
f(x)=d(x) \cdot q(x)+r(x)
$$

If $r(x)=0$ then $d(x)$ and $q(x)$ are factors of $f(x)$.

Example 4: Perform the operation below. Write the remainder as a rational expression (remainder/divisor).

$$
\frac{2 x^{5}-8 x^{4}+2 x^{3}+x^{2}}{2 x^{3}+1}
$$

Synthetic Division - Generally used for "short" division of polynomials when the divisor is in the form $\boldsymbol{x}-\boldsymbol{c}$. (Refer to page 506 in your textbook for more examples.)

Example 5: Use both long and short (synthetic) division to find the quotient and remainder for the problem below.

$$
\left(2 x^{3}-11 x+7\right) \div(x-3)
$$

Example 6: Divide $\frac{x^{3}+8}{x+2}$ using synthetic division.

Example 7: Factor $x^{3}+8$ over the real numbers. (Hint: Refer to Example 6.)

Remainder Theorem	Factor Theorem
If the polynomial $f(x)$ is divided by $(x-c)$, then the remainder is $f(c)$.	Let $f(x)$ be a polynomial. If $f(c)=0$, then $(x-c)$ is a factor of $f(x)$. If $(x-c)$ is a factor of $f(x)$, then $f(c)=0$. If $(x-c)$ is a factor of $f(x)$ or if $f(c)=0$, then \boldsymbol{c} is called a zero of $f(x)$.

Example 8: $f(x)=3 x^{3}+4 x^{2}-5 x+7$. Find $f(-4)$ using
(a) synthetic division.
(b) the Remainder Theorem.

Example 9: Solve the equation $2 x^{3}-3 x^{2}-11 x+6=0$ given that -2 is a zero of $f(x)=2 x^{3}-3 x^{2}-11 x+6$.

5.1 Homework Problems:

For Problems 1-5, use long division to find each quotient, $q(x)$, and remainder, $r(x)$.

1. $\left(x^{2}-2 x-15\right) \div(x-5)$
2. $\left(x^{3}+5 x^{2}+7 x+2\right) \div(x+2)$
3. $\left(6 x^{3}+7 x^{2}+12 x-5\right) \div(3 x-1)$
4. $\frac{x^{4}-81}{x-3}$
5. $\frac{18 x^{4}+9 x^{3}+3 x^{2}}{3 x^{2}+1}$

For Problems 6 - 11, divide using synthetic division.
6. $\left(2 x^{2}+x-10\right) \div(x-2)$
7. $\left(5 x^{3}-6 x^{2}+3 x+11\right) \div(x-2)$
8. $\left(x^{2}-5 x-5 x^{3}+x^{4}\right) \div(5+x)$
9. $\frac{x^{7}+x^{5}-10 x^{3}+12}{x+2}$
10. $\frac{x^{4}-256}{x-4}$
11. $\frac{x^{5}-2 x^{4}-x^{3}+3 x^{2}-x+1}{x-2}$

For Problems 12 - 16, use synthetic division and the Remainder Theorem to find the indicated function value.
12. $f(x)=x^{3}-7 x^{2}+5 x-6 ; f(3)$
13. $f(x)=4 x^{3}+5 x^{2}-6 x-4 ; f(-2)$
14. $f(x)=2 x^{4}-5 x^{3}-x^{2}+3 x+2 ; f\left(-\frac{1}{2}\right)$
15. $f(x)=6 x^{4}+10 x^{3}+5 x^{2}+x+1 ; f\left(-\frac{2}{3}\right)$
16. Use synthetic division to divide $f(x)=x^{3}-4 x^{2}+x+6$ by $x+1$. Use the result to find all zeros of f.
17. Solve the equation $2 x^{3}-5 x^{2}+x+2=0$ given that 2 is a zero of $f(x)=2 x^{3}-5 x^{2}+x+2$.
18. Solve the equation $12 x^{3}+16 x^{2}-5 x-3=0$ given that $-\frac{3}{2}$ is a zero (root).
5.1 Homework Answers: 1. $q(x)=x+3$ 2. $q(x)=x^{2}+3 x+1$ 3. $q(x)=2 x^{2}+3 x+5$
4. $q(x)=x^{3}+3 x^{2}+9 x+27 \quad$ 5. $q(x)=6 x^{2}+3 x-1 ; ~ r(x)=-3 x+1 \quad$ 6. $q(x)=2 x+5$
7. $q(x)=5 x^{2}+4 x+11 ; \quad r(x)=33$ 8. $q(x)=x^{3}-10 x^{2}+51 x-260 ; \quad r(x)=1300$
9. $q(x)=x^{6}-2 x^{5}+5 x^{4}-10 x^{3}+10 x^{2}-20 x+40 ; \quad r(x)=-68$
10. $q(x)=x^{3}+4 x^{2}+16 x+64$
11. $q(x)=x^{4}-x^{2}+x+1 ; \quad r(x)=3$
12. -27
13. -4
14. 1
15. $\frac{7}{9}$
16. $x^{2}-5 x+6 ; \quad x=-1,2,3$
17. $\left\{-\frac{1}{2}, 1,2\right\}$
18. $\left\{-\frac{3}{2},-\frac{1}{3}, \frac{1}{2}\right\}$

5.3 Roots of Polynomial Equations

In this section you will learn to:

- find zeros of polynomial equations
- solve polynomial equations with real and imaginary zeros
- find possible rational roots of polynomial equations
- understand properties of polynomial equatins
- use the Linear Factorization Theorem

Zeros of Polynomial Functions are the values of x for which $f(x)=0$.
$($ Zero $=$ Root $=$ Solution $=x$-intercept $($ if the zero is a real number $))$
Example 1: Consider the polynomial that only has 3 and $1 / 2$ as zeros.
(a) How many polynomials have such zeros?
(b) Find a polynomial that has a leading
coefficient of 1 that has such zeros.
(c) Find a polynomial, with integer coefficients, that has such zeros.

If the same factor $(x-r)$ occurs k times, then the zero r is called a zero with multiplicity \boldsymbol{k}.
Even Multiplicity \rightarrow Graph touches x-axis and turns around.
Odd Multiplicity \rightarrow Graph crosses x-axis.

Example 2: Find all of the (real) zeros for each of the polynomial functions below. Give the multiplicity of each zero and state whether the graph crosses the x-axis or touches (and turns at) the x-axis at each zero. Use this information and the Leading Coefficient Test to sketch a graph of each function
(a) $f(x)=x^{3}+2 x^{2}-4 x-8$
(b) $f(x)=-x^{4}+4 x^{2}$
(c) $g(x)=-x^{4}+4 x^{3}-4 x^{2}$

The Rational Zero Theorem: If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{2} x^{2}+a_{1} x+a_{0}$ has integer coefficients and $\frac{p}{q}$ (reduced to lowest terms) is a rational zero of f, then p is a factor of the constant term, a_{0}, and q is a factor of the leading coefficient, a_{n}.

Example 3: List all possible rational zeros of the polynomials below. (Refer to Rational Zero Theorem on

$$
\text { Page } 1 \text { of this handout.) }
$$

(a) $f(x)=-x^{5}+7 x^{2}-12 \quad$ Possible Rational Zeros \qquad
(b) $p(x)=6 x^{3}-8 x^{2}-8 x+8 \quad$ Possible Rational Zeros: \qquad

Example 4: Find all zeros of $f(x)=2 x^{3}-5 x^{2}+x+2$.

Example 5: Solve $x^{4}-8 x^{3}+64 x-105=0$.

Linear Factorization Theorem:

If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{2} x^{2}+a_{1} x+a_{0}$, where $\mathrm{n} \geq 1$ and $\mathrm{a}_{\mathrm{n}} \neq 0$, then $f(x)=a_{n}\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{n}\right)$, where $c_{1}, c_{2}, c_{3}, \ldots c_{n}$ are complex numbers.

Example 6: Find all complex zeros of $f(x)=2 x^{4}+3 x^{3}+3 x-2$, and then write the polynomial $f(x)$ as a product of linear factors.

$$
f(x)=
$$

\qquad

Properties of Polynomial Equations:

Given the polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{2} x^{2}+a_{1} x+a_{0}$.

1. If a polynomial equation is of degree n, then counting multiple roots (multiplicities) separately, the equation has n roots.
2. If $a+b i$ is a root of a polynomial equation $(b \neq 0)$, then the imaginary number $a-b i$ is also a root. In other words, imaginary roots, if they exist, occur in conjugate pairs.

Example 7: Find all zeros of $f(x)=x^{4}-4 x^{2}-5$. (Hint: Use factoring techniques from Chapter 1.) Write $f(x)$ as a product of linear factors.

$$
f(x)=
$$

\qquad

Example 8: Find a third-degree polynomial function, $f(x)$, with real coefficients that has 4 and $2 i$ as zeros and such that $f(-1)=50$.

Step 1: Use the zeros to find the factors of $f(x)$.

Step 2: Write as a linear factorization, then expand/multiply.

Step 3: Use $f(-1)=50$ to substitute values for x and $f(x)$.

Step 4: Solve for a_{n}.

Step 5: Substitute a_{n} into the equation for $f(x)$ and simplify.

Step 6: Use your calculator to check.

5.3 Homework Problems:

For Problems 1-4, use the Rational Zero Theorem to list all possible rational zeros for each function.

1. $f(x)=x^{3}+3 x^{2}-6 x-8$
2. $f(x)=2 x^{4}+3 x^{3}-11 x^{2}-9 x+15$
3. $f(x)=3 x^{4}-11 x^{3}-3 x^{2}-6 x+8$
4. $f(x)=4 x^{5}-8 x^{4}-x+2$

For Problems 5-8, find the zeros for the given functions.
5. $f(x)=x^{3}-2 x^{2}-11 x+12$
6. $f(x)=2 x^{3}-5 x^{2}+x+2$
7. $f(x)=2 x^{3}+x^{2}-3 x+1$
8. $f(x)=x^{3}-4 x^{2}+8 x-5$

For Problems $9-12$, solve each of the given equations.
9. $x^{3}-2 x^{2}-7 x-4=0$
10. $x^{3}-5 x^{2}+17 x-13=0$
11. $2 x^{3}-5 x^{2}-6 x+4=0$
12. $x^{4}-2 x^{2}-16 x-15=0$

For Problems 13-16, find an $n t h$ degree polynomial function, $f(x)$, with real coefficients that satisfies the given conditions.
13. $n=3 ; 1$ and 5i are zeros; $f(-1)=-104$
15. $n=3 ; 6$ and $-5+2 i$ are zeros; $f(2)=-636$
16. $n=4 ; i$ and $3 i$ are zeros; $f(-1)=20$
5.3 Homework Answers: 1. $\pm 1, \pm 2, \pm 4, \pm 8$ 2. $\pm 1, \pm 3, \pm 5, \pm 15, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}$
3. $\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{2}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}$
4. $\pm 1, \pm 2, \pm \frac{1}{2}, \pm \frac{1}{4}$
5. $-3,1,4$
6. $-\frac{1}{2}, 1,2$
7. $\frac{1}{2}, \frac{-1 \pm \sqrt{5}}{2}$
8. $1, \frac{3 \pm i \sqrt{11}}{2}$
9. $\{-1,4\}$
10. $\{1,2 \pm 3 i\}$
11. $\left\{\frac{1}{2}, 1 \pm \sqrt{5}\right\}$
12. $\{-1,3,-1 \pm 2 i\}$
13. $f(x)=2 x^{3}-2 x^{2}+50 x-50$
14. $f(x)=-3 x^{4}+9 x^{2}+12$
15. $f(x)=3 x^{3}+12 x^{2}-93 x-522$
16. $f(x)=x^{4}+10 x^{2}+9$

