
Selected Solutions to Homework # 11

• #2 in 11.6: Find the equation of a tangent plane and the equation of
a normal line to the surface

x2 + y2 − z2 = 18

at the point P (3, 5,−4).

Let f = x2+y2−z2. Then the surface is a level surface of f . Therefore,
the gradient of f at P is normal to the surface. We compute this vector:

∇f = 〈2x, 2y,−2z〉; ∇f(P ) = 〈6, 10, 8〉.

The tangent plane at P has equation

6(x− 3) + 10(y − 5) + 8(z + 4) = 0.

The normal line at P is described by the parametric equations:

x = 3 + 6t, y = 5 + 10t, z = −4 + 8t.

• # 18 in 11.6: Find parametric equations for the line tangent to the
curve given by the intersection of the surfaces

x2 + y2 = 4 and x2 + y2 − z = 0

at the point P (
√

2,
√

2, 4).

The idea is to compute two normal vectors, and then compute their
cross product to produce a vector which is tangent to both surfaces
and, hence, tangent to their intersection.

Let f = x2 + y2, and g = x2 + y2 − z. Compute their gradients and
evaulate at P :

∇f(P ) = 〈2
√

2, 2
√

2, 0〉, ∇g(P ) = 〈2
√

2, 2
√

2,−1〉.

The cross product of these two vectors is (±2
√

2)〈1,−1, 0〉 Thus, the
following are parametric equations for the tangent line:

x =
√

2 + 2
√

2t, y =
√

2− 2
√

2t, z = 0.
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• Estimate how much f = ex cos (yz) will change as the point P moves
from the origin a distance ds = 0.1 in the direction of 2i + 2j− 2k.

We compute the differential using df = ∇f · u · ds (see p. 629):

(ex cos (yz)i− zex sin (yz)j− yex sin (yz)k) · (i + j− k)(
1

2
√

2
)(0.1)

Plugging in the origin (0, 0, 0), we have

df = i · (i + j− k)
1

20
√

2
=

1
20
√

2

• # 32 in 11.6: Find the linearization of

f = (1/2)x2 + xy + (1/4)y2 + 3x− 3y + 4

at P (2, 2). Then find an upper bound for the error in the linear ap-
proximation.

We compute the partial derivatives:

fx = x + y + 3, fy = x + (1/2)y − 3.

The linearization is

f(2, 2) + fx(2, 2)(x− 2) + fy(2, 2)(y − 2) = 11 + 7(x− 2) + 0.

The error in using the linearization to estimate values in the rectangle
R (given in the problem as |x − 2| ≤ 0.1, |y − 2| ≤ 0.1) is bounded
by the maximum value of the 2nd partial derivatives of f over R. We
compute the 2nd derivatives:

fxx = 1, , fxy = 1, fyy = 1/2.

Thus, the error is less than or equal to (1/2)M(|x−2|+ |y−2|)2. Since
we have just seen that M = 1 is sufficient. The error is less than or
equal to (1/2)(1)(.1 + .1)2 = 0.02.

• # 48 in 11.6. Around (1, 0) is f = x2(y + 1) more sensitive to changes
in x or changes in y? What ratio of dx to dy will make df equal to
zero at (1, 0)?

We can estimate the sensitivity to small changes in x and y by looking
at the differential. The differential df is an estimate of the change in
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f , and it, in turn, is expressed in terms of the small changes dx and
dy. We compute

df = 2x(y + 1) dx + x2 dy.

At (1, 0) we have df = 4dx + dy. Thus, a small change in x has
approximately four times the effect as a small change in y.

(Note: You should be careful to say “approximately” and stipulate
that this estimate only holds for x and y which are sufficiently close
to (1, 0). The meaning of “sufficiently close” can be quantified by
bouding the error as in the previous problem.)

We can see from the above calculation that if the ratio of dx to dy is
−1/4, then df = 0.
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