
Solutions to Homework 9

Section 12.7 # 12: Let D be the region bounded below by the cone
z =

√
x2 + y2 and above by the paraboloid z = 2− x2 − y2. Setup

integrals in cylindrical coordinates which compute the volume of D.

Solution:

The intersection of the paraboloid and the cone is a circle. Since
z = 2− x2 − y2 = 2− r2 and z =

√
x2 + y2 = r (assuming r is

non-negative), 2− r2 = r, which implies that
r2 + r − 2 = (r + 2)(r − 1) = 0. Since r ≥ 0, r = 1. Therefore, z = 1. So,
the intersection of these surfaces is a circle of radius 1 in the plane z = 1.

(a) Use dV = r dz dr dθ.

The cone is the lower bound for z and the paraboloid is the upper bound
for z, as is clear from a sketch of the figure. The projection (i.e. the
shadow) of the region onto the xy-plane is the circle of radius 1 centered at
the origin. Therefore,

∫∫∫
D
dV =

∫ 2π

0

∫ 1

0

∫ 2−r2

r
r dz dr dθ.

(b) Use dV = r dr dz dθ.

The region is not simple in the r-direction. The lower bound for r is zero,
but the upper bound is sometimes the cone z = r and sometimes the
paraboloid z = 2− r2. The plane z = 1 divides D into two r-simple
regions. Therefore,∫∫∫

D
dV =

∫ 2π

0

∫ 1

0

∫ z

0
r dr dz dθ +

∫ 2π

0

∫ 2

1

∫ √2−z

0
r dr dz dθ.

(c) Use dV = r dθ dz dr.

There is no restriction on θ as this region is rotationally symmetric.
However, z is still constrained by the cone and the parabola. Therefore,∫∫∫

D
dV =

∫ 1

0

∫ 2−r2

r

∫ 2π

0
r dθ dz dr.



Section 12.7 # 18: Let D be the region enclosed by the cylinders r = cos θ
and r = 2 cos θ and by the planes z = 0 and z = 3− y. Set up an iterated
integral which computes

∫∫∫
D f(r, θ, z) dz r dr dθ.

Solution: Since 0 ≤ z ≤ 3− y, it follows that 0 ≤ z ≤ 3− r sin θ in
cylindrical coordinates. The projection of D onto the xy-plane is the region
between the circles given in polar coordinates by r = cos θ and r = 2 cos θ.
The first circle is inside the second, and these two circles intersect when
θ = −π/2, π/2. This can be seen from a sketch or by solving the equation
cos θ = 2 cos θ; gather like terms to obtain 0 = cos θ. Therefore,∫∫∫

D
f(r, θ, z) dV =

∫ π/2

−π/2

∫ 2 cos θ

cos θ

∫ 3−r sin θ

0
f(r, θ, z) r dz dr dθ.

Note: You cannot double the integral and integtrate over 0 ≤ θ ≤ π/2.
Doubling is only permissible if the function f(r, θ, z) is even with respect
to the variable θ.

Section 12.7 # 32:a Let D be the region bounded below by the cone
z =

√
x2 + y2 and above by the plane z = 1. Set up triple integrals which

compute the volume of D.

Solution:

(a) Use dV = ρ2 sinφdρ dφ dθ.

If the point P lies in the region D, then varying its ρ-coordinate keeps P
inside D so long as 0 ≤ ρ ≤ secφ. The upper bound is determined by the
plane z = 1, which has equation z = ρ cosφ = 1 in spherical coordinates;
solving for ρ yields ρ = secφ.

Ignoring ρ (projecting onto ρ = 1 for instance), one see that the variable φ
varies from 0 to π/4. Finally, since the figure is rotationlly symmetric, θ
varies from 0 to 2π. Therefore,∫∫∫

D
dV =

∫ 2π

0

∫ π/4

0

∫ secφ

0
ρ2 sinφdρ dφ dθ.

(b) Use dV = ρ2 sinφdφ dρ dθ.

This integral is tricky to set up. If P lies in the region D, then varying its
φ-coordinate keeps P inside D so long as either its distance from the origin



is less than or equal to one and 0 ≤ φ ≤ π/4, or its distance from the origin
is greater than or equal to one and its φ-coordinate is bounded below by
the restriction that z = 1 and above by π/4. In other words, this region is
not φ-simple: two integrals are required. For the second integral, the
condition z = 1 implies that ρ cosφ = 1 so that sec−1 ρ ≤ φ ≤ π/4.
Ignoring, φ, then the z coordinate can vary from 1 to

√
2; the upper bound

is determined by the maximum distance from the origin to a point inside
the region D, which is realized by a point which lies on the intersection of
the cone with the plane z = 1.

The above shows that∫∫∫
D
dV =

∫ 2π

0

∫ 1

0

∫ π/4

0
ρ2 sinφdφ dρ dθ+

∫ 2π

0

∫ √2

1

∫ π/4

sec−1 (ρ)
ρ2 sinφdφ dρ dθ.

Section 12.7 # 34: Set up an integral in spherical coordinates which
computes the volume of the region bounded below by the hemisphere
ρ = 1, z ≥ 0, and above by the cardioid of revolution ρ = 1 + cosφ. Then
compute the value of the integral.

Solution: Clearly 1 ≤ z ≤ 1 + cosφ. A careful sketch of the figure reveals
that 0 ≤ φ ≤ π/2. This can also be determined algebraically. The cardioid
and the hemisphere meet when 1 = 1 + cosφ, which implies that cosφ = 0.
Thus, ∫∫∫

D
dV =

∫ 2π

0

∫ π/2

0

∫ 1+cosφ

1
ρ2 sinφdρ dφ dθ

The innermost integral evaluates to

(1 + cosφ)3

3
sinφ− sinφ

3
.

An anti-derivative with respect to φ can be determined for the first
summand by using the substitution u = 1 + cosφ, du = − sinφdφ. The
second summand is easy to integrate. Answer: 11π/6.

Section 12.8 # 2: Solve the system u = x+ 2y, v = x− y in terms of x and
y and compute the Jacobian determinant ∂(x, y)/∂(u, v). Then sketch the
image under the transformation T (x, y) = (u, v) of the triangular region in
the xy-plane bounded by the lines y = 0, y = x, and x+ 2y = 2.



Solution: Solving the system for x and y results in x = (1/3)(u+ 2v) and
y = (1/3)(u− v). The transformed region is a triangle bounded by the line
v = 0 (which corresponds to x = y), the line u = 2 (which corresponds to
x+ 2y = 2), and the line u = v (which corresponds to y = 0). The
Jacobian determinant is equal to −1/3.

Section 12.8 # 4: Solve the system u = 2x− 3y, v = −x+ y in terms of x
and y and compute the Jacobian determinant ∂(x, y)/∂(u, v). Then sketch
the image under the transformation T (x, y) = (u, v) of the parallelogram in
the xy-plane with boundary lines x = −3, x = 0, y = x, and y = x+ 1.

Solution: Solving the system for x and y results in x = −u− 3v and
y = −u− 2v. The transformed region is again a parallelogram. It is
bounded by the line v = 0 (corresponding to y = x), the line v = 1
(corresponding to y = x+ 1), the line u+ 3v = 3 (corresponding to
x = −3), and the line u+ 3v = 0 (corresponding to x = 0). The Jacobian
determinant is equal to −1.

Section 12.8 # 17: Show that the Jacobian determinant of the
transformation from Cartesian (ρ, φ, θ)-space to Cartesian (x, y, z)-space is
ρ2 sinφ.

Solution: The equations x = ρ sinφ cos θ, y = ρ sinφ sin θ, and z = ρ cosφ
define a transformation from (ρ, φ, θ) into (x, y, z). The Jacobian matrix is
equal to sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ

sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ
cosφ −ρ sinφ 0


The determinant of the above matrix is most easily computed by using the
last row since one of the terms is equal to zero. The Jacobian determinant
is equal to

cosφ
∣∣∣∣ρ cosφ cos θ −ρ sinφ sin θ
ρ cosφ sin θ ρ sinφ cos θ

∣∣∣∣+(−1)(−ρ sinφ)
∣∣∣∣sinφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ sinφ cos θ

∣∣∣∣
From here, evaluate the 2× 2 determinants and simplify by gathering terms
so as to apply cos2 θ + sin2 θ = 1 (twice) and cos2 φ+ sin2 φ = 1 (once).



(Bonus) Compute the determinant of the following square tri-diagonal
matrix assuming that the matrix has has 2012 rows:



1 1 0 0 0 . . .
1 1 1 0 0 . . .
0 1 1 1 0 . . .
0 0 1 1 1

0 0 0 1 1
. . .

...
...

...
. . . . . .


Clarification: the matrix has 1’s along each of the middle three diagonals,
and 0’s in all other entries.

Solution: Let An be the tridiagonal matrix with n rows, and let An(i, j) be
the (i, j) minor. Computing the cofactors of the first row, one obtains

detAn = detAn(1, 1)− detAn(1, 2) = detAn−1 − detAn(1, 2)

To compute the determinant of An(1, 2), compute the cofactors of its first
column:

detAn(1, 2) = detAn−2

Therefore, detAn = detAn−1 − detAn−2. Since, detA1 = 1, detA2 = 0,
the sequence {detAn} is for n ≥ 1 is equal to the following:

1, 0,−1,−1, 0, 1, 1, 0, . . . ,

which is periodic with period of length 6 and one period is equal to
1, 0,−1,−1, 0, 1. Since 2012 ≡ 2 mod 6, one deduces that detA2012 = 0.


