Solutions to Homework 9

Section $12.7 \# 12$: Let D be the region bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the paraboloid $z=2-x^{2}-y^{2}$. Setup integrals in cylindrical coordinates which compute the volume of D.

Solution:
The intersection of the paraboloid and the cone is a circle. Since $z=2-x^{2}-y^{2}=2-r^{2}$ and $z=\sqrt{x^{2}+y^{2}}=r$ (assuming r is non-negative), $2-r^{2}=r$, which implies that $r^{2}+r-2=(r+2)(r-1)=0$. Since $r \geq 0, r=1$. Therefore, $z=1$. So, the intersection of these surfaces is a circle of radius 1 in the plane $z=1$.
(a) Use $d V=r d z d r d \theta$.

The cone is the lower bound for z and the paraboloid is the upper bound for z, as is clear from a sketch of the figure. The projection (i.e. the shadow) of the region onto the $x y$-plane is the circle of radius 1 centered at the origin. Therefore,

$$
\iiint_{D} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{2-r^{2}} r d z d r d \theta
$$

(b) Use $d V=r d r d z d \theta$.

The region is not simple in the r-direction. The lower bound for r is zero, but the upper bound is sometimes the cone $z=r$ and sometimes the paraboloid $z=2-r^{2}$. The plane $z=1$ divides D into two r-simple regions. Therefore,

$$
\iiint_{D} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{z} r d r d z d \theta+\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{\sqrt{2-z}} r d r d z d \theta
$$

(c) Use $d V=r d \theta d z d r$.

There is no restriction on θ as this region is rotationally symmetric. However, z is still constrained by the cone and the parabola. Therefore,

$$
\iiint_{D} d V=\int_{0}^{1} \int_{r}^{2-r^{2}} \int_{0}^{2 \pi} r d \theta d z d r
$$

Section $12.7 \#$ 18: Let D be the region enclosed by the cylinders $r=\cos \theta$ and $r=2 \cos \theta$ and by the planes $z=0$ and $z=3-y$. Set up an iterated integral which computes $\iiint_{D} f(r, \theta, z) d z r d r d \theta$.

Solution: Since $0 \leq z \leq 3-y$, it follows that $0 \leq z \leq 3-r \sin \theta$ in cylindrical coordinates. The projection of D onto the $x y$-plane is the region between the circles given in polar coordinates by $r=\cos \theta$ and $r=2 \cos \theta$. The first circle is inside the second, and these two circles intersect when $\theta=-\pi / 2, \pi / 2$. This can be seen from a sketch or by solving the equation $\cos \theta=2 \cos \theta$; gather like terms to obtain $0=\cos \theta$. Therefore,

$$
\iiint_{D} f(r, \theta, z) d V=\int_{-\pi / 2}^{\pi / 2} \int_{\cos \theta}^{2 \cos \theta} \int_{0}^{3-r \sin \theta} f(r, \theta, z) r d z d r d \theta
$$

Note: You cannot double the integral and integtrate over $0 \leq \theta \leq \pi / 2$. Doubling is only permissible if the function $f(r, \theta, z)$ is even with respect to the variable θ.

Section $12.7 \# 32:$ a Let D be the region bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the plane $z=1$. Set up triple integrals which compute the volume of D.

Solution:
(a) Use $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$.

If the point P lies in the region D, then varying its ρ-coordinate keeps P inside D so long as $0 \leq \rho \leq \sec \phi$. The upper bound is determined by the plane $z=1$, which has equation $z=\rho \cos \phi=1$ in spherical coordinates; solving for ρ yields $\rho=\sec \phi$.

Ignoring ρ (projecting onto $\rho=1$ for instance), one see that the variable ϕ varies from 0 to $\pi / 4$. Finally, since the figure is rotationlly symmetric, θ varies from 0 to 2π. Therefore,

$$
\iiint_{D} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\sec \phi} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(b) Use $d V=\rho^{2} \sin \phi d \phi d \rho d \theta$.

This integral is tricky to set up. If P lies in the region D, then varying its ϕ-coordinate keeps P inside D so long as either its distance from the origin
is less than or equal to one and $0 \leq \phi \leq \pi / 4$, or its distance from the origin is greater than or equal to one and its ϕ-coordinate is bounded below by the restriction that $z=1$ and above by $\pi / 4$. In other words, this region is not ϕ-simple: two integrals are required. For the second integral, the condition $z=1$ implies that $\rho \cos \phi=1$ so that $\sec ^{-1} \rho \leq \phi \leq \pi / 4$.
Ignoring, ϕ, then the z coordinate can vary from 1 to $\sqrt{2}$; the upper bound is determined by the maximum distance from the origin to a point inside the region D, which is realized by a point which lies on the intersection of the cone with the plane $z=1$.

The above shows that

$$
\iiint_{D} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{\pi / 4} \rho^{2} \sin \phi d \phi d \rho d \theta+\int_{0}^{2 \pi} \int_{1}^{\sqrt{2}} \int_{\sec ^{-1}(\rho)}^{\pi / 4} \rho^{2} \sin \phi d \phi d \rho d \theta
$$

Section $12.7 \# 34$: Set up an integral in spherical coordinates which computes the volume of the region bounded below by the hemisphere $\rho=1, z \geq 0$, and above by the cardioid of revolution $\rho=1+\cos \phi$. Then compute the value of the integral.

Solution: Clearly $1 \leq z \leq 1+\cos \phi$. A careful sketch of the figure reveals that $0 \leq \phi \leq \pi / 2$. This can also be determined algebraically. The cardioid and the hemisphere meet when $1=1+\cos \phi$, which implies that $\cos \phi=0$. Thus,

$$
\iiint_{D} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{1}^{1+\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

The innermost integral evaluates to

$$
\frac{(1+\cos \phi)^{3}}{3} \sin \phi-\frac{\sin \phi}{3}
$$

An anti-derivative with respect to ϕ can be determined for the first summand by using the substitution $u=1+\cos \phi, d u=-\sin \phi d \phi$. The second summand is easy to integrate. Answer: $11 \pi / 6$.

Section $12.8 \# 2$: Solve the system $u=x+2 y, v=x-y$ in terms of x and y and compute the Jacobian determinant $\partial(x, y) / \partial(u, v)$. Then sketch the image under the transformation $T(x, y)=(u, v)$ of the triangular region in the $x y$-plane bounded by the lines $y=0, y=x$, and $x+2 y=2$.

Solution: Solving the system for x and y results in $x=(1 / 3)(u+2 v)$ and $y=(1 / 3)(u-v)$. The transformed region is a triangle bounded by the line $v=0$ (which corresponds to $x=y$), the line $u=2$ (which corresponds to $x+2 y=2$), and the line $u=v$ (which corresponds to $y=0$). The Jacobian determinant is equal to $-1 / 3$.

Section $12.8 \# 4$: Solve the system $u=2 x-3 y, v=-x+y$ in terms of x and y and compute the Jacobian determinant $\partial(x, y) / \partial(u, v)$. Then sketch the image under the transformation $T(x, y)=(u, v)$ of the parallelogram in the $x y$-plane with boundary lines $x=-3, x=0, y=x$, and $y=x+1$.

Solution: Solving the system for x and y results in $x=-u-3 v$ and $y=-u-2 v$. The transformed region is again a parallelogram. It is bounded by the line $v=0$ (corresponding to $y=x$), the line $v=1$ (corresponding to $y=x+1$), the line $u+3 v=3$ (corresponding to $x=-3$), and the line $u+3 v=0$ (corresponding to $x=0$). The Jacobian determinant is equal to -1 .

Section $12.8 \# 17$: Show that the Jacobian determinant of the transformation from Cartesian (ρ, ϕ, θ)-space to Cartesian (x, y, z)-space is $\rho^{2} \sin \phi$.

Solution: The equations $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$, and $z=\rho \cos \phi$ define a transformation from (ρ, ϕ, θ) into (x, y, z). The Jacobian matrix is equal to

$$
\left[\begin{array}{ccc}
\sin \phi \cos \theta & \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\
\sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\
\cos \phi & -\rho \sin \phi & 0
\end{array}\right]
$$

The determinant of the above matrix is most easily computed by using the last row since one of the terms is equal to zero. The Jacobian determinant is equal to
$\cos \phi\left|\begin{array}{cc}\rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta\end{array}\right|+(-1)(-\rho \sin \phi)\left|\begin{array}{cc}\sin \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \sin \phi \cos \theta\end{array}\right|$

From here, evaluate the 2×2 determinants and simplify by gathering terms so as to apply $\cos ^{2} \theta+\sin ^{2} \theta=1$ (twice) and $\cos ^{2} \phi+\sin ^{2} \phi=1$ (once).
(Bonus) Compute the determinant of the following square tri-diagonal matrix assuming that the matrix has has 2012 rows:

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & \ldots \\
1 & 1 & 1 & 0 & 0 & \ldots \\
0 & 1 & 1 & 1 & 0 & \ldots \\
0 & 0 & 1 & 1 & 1 & \\
0 & 0 & 0 & 1 & 1 & \ddots \\
\vdots & \vdots & \vdots & & \ddots & \ddots
\end{array}\right)
$$

Clarification: the matrix has 1's along each of the middle three diagonals, and 0 's in all other entries.

Solution: Let A_{n} be the tridiagonal matrix with n rows, and let $A_{n}(i, j)$ be the (i, j) minor. Computing the cofactors of the first row, one obtains

$$
\operatorname{det} A_{n}=\operatorname{det} A_{n}(1,1)-\operatorname{det} A_{n}(1,2)=\operatorname{det} A_{n-1}-\operatorname{det} A_{n}(1,2)
$$

To compute the determinant of $A_{n}(1,2)$, compute the cofactors of its first column:

$$
\operatorname{det} A_{n}(1,2)=\operatorname{det} A_{n-2}
$$

Therefore, $\operatorname{det} A_{n}=\operatorname{det} A_{n-1}-\operatorname{det} A_{n-2}$. Since, $\operatorname{det} A_{1}=1, \operatorname{det} A_{2}=0$, the sequence $\left\{\operatorname{det} A_{n}\right\}$ is for $n \geq 1$ is equal to the following:

$$
1,0,-1,-1,0,1,1,0, \ldots,
$$

which is periodic with period of length 6 and one period is equal to $1,0,-1,-1,0,1$. Since $2012 \equiv 2 \bmod 6$, one deduces that $\operatorname{det} A_{2012}=0$.

