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Abstract

The existence of a pullback attractor is established for a stochastic reaction—diffusion equation on all
n-dimensional space. The nonlinearity is dissipative for large values of the state and the stochastic nature of
the equation appears as spatially distributed temporal white noise. The reaction—diffusion equation is recast
as a random dynamical system and asymptotic compactness for this is demonstrated by using uniform
a priori estimates for far-field values of solutions.
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1. Introduction

In this paper we investigate the asymptotic behavior of solutions to the following stochastic
reaction—diffusion equation with additive noise defined in the entire space R":
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m
du+ (= Auydt = (f(x.u) +g(x))dt + Y _hjdw;, (1.1)
j=1

where A is a positive constant, g and k; (1 < j < m) are given functions defined on R", f is
a nonlinear function satisfying certain dissipative conditions, and w is a two-sided real-valued
Wiener process on %}iability space which will be specified later.

Stochastic differ equations of this type arise from many physical systems when ran-
dom spatio-temporal forcing is taken into account. These random perturbations are intrinsic
effects ay a variety of settings and spatial scales. They may be most obviously influential
at the microscopic and smaller scales but indirectly they play an important role in macro-
scopic phenomena. In order to capture the essential dynamics of random systems with wide
fluctuations, the concept of pullback random attractor was introduced in [15,17], being an ex-
tension to stochastic systems of the theory of attractors for deterministic equations found in
[5,20,26,29,32], for instance. The existence of such random attractors has been studied for
stochastic PDEs on bounded domains, see, e.g., [10,14,15,17] and the references therein, but
little is known for unbounded domains. Here we prove the existence of such random attrac-
tors for the stochastic reaction—diffusion equation (1.1) defined in R”. It is worth mention-
ing that, in the case of lattice systems defined on the entire integer set, the existence of a
random attractor was proved recently in [8] and the deterministic lattice case was treated
in [9].

Notice that the unboundedness of the domain introduces a major difficulty for proving the ex-
istence of an attractor because Sobolev embeddings are no longer compact and so the asymptotic
compactness of solutions cannot be obtained by the standard method. In the case of deterministic
equations, this difficulty can be overcome by the energy equation approach, introduced by Ball in
[6,7] and then employed by several authors to prove the asymptotic compactness of determinis-
tic equations in unbounded domains. This and related approaches may be found in, for example,
[11,18,19,21-23,28,34] and the references therein. In this paper, we provide uniform estimates
on the far-field values of solutions to circumvent the difficulty caused by the unboundedness of
the domain. This idea was developed in [33] to prove asymptotic compactness for the determinis-
tic version of (1.1) on R”, and later used in several other works, see, e.g., [1,2,4,24,25,27,30,31].
The main contribution of this paper is to extend the method of using tail estimates to the case
of stochastic dissipative PDEs, and prove the existence of a random attractor for the stochas-
tic reaction—diffusion equation (1.1) in particular, defined on the unbounded domain R”. It is
clear that our method can be used for a variety of other equations, as it was for the deterministic
case.

The paper is organized as follows. In the next section, we recall some fundamental results on
the existence of a pullback random attractor for random dynamical systems. In Section 3, we
transform (1.1) into a continuous random dynamical system. Section 4 is devoted to obtaining
uniform estimates of solutions as t — oo. These estimates are necessary for proving the existence
of bounded absorbing sets and the asymptotic compactness of the equation. In the last section, we
first establish the asymptotic compactness of the solution operator by giving uniform estimates
on the tails of solutions, and then prove the existence of a pullback random attractor.

We denote by || - || and (-,-) the norm and the inner product in L?(R™") and use || - || p to denote
the norm in L? (R"). Otherwise, the norm of a general Banach space X is written as || - || x. The
letters c and ¢; (i = 1,2,...) are generic positive constants which may change their values from
line to line or even in the same line.
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2. Preliminaries

We recall some basic concepts related to random attractors for stochastic dynamical systems.
The reader is referred to [3,8,14,17] for more details.

Let (X, || - |l x) be a separable Hilbert space with Borel o-algebra B(X), and let (2, F, P) be
a probability space.

Definition 2.1. (£2, F, P, (6;);cr) is called a metric dynamical system if 6 : R x £2 — £ is

(B(R) x F, F)-measurable, 6 is the identity on £2, 64, =6, 0 O for all s, e R and 6, P = P
forall t € R.

Definition 2.2. A continuous random dynamical system (RDS) on X over a metric dynamical
system (£2, F, P, (0s):cRr) 1S @ mapping

(l):RJr X2xX—>X, (towx)—¢(t ow,x),
which is (B(RT) x F x B(X), B(X))-measurable and satisfies, for P-a.e. w € £2,
(1) ¢(0,w, -) is the identity on X;
(i) ¢t +5,0,)=¢(, 00, op(s,w,-) forall t,s e RT;

(iii) ¢ (¢, w,-) : X — X is continuous for all ¢ R™.

Hereafter, we always assume that ¢ is a continuous RDS on X over (£2, F, P, (6;):cRr)-

Definition 2.3. A random bounded set { B(w)}yes2 of X is called tempered with respect to (6;);cr
if for P-a.e. w € §2,

lim e #'d(B(6_,0)) =0 forall g >0,
—o0

where d(B) =sup,¢p x| x.

Definition 2.4. Let D be a collection of random subsets of X and {K(w)}we € D. Then
{K(w)}wes is called a random absorbing set for ¢ in D if for every B € D and P-a.e. w € §2,
there exists 75 (w) > 0 such that

¢>(t, 0_iw, B(B,la))) CK(w) forallt>tg(w).

Definition 2.5. Let D be a collection of random subsets of X. Then ¢ is said to be D-pullback
asymptotically compact in X if for P-a.e. w € 2, {¢(t,, 0, @, x,)};° | has a convergent subse-
quence in X whenever t, — o0, and x,, € B(6_;, @) with {B(®)}wen €D.

Definition 2.6. Let D be a collection of random subsets of X. Then a random set { A(w)}yen of
X is called a D-random attractor (or D-pullback attractor) for ¢ if the following conditions are
satisfied, for P-a.e. w € §2,
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(1) A(w) is compact, and w — d(x, A(w)) is measurable for every x € X;
(i1) {A(w)}wes is invariant, that is,

¢(r, 0, A(w)) = A(,w) forall s >0;
(iii) {A(w)}eegp attracts every set in D, that is, for every B = {B(w)}pes2 € D,

lim d(¢(1,0-10, B(O—1w)). A@)) =0,

where d is the Hausdorff semi-metric given by d(Y, Z) = sup .y infzez ||y — zllx forany ¥ € X
and Z C X.

The following existence result for a random attractor for a continuous RDS can be found in
[8,17]4

Proposition 2.7. Let D be g collection of random subsets of X and ¢ a continuous RDS on X
over (82, F, P, (6:)tcr). Suppose that {K (w)}pek is a closed random absorbing set for ¢ in D
and ¢ is D-pullback asymptotically compact in X. Then ¢ has a unique D-random attractor
{A(w)}wen Which is given by

A=) |Jo(t.0-0. K(O_10)).

>0 121

In this paper, we will take D as the collection of all tempered random subsets of L%(R") and
prove the stochastic reaction—diffusion equation in R” has a D-random attractor.

3. The reaction—diffusion equation on R” with additive noise

Here we show that there is a continuous random dynamical system generated by the stochastic
reaction—diffusion equation defined on R" with additive noise:

m
du + (Au — Au)dt = (f(x,u)+g(x))dt+2hjdwj, xeR" t>0, 3.1

j=1
with the initial condition
u(x,0) =up(x), xeR" 3.2)
Here X is a positive constant, g is a given function in LZ(R”), foreach j=1,...,m, hj €

H2[R") N W2P(R") for some p > 2, {w j};fl:l are independent two-sided real-valued Wiener
processes on a probability space which will be specified below, and f is a nonlinear function
satisfying the following conditions: For all x € R” and s € R, @

—ayls|? + ¥ (x), (3.3)
aals|P7 g (x), (3.4)

f(x,s)s
| fx,9)]

NN
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a
—f(x,S) <B, (3.5)
as
a
'a—f(x,S) < Y3(x), (3.6)
X

with 5 + ; =1, and y3 € L2(R").

where a1, @ and B are positive constants, ¥ € L1 (R") N L (R"), and ¥» € L>(R") N L4 (R") @
8

In the sequel, we consider the probability space (£2, F, P) where
2= {w: (w1, w2, ...,0n) € C(R,Rm): w(0) =0},

F is the Borel o -algebra induced by the compact-open topology of §2, and P the corresponding
Wiener measure on (£2, F). Then we will identify v with

W) = (wi(®), wat), ..., wn () =w(t) forteR.
Define the time shift by
o) =w(-+1t)—w(), wef, tek.

Then ($2, F, P, (6;):cr) is a metric dynamical system.

We now associate a continuous random dynamical system with the stochastic reaction—
diffusion equation over (£2, F, P, (6;):cr)- To this end, we need to convert the stochastic equa-
tion with a random additive term into a deterministic equation with a random parameter.

Given j =1, ..., m, consider the one-dimensional Ornstein—Uhlenbeck equation

dzj + hzjdt =dwj(t). 3.7)

One may easily check that a solution to (3.7) is given by

0
zj(z)zzj(etwj)z—x/e“(e,wj)(r)dr, teR.

—00

Note that the random variable |z (w;)| is tempered and z ; (6;w;) is P-a.e. continuous. Therefore,
it follows from Proposition 4.3.3 in [3] that there exists a tempered function r (@) > 0 such that

Z(|Zj(w./)|2+ lzj(@p)|”) < r(w), (3.8)

j=1
where r(w) satisfies, for P-a.e. w € §2,
r@Go) <e2lr(), 1eR. (3.9)

Then it follows from (3.8)—(3.9) that, for P-a.e. w € £2,

3 (zi @) + |z;@w)]”) <eilr@), 1eR. (3.10)
j=I
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Putting z(6;w) = 27:1 hjzj(6;wj), by (3.7) we have

m
dz+2zdt =) hjdw;.
j=1

Let @: u(t) — z(6;w) where u is a solution of problem (3.1)—(3.2). Then v satisfies

dv

Py + 20— Av=f(x,v+z2(6,0) + g + Az(bw). (3.11)

By a Galerkin method, one can show that if f satisfies (3.3)—(3.6), then in the case of a bounded
domain with Dirichlet boundary conditions, for P-a.e. @ € £2 and for all vy € L%, (3.11) has
a unique solution v (-, w, vg) € C([0, 00), L2 N L%((0, T); H") with v(0, w, vo) = v for every
T > 0. This was done in [12]. Then, following [24], one may take the domain to be a sequence
of balls with radius approaching co to deduce the existence of a weak solution to (3.11) on R".
Further, one may show that v(, , vo) is unique and continuous with respect to vy in L>(R")
forall t > 0. Let u(¢, , ug) = v(t, w, ug — z(w)) + z(6;w). Then the process u is the solution of
problem (3.1)—(3.2). We now define a mapping ¢ : Rt x 2 x L2(R") — L>(R") by

Bt w,u0) = u(t, w,up) = v(t, w, up — z2(®)) + z(6, )
for all (1, w, ug) € RT x £2 x L*(R"). (3.12)

Then ¢ satisfies conditions (i)—(iii) in Definition 2.2. Therefore, ¢ is a continuous random dy-
namical system associated with the stochastic reaction—diffusion equation on R". In the next two
sections, we establish uniform estimates for the solutions of problem (3.1)—(3.2) and prove the
existence of a random attractor for ¢.

4. Uniform estimates of solutions

In this section, we derive uniform estimates on the solutions of (3.1)—(3.2) defined on R”
when t — oo with the purpose of proving the existence of a bounded random absorbing set and
the asymptotic compactness of the random dynamical system associated with the equation. In
particular, we will show that the tails of the solutions, i.e., solutions evaluated at large values
of |x|, are uniformly small when time is sufficiently large.

From now on, we always assume that D is the collection of all tempered subsets of L?(R")
with respect to (£2, F, P, (6;):er). The next lemma shows that ¢ has a random absorbing set
in D.

Lemma 4.1. Assume that g € L2(R") and (3.3)=(3.6) hold. Then there exists {K(w)}pep €D
such that {K (w)}wes is a random absorbing set for ¢ in D, that is, for any B = {B(®)}pe2 € D
and P-a.e. w € §2, there is Tp(w) > 0 such that

¢(t, 0_iw, B(B,;a))) C K(w) forallt > Tp(w).

Proof. We first derive uniform estimates on v(¢) = u(t) — z(6;w) from which the uniform esti-
mates on u(¢) follow immediately.
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Multiplying (3.11) by v and then integrating over R”, we find that

1d
§E||v||2+)»||v||2+||Vv||2=/f(x,v+z(9;w))vdx+(g,v)+(Az(@tw),v). (4.1)
Rn

For the nonlinear term, by (3.3)—(3.4) we obtain

/ f(x, v+ z(@tw))vdx
RI’L

=ff(x,v+z(9,a)))(v+z(9,a)))dx—/f(x,v+z(9ta)))z(0,a))dx

R» Rn

<—a1/|u|de+/lﬁ1(X)dx—/f(x,u)Z(sz)dx
R" R"

Ril

<—oq/|u|f’dx+/w1(x)dx+a2/|u|P—‘|z(9,w)|dx+/|w2|}z(0,w)|dx
R~ R~ R?

Rn

1 1 1
< —arlull + Wil + sorlull +ei|z@o)|) + 1l + 5|60
1
< —Ealllullﬁ +e(|z@ )|+ |260) I?) +¢3. (4.2)
On the other hand, the last two terms on the right-hand side of (4.1) are bounded by
gl + [ V@) 1901 < SAIIE + =gl + 5 [ V2@ > + SIVolE.  @3)
) 2 2 2

Then it follows from (4.1)—(4.3) that

d
I+ 200+ 1902 el < ea([[2@w) | + | 20rw) I? + [ V260 ) +cs.
(4.4)

Note that z(6;w) = Y7, hjzj(6;w)) and hj € H*(R") N WP (R"). Therefore, the right-hand
side of (4.4) is bounded by

c6 D (lz;@wp|” + |z @wp)|*) + 1= p16iw) +c7. 4.5)
j=1

By (3.10), we find that for P-a.e. w € £2,
p1(6rw) < C6€%Mr‘r(a)) for all T € R. (4.6)

It follows from (4.4)—(4.5) that, for all r > 0,

d
Euvn2 + Al + IVoll2 + e llullh < p1(@w) + 7, 4.7)
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unbounded domains, J. Differential Equations (2008), doi:10.1016/j.jde.2008.05.017

© O N o o »~ 0w N =



© 0 N O 0o~ O N =

A A A B B DD DWW W W W W W W WW N NN DNDDNDNDNDNDDND NN S S s S ad S A
N o o0 A WO N 2 O © 00N o 0o B~ O 2+ O © 0o N o g~ O+ O © 0o N o g~ W NN =+ O

JID:YJDEQ AID:5628 /FLA [mi+; v 1.94; Prn:12/06/2008; 14:50] P.8 (1-26)
8 P.W. Bates et al. / J. Differential Equations eee (eeee) eee—see

which implies that, for all > 0,
d 2 2
Ellvll + Alvll” < p1(Brw) +c7. (4.8)

Applying Gronwall’s lemma, we find that, for all > 0,
t
Hv(t, w, vo(a))) ||2 <e ™ H vo(w) ”2 + / ek(t_t)pl(GTa)) dt + %7 “4.9)
0

By replacing w by 6_;w, we get from (4.9) and (4.6) that, for all # > 0,

t

[v(z, 60—, vo(O—rw)) Hz <e M| vo(6-1w) Hz + / D p1(Os—w) ds + C)%
0
0
<M w@-w |+ [ pGwrdr+ ]

—t
0

<e M || vo(f_;w) H2 —i—cﬁ/‘e%“r(a)) dt + C)Ll

—t

2c c
< [wo@—o)|” + Z2r@) + . (4.10)
Note that ¢ (f, w, ug(w)) = v(t, ®, ug(w) — z(w)) + z(6;w). So by (4.10) we get that, forall 7 > 0,

(.61 uo(@-r) [
= v (t, 0—1@, up(O_0) — 2(0_10)) + z(o) |*
<2v(t, 64, up(B-1@) — 26— | +2[z2(@) |
<267 up(6 ) — 2(6—w) || + csr (@) + s + 2]z (@) |
<4e M (JuoO0-10) | + 20— |*) + csr (@) +cs + 2] z(@) | . (4.11)

By assumption, {B(w)}pes2 € D is tempered. On the other hand, by definition, llz(w)]? is also
tempered. Therefore, if uo(6_;w) € B(6_;w), then there is T (w) > 0 such that for all t > T (w),

46_M(”“0(9*lw) H2 + [z(6-1) ”2) < cgr(w) +cg,
which along with (4.11) shows that, for all t > Tp(w),

| (2, 6-10, u0(6—1)) > < 2(csr (@) + s + || z(@)] ). (4.12)
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Given w € §2, denote by
K@) = {ue L*R"): ul® <2(csr() +cs + [z(@) )}

Then {K (w)}wep € D. Further, (4.12) indicates that { K (w)}ye 1s a random absorbing set for ¢
in D, which completes the proof. O

We next derive uniform estimates for v in H'(R") and for u in L? (R").

Lemma 4.2. Assume that g € L2(R") and (3.3)~(3.6) hold. Let B = {B(w)}wez € D and
ug(w) € B(w). Then for every Ty > 0 and P-a.e. w € §2, the solutions u(t, w, uo(w)) of problem
(3.1)—(3.2) and v(t, w, vo(w)) of (3.11) with vo(w) = uo(w) — z(w) satisfy, forall t > Ty,

t
/e)“(s_’) (s, 0-rw. uo(@-s)) [} ds < e [[vo () IP+c(l+r@), @13
T
1
A(s—t) 2 g 2
/e [Vo(s, 010, vo(0—w)) | “ds < e ||vo(0—) |+ c(1 +r(w),  (4.14)
T

where c is a positive deterministic constant independent of Ty, and r (w) is the tempered function
in (3.8).

Proof. First, replacing ¢ by 77 and then replacing w by 6_;w in (4.9), we find that

T,
”v(T1 ,0_iw, vo(efzw)) ”2 <e Hvo(efta)) H2 + / M) (05— sw) ds + c.
0

Multiply the above by ¢*(T1=" and then simplify to get

AN o(Ty, 00, vo(B—)) |
T
<o 0@+ [ 0 prOrse) ds XM, @.15)
0

By (4.6), the second term on the right-hand side of (4.15) satisfies

U Ti—t
/‘EA(S_Z)PI(GS—tCU)dS= f ekrp1(9ra))dr
0 —t
T)—t
2
< cor (w) / eéde<XC6r(a))e%MT‘*’). (4.16)
~t
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From (4.15)—(4.16) it follows that
A0 o (T, 6y, vo(6—)) ||
<eM|uO_0)|* + %%r(w)e%““” +cet =0, (4.17)

By (4.7) we find that, for ¢ > Ty,

t '
Hv(l,a),vo(a)))“2+/e)‘(x*’) ||Vv(s,a),vo(a)))“zds—i—al/e)‘(s*’) ||u(s,a),u0(a)))”st
T T
t t
<0 o(Ty, w, vo(@) | + / 0 pi(Bsw)ds + ¢ / 1 gs. (4.18)
T T

Dropping the first term on the left-hand side of (4.18) and replacing @ by 6_;w, we obtain that,
forallt > T,

t t
/e““t) HVv(s,@_,a),vo(é_,a)))szs—i—al/ek(“t) ||u(s,9_lw,u0(9_,a)))H§ds
T, T
t t
<N o(Th, 0210, vo(0—1)) ||2+/€A(S_I)P1(9s—tw)ds+Cfem_’) ds
T T
0
<MD o(T1, 00, v0(0-10) | + f ¢ p1(Grw)dr + 5 (4.19)
Ty —t

By (4.6), the second term on the right-hand side of (4.19) satisfies, for ¢ > T7,

0 0
AT I %
e p1(Orw)dt < cor(w) e2""dt < )Lc6r(a)). (4.20)
T —t T)—t

Then, using (4.17) and (4.20), it follows from (4.19) that

t t

/ex(s_t) ”Vv(s,Q,,a),vo(Q,,a)))szs—i—m /‘e)‘(s_t) ”u(s,Q,,a),u0(9,,a)))H§a’s
T Ty

<e ™ H vo(6_; @) H2 +c(1+r(w)).
This completes the proof. O

As a special case of Lemma 4.2, we have the following uniform estimates.
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Lemma 4.3. Assume that g € L>(R") and (3.3)-(3.6) hold. Let B = {B(®)}wee € D and
ugp(w) € B(w). Then for P-ae. w € $2, there exists Tp(w) > 0 such that the solutions
u(t, w, ug(w)) of problem (3.1)~(3.2) and v(t, w, vo(w)) of (3.11) with vo(w) = ug(w) — z(w)
satisfy, for all t > Tp(w),

1+1
/ ||u(s,9_t_1a), uo(e_t_la)))Hids < c(l —i—r(a))),
t

1+1
/ ||Vv(s, 0_;_ 1w, vo(Q,,,la))) szs < c(l + r(w)),
t

where c is a positive deterministic constant and r () is the tempered function in (3.8).

Proof. First replacing ¢ by ¢ + 1 and then replacing 77 by ¢ in (4.14), we find that

t+1
/ex(sftfl)”Vv(s,O_t—lM”0(9—t—1“)))H2ds

<D ug (010 + e(1 + (@), “.21)

Note that e*¢~'=D > ¢=* for s € [, t 4+ 1]. Hence, from (4.21) we get that

t+1
ef)‘/||Vv(s,9_,_1a),v0(9_,_1a)))”2ds
t

<MD g0 10) |7 + c(1+ (@)
<27 (JugO—10) | + | 20——10)|) + ¢ (1 + (@) (4.22)

Since |lug(w)||? and ||z(w)||* are tempered, there is Tg(w) > 0 such that for all 1 > T (w),
= 2e D (g (0 10) | + 2010 %) < e(1 + r (@),

which along with (4.22) shows that, for all t > Tp(w),

t+1
/ I V0 (s, 0_r 10, v0(0— 1)) | *ds <26 (1 + r(w)). (4.23)
t

Using (4.13) and repeating the above process, we also find that, for t > T (w),

t+1
/ ”u(s, 0_i_ 1w, uo(G,,,]w)) ”zds < 26)‘(1 + r(a))). 4.24)
t

Then the lemma follows from (4.23)-(4.24). O
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Lemma 4.4. Assume that g € L>(R") and (3.3)-(3.6) hold. Let B = {B(®)}wee € D and
ug(w) € B(w). Then for P-ae. w € §2, there exists Tp(w) > 0 such that the solution
u(t,w,up(w)) of (3.1)—~(3.2) satisfies, for all t > Tp(w),

t+1
/ ||Vu(s, 0_; 1, uo(G,,,w))) ||2ds < c(l —i—r(a))),
t

where c is a positive deterministic constant and r () is the tempered function in (3.8).

Proof. Let Tp(w) be the positive constant in Lemma 4.3, take t > Tp(w) and s € (¢, + 1). By
(3.12) we find that

| Vu(s, 010, u0(O—1—10))|
= [ Vo(s. 0100, 00— 10)) + V2B —10) |
<2[Vu(s, 6-r— 10, 00— 1)) | + 2| V2510 |- (4.25)

By (3.10) we have
" A A
2| Valsmimo)|* < Y[z O] e V@) <cetr).  (4.26)
j=1

Now integrating (4.25) with respect to s over (¢, + 1), by Lemma 4.3 and inequality (4.26), we
get that

1+1
/ HVu(s, 0_; 1w, uo(Q,tfla))) szs <1 + er(w). 4.27)
t

Then the lemma follows from (4.27). O

Lemma 4.5. Assume that g € L*(R") and (3.3)-(3.6) hold. Let B = {B(®)}wco € D and
ug(w) € B(w). Then for P-a.e. w € S2, there exists Tp(w) > 0 such that for all t > Tp(w),

2
|| Vu(t, 0w, u0(9_,a))) ” < c(l + r(a))),
where c is a positive deterministic constant and r () is the tempered function in (3.8).

Proof. Taking the inner product of (3.11) with Av in L2(R™), we get that

1d
za||vv||2+,\||W||2+||Av||2=—/f(x,u)mdx—(g+Az(9,w),Av). (4.28)
Rn

Please cite this article in press as: P.W. Bates et al., Random attractors for stochastic reaction—diffusion equations on
unbounded domains, J. Differential Equations (2008), doi:10.1016/j.jde.2008.05.017

© 0O N O O A WO N =

36



© 0O N o g »~ WO N =

JID:YJDEQ AID:5628 /FLA [mi+; v 1.94; Prn:12/06/2008; 14:50] P.13 (1-26)
P.W. Bates et al. / J. Differential Equations eee (eeee) eee—see 13

We first estimate the nonlinear term in (4.28) for which, by (3.4)—(3.6), we have

— / fx,u)Avdx
]Rn

:—/f(x,u)Audx—}—/f(x,u)Az(@,a))dx
Rn

Rn

:/2—f(x,u)Vudx+/g—f(x,u)lvmzdx—}—/f(x,u)Az(@[a))dx
X u
Rll Rn Rn

< Y3l Vull +ﬂ||wn2+/|f(x,u)||Az<efw)|dx
R”

<Nl Vull + Bl Vul? +a2/ ulP~t | Az(G,0)| dx + /|wz(x>HAz<9tw>| dx

Rll ]Rn
2, %2 p @2 P 2 2 2
<c||Vull +; |ul dx+; |Az(O;0)|" dx + c(1v20” + 1¥301°) + ¢ | Az(Br0) |
Rn R}‘l
<c(IVull® + llullh) + e (|| AzBw) ||2 + | Az(6) ||§ +1). (4.29)

On the other hand, the last term on the right-hand side of (4.28) is bounded by

1
(g, Av)| + [(Az(Brw), Av)| < E||Av||2 +lglP+| Az G0 | (4.30)
By (4.28)—(4.30) we see that

%nwn2 + 24 Vol* + | Avl?
<c(IVull® + llullh) + c(| Az(B ) ||2 + | Az(6,0) ||§ +1). 4.31)
Let
p2610) = (| AzB) | + | Az(Br0) |5 +1). (4.32)

Since z(6;w) = Z;’Ll hjzj(;wj)and hj € H?[R") N WP (R"), there are positive constants ¢
and ¢ such that
“ 2
p2(6rw) < c1 Z(|Zj(91wj)| + |Zj(9twj)|§) +c2,
j=1

which along with (3.10) shows that

p2(6:w) < cle%‘”r(a)) +cy forallr eR. (4.33)
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By (4.31)~(4.32), we find that
d 2 2 p
o IVoll® < c(IVull® + llully) + p26). (4.34)

Let Tp(w) be the positive constant in Lemma 4.3, take t > Tp(w) and s € (¢, ¢t + 1). Then inte-
grate (4.34) over (s, ¢ + 1) to get

1+1
||Vv(t +1,w, vo(a)))H2 < ||Vv(s, w, vo(a))) ||2 + / P20 w)dt

s

t+1
+c/(HVu(r,a),u0(a)))”2+ ”u(r,a),uo(a)))”g)dr

N

t+1
g||W(s,w,v0(w))||2+fpz(e,w)dr
t
t+1

+c/(”Vu(1:,w,u0(a)))||2+ Hu(t,a),uo(w))“ﬁ)dr.

t
Now integrating the above with respect to s over (¢,¢ + 1), we find that

t+1 141
Vot + 1, 0, vo(@) < /||Vv(s,w,vo(w))||2ds+/pz(er)dr
t

t
t+1

+c / (|| Vu(t, w, uo(a)))H2 + ||u(r w, “0(“)))H§) dr.

t

Replacing w by 6_;_jw, we obtain that

|Vo(r + 1,610, v (6—1—10) |
t+1 141
< f | Vo(s. 0100, v0(0-1-100)) | ds + / p2(0r—i— 1) dt
t t
t+1

+c / (HVu(r, 0_; o, u0(9_,_1a))) ||2

t

+ (e, 60— 10, u0(O-—10)) |}) dr. (4.35)

Please cite this article in press as: P.W. Bates et al., Random attractors for stochastic reaction—diffusion equations on
unbounded domains, J. Differential Equations (2008), doi:10.1016/j.jde.2008.05.017

© 0O N O O A WO N =



© 0O N o g »~ WO N =

JID:YJDEQ AID:5628 /FLA [mi+; v 1.94; Prn:12/06/2008; 14:50] P.15 (1-26)
P.W. Bates et al. / J. Differential Equations eee (eeee) eee—see 15

By Lemmas 4.3 and 4.4, it follows from (4.35) and (4.33) that, for all ¢ > T (w),

0
[ Vot + 1,010, 00—1—10)| < c3 + car () + / p2(0s0) ds
~1
0
<3+ cqr(w) + /(cle;%“‘r(a)) + cz) ds
-1
< 5+ cor(w). (4.36)

Then by (4.36) and (3.10), we have, for all t > T (w),

|Vu(t +1,0- 10, o0 —10))|* = | Vo(t + 1,0_ 10, 00— 10)) + Vz() |

<2 Vot + 1,610, v9(0_—10) |* + 2| Vz(@) |
<7 +egr(o),

which completes the proof. O

Lemma 4.6. Assume that g € L>(R") and (3.3)-(3.6) hold. Let B = {B(®)}wee € D and
uo(w) € B(w). Then for every € > 0 and P-a.e. w € $2, there exist T* = Tg(w,€) > 0 and
R* = R*(w, €) > 0 such that the solution v(t, ®, vo(w)) of (3.11) with vo(w) = ug(w) — z(w)
satisfies, for all t > T*,

f u(t, 6_10, vo(0_@)) (1| dx < e.
xIZR

Proof. Let p be a smooth function defined on R such that 0 < p(s) < 1 for all s e R, and

) {O for 0 <
S)=
P 1 fors >

Then there exists a positive constant ¢ such that |p’(s)| < ¢ for all s € RT. Taking the inner
2

product of (3.11) with p(‘]i—z)v in L2(R"), we get that
1d 1%\, 2 1%\, 2 |x|?
R” R” R®
|x|? Ix|?
= | f(x,u)p ey vdx + (g+Az(9ta))),o =N vdx. 4.37)
R}l R}l
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We now estimate the terms in (4.37) as follows. First we have

2
—/(Av)p(%)vdx
Rn
|x|~ 2 x ]2 2x
/|V|p dx+f = szd
RVI

Rn

_ [ E2) 4 N2 o 438
= Ivlpk— x+ vp' =)z (4.38)
Rn

kx| <2k

Note that the second term on the right-hand side of (4.38) is bounded by

ARG R e

k< x| <V2k k<|x| <2k
C C
<z / [v||Vv|dx < E(nvu2 +IVol?). (439
]Rll

By (4.38)-(4.39), we find that

/(A ),0< |2>vdx /IV | p( )dx——(llvll +1IVol?). (4.40)

For the nonlinear term, we have

2 2
/f(x,u)p(i—l)vdx:/f(x,u)p(%)udx
Rn Rﬂ

|x|?
- / f(x,u)p<k—2)z(9,w) dx. (4.41)

Rn

By (3.3), the first term on the right-hand side of (4.41) is bounded by

o Y (o oy £ 5
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By (3.4), the second term on the right-hand side of (4.42) is bounded by

|x|?
‘ / f(x,u>p(k—2)z(e,w>dx
Rn
—1 |x|2 |x
<mprp(ﬁ>wmww+fwm(7Qmew
m/w (k'2 )dx+c/\z(9,w)|” <|—2)
2 2
/|z(9tw)| ,0(| x| )d + = /wz (—2) (4.43)
Then it follows from (4.41)—(4.43) that
x|
/f(x,u),o(k—2>vdx
Rﬂ
1 |x x|
<—§a1/|u|l’ (kz)dx—i—fl//p( )d
R

1 2
+§fw§p<|k|2 )dx+c/(|z(9;a))|p+ |Z(9,a))|2)p<|z—|2) dx. (4.44)

R~ R~

For the last term on the right-hand side of (4.37), we have that

2
‘/ (¢ + Az(Br))p <'x| >vdx
1 | | 2 2 [ 1x]?
<§x 0 lv]? dx+ (8> +|Az@Bw)|)p 53 dx. (4.45)
Rn

Rn

Finally, by (4.37), (4.40) and (4.44)—(4.45), we obtain that
1d x|? 1 Jx[* |2
—— dx + -\ d
T p( vl dx + 3 / o2 dx
]Rn
» | |2 | |2
+ 051 lul”p dx + | |Vv*p

Please cite this article in press as: P.W. Bates et al., Random attractors for stochastic reaction—diffusion equations on
unbounded domains, J. Differential Equations (2008), doi:10.1016/j.jde.2008.05.017

© O N o o »~ 0w N =



© 0 N O 0o~ O N =

A A A B B DD DWW W W W W W W WW N NN DNDDNDNDNDNDDND NN S S s S ad S A
N o o0 A WO N 2 O © 00N o 0o B~ O 2+ O © 0o N o g~ O+ O © 0o N o g~ W NN =+ O

JID:YJDEQ AID:5628 /FLA

18 P.W. Bates et al. / J. Differential Equations eee (eeee) eee—see
2
c 2 5 1 s 1, [x|
éz(IIVUII + (vl )+/<|1//1|+5|1//2| +28 >p<k—2 dx
Rﬂ

2 2 m (X7
¢ [ (|az@)[" + @)+ [c@w)|")p( ~5 ) dx.

RYI

Note that (4.46) implies that

d 2 2
o p<| x| >|v| dx+k/ (%)de
Rn R
¢ 2 |x|?
< (VoI + 11ol?) + / 209l + 12l + 787 )o( S5 ) dx
Sk A k
Rn

2
C_/(‘AZ(Qtw)]sz(@tw)F + ’d@@"’)p(ﬂ) I

k2
Rn
By Lemmas 4.1 and 4.5, there is 71 = T1(B, w) > 0 such that for all r > T7,

[v(t. 0—s0. v0(0-1)) ||H1(R") c(l+r().

Now integrating (4.47) over (71, t), we get that, for all r > T

2
f 0 <|Ii—|2> |v(t, w, vo(a))) |2dx

RV!
2
o

Rn
1

[ D Tu(s 0230 P+ o000 [t

T

t
_ 2 |x|?
A(s—1) 2 2
+ [ /<2|w1|+|wz| +i8 )p(k2 )dxds
T, R7

t

A(s—1) 2 2 p |x|?
+cfe (|Az@s0)|” + |2(6s0) | + |2(050)|") p —7 | dxds.

T R"

Replacing w by 6_;w, we obtain from (4.49) that, for all ¢ > T7,

[mi+; v 1.94; Prn:12/06/2008; 14:50] P.18 (1-26)

(4.46)

(4.47)

(4.48)

(4.49)

unbounded domains, J. Differential Equations (2008), doi:10.1016/j.jde.2008.05.017
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2
/ p<%> [v(t, 0—, vo(0—; ) |2d}C

]R)‘l

R
t t
+§/‘em_’) [Vo(s, 6—w, vo(0—;w)) ||2ds+ %/em_’)”v(s,@_;w,vo(9_;a)))||2ds
Ty n
\ 2 P2
+/em_’)/(2|1/f1|+|1ﬂ2|2+xg2>,0<k—2> dxds
T R
‘ 2
+5/ex<s—t>/(,Az(9Stw)\zﬂz(estw)\zﬂz(o”w)\”)p(']’i—'z) dxds.  (4.50)
T R

In what follows, we estimate the terms in (4.50). First replacing ¢ by T7 and then replacing w by
0_:;w in (4.9), we have the following bounds for the first term on the right-hand side of (4.50):

2
eA(T1I)/p(%>|v(Tl,9_,w,vo(e_ta)))|2dx

Rﬂ
T
<M= (e_'\T' o] + / I py (65— ) ds + C)
0
T)—t

_ 2 -
<e M”vo(@_tu))” + e 4 / ¢ pi(6rw)dt
—t
T —t
1
<M u@o +e 04 [ ebreorar

—t

2
< e oo 0= | +ce T + Zegr(@)e N0, (4.51)

where we have used (4.6). By (4.51), we find that, given € > 0, there is 7> = (B, w, €) > T1 such
that forall r > 75,

2
HNY / p(i—l) (Tt 0o, vo(9—tw))|2dx Se (4.52)

]Rﬂ
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By Lemma 4.2, there is 73 = T3(B, w) > T1 such that the second term on the right-hand side of
(4.50) satisfies

t

| Vo (s, 0w, v00_0) |Pds < £ 1+ r(w)).
k (7 tW, 0( t )) \k( ( ))
T

And hence, there is R{ = Rj(w, €) > 0 such that for all r > 75 and k >

t
% / O Vu(s, 00, vo(6—r)) || > ds <e. (4.53)

T

First replacing ¢ by s and then replacing @ by 6_;® in (4.9), we find that the third term on the
right-hand side of (4.50) satisfies

t

%/e)‘(s_t) ||v(s,9_,a),v0(9_,a)))||2ds
T
t 1 Ky t
< E e—)ut ”U (9 2d S A(s—t) A(Tt—s) [2) dtd E )\.(S_t)d
<7 0(0—r) | s+ e e P1O—w)drds + 2 | e s
7 Ty 0 T
t s
c _ > ¢ ¢ _
<teu=tfwe ol + S+ 5 [ [ b6 wdrds
1 O

t s—t

< %g*“(; — T ||vo(6_0) | + % + %f / & p1 (B, w) d ds
—t

T
% _M(t—Tl)”vo(G_ta))H + + cﬁr(a))//ez“drds
T —t
<< e M (1 = T1) | vo0_s) | + i 76" ().
Sk - 22k

This implies that there exist 7y = T4(B, w, €) > T; and Ry, = Rz(w, €) such that for all t > Ty
and k > Ry,

t

% / 60 |u(s, 60, vo (b)) | ds < e. (4.54)
T
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Note that r; € L'(R") and v, g € L>(R"). Therefore, there is R3 = R3(¢) such that for all
k> Rs,

2
/ <2|W1| + 1yl? + ng) dx < he.

x>k

Then for the fourth term on the right-hand side of (4.50), we have

t
A(s—1) 2,25 |x|2
e 2|11 | + 2] -I-xg P\ dxds
T R»

t t

2
</e*<H> / <2|1ﬁ1|+|1/f2|2+xg2> dxdsg)»e/ek(“’)dsge. (4.55)
Ty [x|=k T

Note that z(6;w) = Y7, hjz;(6iw)) and hj € H*(R") N W>P(R"). Hence there is Ry =
Ri(w, €) such that forall k > Ry and j =1,2,...,m,

re
4mPér(w)’ 2m2r(w)

/ (IO + hj )| +|akj)|) dx gmin{
Ixi>k

}, (4.56)

where r(w) is the tempered function in (3.8) and ¢ is the positive constant in the last term on the
right-hand side of (4.50). By (4.56) and (3.8)—(3.9), we have the following bounds for the last
term on the right-hand side of (4.50):

t
2
5/emz)/(|AZ(9S_tw)|2+|Z(9s_,w)|2+|z(9s_,w)|l’)p(|]t_|2> dx ds
T, R~
t

<e [ [ (182600 + 0o + |20 dx ds
T x| =k

! m
< [0 [ (180125 6so 4 1Py Grnroop

T I=l x>k

+1hjlP|zj05—sw))|") dx ds

t
e - m
< WT/EW ”;(’Zj@stwj)!er |2jOs—))|") ds
1
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t 0
A€ - A€
< m/ek(‘s ’)r(QS_,a)) ds < m / e)‘tr(GTa)) dt
T, T

1—t

<

0

Py

2r(€a)) / e r(w) dr <. (4.57)
T, —t

Let 75 = T5(B, w, €) = max{Ty, T, T3, T4} and Rs = R5(w, €) = max{R1, Ry, R3, R4}. Then it
follows from (4.50), (4.52)—(4.57) that, for all > Ts and k > Rs, one has

2
RS-

RV[

which shows that for all t > T5 and k > Rs,

2
/ |v(t, 0_iw, vo(Q_ta)))|2dx < /p(|x| )!v(l, 0_;ow, U0(9_,a)))|2dx < Se.

k2
x> /2k R

This completes the proof. O

Lemma 4.7. Assume that g € L>(R") and (3.3)-(3.6) hold. Let B = {B(®)}wee € D and
up(w) € B(w). Then for every € > 0 and P-a.e. w € $2, there exist T* = Tj(w,€) > 0 and
R* = R*(w, €) > 0 such that, for all t > T*,

f |u(t, 06—, 0 (6_1)) (x)|* dx <e.
xIZR

Proof. Let 7* and R* be the constants in Lemma 4.6. By (4.56) and (3.8) we have, forall ¢t > T*
and k > R*,

m 2
\z(a))|2dx= Zhij(wj) dx
|x|>R* |x|>R* j=1
2 2
sm / Z'hﬂ |2j(@))] dxngk;‘(éd;)\ <3 (4.58)
>R /=1 j=1

Then by (4.58) and Lemma 4.6, we get that, for all > T* and k > R*,
/ |u(t, 0_iw, u0(9_tw)) |2 dx
[x|=>R*

= f lo(t, 01, vo(0—0)) + z(w)|2dx

[x|=R*
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1Q2 @ <2 / |v(t,9_,a),00(9_,w))|2dx+2 / z(a))|2dx

z x| >R* x| >R*

4 < 3e,

5

6  which completes the proof. O

7

8 5. Random attractors

9

10 In this section, we prove the existence of a D-random attractor for the random dynamical
11 gystem ¢ associated with the stochastic reaction—diffusion equation (3.1)—(3.2) on R" llows

12 from Lemma 4.1 that ¢ has a boumded, random absorbing set in D, which along w e D-
13 pullback asymptotic compactness will imply the existence of a unique D-random attractor. The
14 D-pullback asymptotic compactness of ¢ is given below and will be proved by using the uniform
15 estimates on the tails of solutions.

17 Lemma 5.1. Assume that g € L*(R") and (3.3)=(3.6) hold. Then the random dynamical system
18 ¢ is D-pullback asymptotically compact in L*>(R"); that is, for P-a.e. o € §2, the sequence
19Q3 01,0, u0,,(0—;,®))} has a convergent subsequence in L*(R"™) provided t, — 0o, B =
20 Vwee € D and ug ,(0—;,w) € B(O—;,w).

21

22 Proof. Let t, — 00, B = {B(w)}wen € D and ug ,(0_;,®) € B(O_;,w). Then by Lemma 4.1,
28 for P-a.e. w € £2, we have that

24
25 {6 (tn. 0—1,@, u0.4(0—r, )}~ is bounded in L*(R").

26

Z Hence, there is & € Lz(R") such that, up to a subsequence,

29 .

% ¢)(t,,, 0_; w, uo,n(Q,,na))) — & weakly in LQ(R"). 5.1
31

s Next, we prove the weak convergence of (5.1) is actually strong convergence. Given € > 0, by
a3 Lemma 4.7, there is Ty = T1(B, w, €) and R; = R|(w, €) such that for all r > T7,

34

3 / (1, 6_1, uo(0_))|* dx <. (5.2)
% x> Ry

37

38 Since t, — 00, there is N1 = N1 (B, w, €) such that t,, > T; for every n > Nj. Hence, it follows
39 from (5.2) that for all n > Ny,

40
41 2

i f |p(tn, 01,0, 10 0 (0—y,0))| " dx <e. (5.3)
43 [x|= Ry

44

45  On the other hand, by Lemmas 4.1 and 4.5, there is 7> = T>(B, w) such that for all t > 7>,
46

a7 |6 (1. 010, 40O —)) |31 ory < (1 + (). (5.4)
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Let Ny = N»>(B, w) be large enough such that ¢, > T» for n > N,. Then by (5.4) we find that, for
alln > N,

6 (tn, 01, 10,0 0—4,0)) [ 311 g2ry < (1 +7(@)). (5.5)

Denote by Qp, the set {x € R": |x]| < Ry}. By the compactness of embedding Hl(QRl) —
Lz( ORg,), it follows from (5.5) that, up to a subsequence,

(1> 0-1,0, 402 (0—1, ) — & strongly in L*(Qg,),
which shows that for the given € > 0, there exists N3 = N3(B, w, €) such that for all n > N3,
| (b, 610, 10,0 (61, ) — &} <e (5.6)
nsYV—t, W, 0,n —In LZ(QRI) x <. .
Note that £ € L2(R"). Therefore there exists Ry = R (¢) such that
/ 600 dx <e. G.7)
[x|ZR>

Let R3 = max{R, R>} and Ny = max{Ny, N3}. By (5.3), (5.6), and (5.7), we find that for all
n = Na,
2 2
| (tns -1, 0, 10,0 (O—1,)) = & || 2 gemy < / | (tn, 01, @, u0.n(0—;,)) — &|" dx

[x|<R3

+ [ |¢(t"’9—tnwvuO,n(Q—zy,CU)) —é|2dx < Se,

|x|=R3
which shows that
¢>(tn, O_t, @, 1o, (0, a))) — & strongly in L2(R"),
as desired. O

We are now in a position to present our main result: the existence of a D-random attractor for
¢ in L2(R™).

Theorem 5.2. Assume that g € L2(R") and (3.3)(3.6) hold. Then the random dynamical system
¢ has a unique D-random attractor in L*(R").

Proof. Notice that ¢ has a closed random absorbing set { K (w)}ye in D by Lemma 4.1, and is
D-pullback asymptotically compact in L>(R") by Lemma 5.1. Hence the existence of a unique
D-random attractor for ¢ follows from Proposition 2.7 immediately. O
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