Exam Tips:

- The exam will cover sections 16.4 (spherical coordinates), 16.5, 16.6, 17.1, 17.2, and 17.3.
- Know the hypothesis and conclusions for all theorems covered so far.
- Know all relevant definitions.
- Review one-variable integration techniques (such as u substitution and integration by parts) as well as the anti-derivatives of common functions.
- In addition to the problems provided here, it would be a good idea to do some additional exercises from the textbook (use the homework as an indication of which problem types are relevant),

Practice Problems:

1. Let \mathcal{W} be the region in \mathbb{R}^{3} determined by

$$
\mathcal{W}:\left\{\begin{array}{l}
z^{2}-x^{2}-y^{2} \geq 0 \\
x^{2}+y^{2}+z^{2} \leq 1 \\
y \geq 0
\end{array} .\right.
$$

(a) Describe \mathcal{W} using spherical coordinates (ρ, ϕ, θ).
(b) Compute $\iiint_{\mathcal{W}} \sqrt{x^{2}+y^{2}+z^{2}} d V$.
2. Let $\mathcal{W}=[0,1] \times[0,1] \times[0,1]$ and suppose $\rho(x, y, z)=e^{x+y+z}$ is a density function for \mathcal{W}.
(a) Find the total mass of the cube \mathcal{W}.
(b) Find the coordinates $\left(x_{\mathrm{CM}}, y_{\mathrm{CM}}, z_{\mathrm{CM}}\right)$ for the center of mass of \mathcal{W}.
3. Let \mathcal{D} be the region bounded by the curves

$$
\mathcal{D}:\left\{\begin{array}{ll}
y=2 x+1 & y=2 x-2 \\
y=-x+1 & y=-x+3
\end{array} .\right.
$$

Let G be the following change of variables map

$$
G(u, v)=\left(\frac{u-v}{3}, \frac{2 u+v}{3}\right),
$$

and let \mathcal{D}_{0} be the region in the $u v$-plane that $G(u, v)$ maps onto \mathcal{D}.
(a) Sketch the regions \mathcal{D}_{0} and \mathcal{D}. Be sure to label your axes, the boundary curves, and any points where the boundary curves intersect.
(b) Compute the double integral $\iint_{\mathcal{D}} x+y d A$.
4. Let \mathcal{C} be the oriented curve with the following parametrization

$$
\vec{c}(t)=\left\langle t, t^{2} t^{3}\right\rangle \quad 0 \leq t \leq 2 .
$$

Compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{s}$ for the vector field

$$
\vec{F}(x, y, z)=\left\langle e^{x}, e^{y}, e^{z}\right\rangle
$$

5. Consider the oriented curve \mathcal{C} with parametrization

$$
\vec{c}(t)=\left\langle\frac{\sqrt{2}}{2} \sin t,-\frac{\sqrt{2}}{2} \sin t, \cos t\right\rangle \quad 0 \leq t \leq 2 \pi .
$$

(a) Show that the \mathcal{C} is the intersection of the plane $x+y=0$ and the the sphere $x^{2}+y^{2}+z^{2}=1$ by showing that $\vec{c}(t)$ gives points which are always on both the plane and the sphere.
(b) Let $\vec{F}(x, y, z)=\langle 1,1,0\rangle$ be a constant vector field. Compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{s}$.
(c) Let

$$
\vec{F}(x, y, z)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right\rangle .
$$

Compute $\int_{\mathcal{C}} \vec{F} \cdot d \vec{s}$.
Hint: for parts (b) and (c) you do not actually need to compute anything.
6. Let \mathcal{C}_{1} be the line segment starting at $(-1,0)$ and going to $(1,0)$, and let \mathcal{C}_{2} be the top half of the circle $x+^{2}+y^{2}=1$, oriented counter-clockwise. Consider the vector field

$$
\vec{F}(x, y)=\left\langle\frac{1}{1+y^{2}}, \frac{-2 x y}{\left(1+y^{2}\right)^{2}}\right\rangle
$$

(a) Compute $\int_{\mathcal{C}_{1}} \vec{F} \cdot d \vec{s}$.
(b) Compute $\int_{\mathcal{C}_{1} \cup \mathcal{C}_{2}} \vec{F} \cdot d \vec{s}$.

