Exam Tips:

- The exam will cover sections 16.1, 16.2, 16.3, and 16.4 (excluding spherical coordinates).
- Know the hypothesis and conlcusions for all theorems covered so far.
- Know all relevant defintions.
- Review one-variable integration techniques (such as u substitution and integration by parts) as well as the anti-derivatives of common functions.
- In addition to the problems provided here, it would be a good idea to do some additional exercises from the textbook (use the homework as an indication of which problem types are relevant),

Practice Problems:

1. Let \mathcal{D} be the region bounded by the curves

$$
\left\{\begin{array}{l}
y=(1-e) x+1 \quad \text { and } \\
y=e^{-x}
\end{array}\right.
$$

Note that these curves intersect at the points $(0,1)$ and $(-1, e)$ and that $1-e<0$.
(a) Sketch the region \mathcal{D}. Be sure to label your axes, the boundary curves, and any points where the boundary curves intersect.
(b) Compute $\iint_{\mathcal{D}} y^{2} \exp \left(x+\frac{y}{e-1}\right) d A$.
2. Suppose the double integral $\iint_{\mathcal{D}} y e^{x} d A$ over a region \mathcal{D} is equivalent to the following iterated integral:

$$
\int_{0}^{6} \int_{0}^{g(x)} y e^{x} d y d x
$$

where

$$
g(x)=\left\{\begin{array}{cc}
\sqrt{x} & \text { if } 0 \leq x \leq 4 \\
6-x & \text { if } 4 \leq x \leq 6
\end{array} .\right.
$$

(a) Sketch the region \mathcal{D}. Be sure to label your axes, the boundary curves, and any points where the boundary curves intersect.
(b) Write a presentation of \mathcal{D} as a horizontally simple region.
(c) Compute $\iint_{\mathcal{D}} y e^{x} d A$.
3. Let \mathcal{W} be the region in the first octant $(x, y, z \geq 0)$ bounded by the planes

$$
\begin{aligned}
4 x-2 y+2 z & =10 \quad \text { and } \\
-2 x-5 y+z & =1 .
\end{aligned}
$$

Find the volume of \mathcal{W}. (Hint: integrate with respect to z first.)
4. The polar region \mathcal{D} bounded by the curve $r=\cos (5 \theta), 0 \leq \theta \leq \pi$ is a 5 -petal flower.
(a) Use the change of variables formula for polar coordinates to find the area of a single petal.
(b) Compute $\iint_{\mathcal{D}} \sin (5 \theta) d A$.
5. The region \mathcal{W} bounded by the surfaces

$$
\left\{\begin{array}{l}
z=\frac{b}{a} r \quad(0 \leq \theta \leq 2 \pi) \\
z=b
\end{array}\right.
$$

is a right cone of radius a and height b (vertex pointing downward at the origin). Use the change of variables formula for integrating in cylindrical coordinates to produce the well known formula for the volume of such a cone: $\frac{1}{3} \pi a^{2} b$.

