Name:			

NetID:

Instructions:

- 1. You will have 50 minutes to complete the exam.
- 2. The exam is a total of 3 questions, their respective points values are listed below.
- 3. Unless stated otherwise, you must justify your answers with proofs.
- 4. You may cite any results from lecture or the homework.
- 5. No books, notes, calculators, or electronic devices are permitted.
- 6. If you require additional space, please use the reverse side of the pages.
- 7. The exam has a total of 4 pages, please verify that your copy has all 4 pages.

Question	Score	Points
1.		10
2.		25
3.		15
Total		50

1. Let X be a nonempty set and \mathcal{E} a collection of subsets. Show that

$$\mathcal{M}(\mathcal{E}) = \bigcup_{\mathcal{F}} \mathcal{M}(\mathcal{F})$$

where the union is over countable subcollections $\mathcal{F} \subset \mathcal{E}$.

- 2. For a measure space (X, \mathcal{M}, μ) , a set $A \in \mathcal{M}$ is called an **atom** for μ if $\mu(A) > 0$ and for any $B \in \mathcal{M}$ with $B \subset A$ one has either $\mu(B) = 0$ or $\mu(B) = \mu(A)$. Let μ_F be the Lebesgue–Stieltjes measure associated to an increasing, right-continuous function $F \colon \mathbb{R} \to \mathbb{R}$.
 - (a) Show that for $x \in \mathbb{R}$, $A = \{x\}$ is an atom for μ_F if and only if F is **not** left-continuous at x.
 - (b) Show that if F is continuous, then μ_F has no atoms. [Hint: use dyadic h-intervals $(\frac{k}{2^n}, \frac{k+1}{2^n}]$.]

3. Let (X, \mathcal{M}) be a measurable space and let $f, g: X \to \overline{\mathbb{R}}$ be \mathcal{M} -measurable. For $a, b \in \mathbb{R}$ with a < b, show that the set

$$\{x \in X \colon f(x) + a \le g(x) \le f(x) + b\}$$

is in \mathcal{M} .