Prologue

The purpose of this introductory chapter is to establish the notation and terminology
that will be used throughout the book and to present a few diverse results from st
theory and analysis that will be needed later. The style here is deliberately terse,
since this chapter is intended as a reference rather than a systematic exposition.

0.1 THE LANGUAGE OF SET THEORY

It is assumed that the reader is familiar with the basic concepts of set theory; the
following discussion is meant mainly to fix our terminology.
Number Systems. Our notation for the fundamental number systems is as

follows:
N = the set of positive integers (not including zero)

Z = the set of integers

@ = the set of rational numbers
R = the set of real numbers

C = the set of complex numbers

Logic. We shall avoid the use of special symbols from mathematical logic,
preferring to remain reasonably close to standard English. We shall, however, use
the abbreviation iff for “if and only if.”

One point of elementary logic that is often insufficiently appreciated by students

is the following: If A and B are mathematical assertions and —A, —B are their
1
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Usually it is more convenient to consider indexed families of sets:
E={Es:a€ A} ={Ea} .

in which case the union and intersection are denoted by

|} B i) B

a€A a€A

IfEaNEj = @ whenever a # f, the sets E, are called disjoint. The terms “disjoint
collection of sets” and “collection of disjoint sets” are used interchangeably, as are
“disjoint union of sets” and “union of disjoint sets.”

When considering families of sets indexed by N, our usual notation will be

{EJoly or {B,)e,

and likewise for unjons and intersections,
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If E and F' are sets, we denote their difference by E \ F:
E\F={z:zecEandz ¢ F},
and their symmetric difference by EAF:
EaF=(E\F)U(F\E).

When itis clearly understood that all sets in question are subsets of a fixed set X, we
define the complement E° of a set E (in X):

E°=X\E.

In this situation we have deMorgan’s laws:

c c
(UE) =N E: (NE&)=UE
a€A a€A a€A a€A

If X and Y are sets, their Cartesian product X x Y’ is the set of all ordered pairs
(z,y) such that z € X andy € Y. A relation from X to Y is a subset of X x V.
(IfY = X, we speak of a relation on X.) If R is a relation from X to ¥, we shall
sometimes write xRy to mean that (z,y) € R. The most important types of relations
are the following:

e Equivalence relations. An equivalence relation on X is a relation R on X
such that
zRzforallz € X,

xRy iff yRx,
2Rz whenever xRy and y Rz for some y.

The equivalence class of an element z is {y € X : zRy}. X is the disjoint
union of these equivalence classes.

Orderings. See §0.2.

Mappings. A mapping f : X — Y is a relation R from X to ¥ with the
property that for every @ € X there is a unique y € Y such that 2Ry, in which
case we write y = f(z). Mappings are sometimes called maps or functions;
we shall generally reserve the latter name for the case when Y is C or some
subset thereof.

Iff: X - Yandg:Y — Z are mappings, we denote by go f their composition:
gof: X =2,  gof(z)=g(f(x))

If D C X and E C Y, we define the image of D and the inverse image of £
under a mapping f : X — Y by

f(D)={f(x):ze D}, fUE)={z:f(z)€E}.

O'{ E s ot I\Aa?@(\g_ "_\_E'-X-—) 3o, (% &edivedd \a

1€L\<\=

\ f xe€
0 otherwise
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A sequence in a set X is a mapping from Ninto X. (We aIiIS()) ‘Ilfseft?;;im)f{h;?z
sequence to mean a map from {1,... ,n} into X where n € 8. the' composition
sequence and g : N — N satisfies g(@) < g(m) whenever n < m, nop g
fogiscalled a subsequence of f. Itis common, :'and often con\{emen 5 ob i1
about distinguishing between sequences and their ranges, which art:o ?u sets O
indexed by N. Thus, if f(n) = z,, e speak of the sequence {z,}$°; whether we
mean a mapping from N to X or a subset of X will be cle.ar from the context.

Earlier we defined the Cartesian product of two sets. Similarly one can deﬁm.z Ithe
Cartesian product of n sets in terms of ordered n-tuples. However, this deﬁnmon
becomes awkward for infinite families of sets, so the following approach is used
instead. If { X, } e 4 is an indexed family of sets, their Cartesian product [Maeca Xa
is the set of all maps f : A — (J,¢ 4 Xa such that f(a) € X, forevery o € A. (It
should be noted, and then promptly forgotten, that when A = {1, 2}, the previous
definition of X; x Xj is set-theoretically different from the present definition of
Hf X;. Indeed, the latter concept depends on mappings, which are defined in terms
of the former one.) If X =[], 4 Xo and & € A, we define the ath projection or
coordinate map 7, : X — X, by mo(f) = f(a). We also frequently write = and
z4 instead of f and f(e) and call z,, the ath coordinate of z.

If the sets X are all equal to some fixed set ¥, we denote [T, 4, Xo by Y

Y4 = the set of all mappings from Ato Y,

IfA={1,...,n},Y4isdenoted by Y™ and may be identified with the set of ordered
n-tuples of elements of ¥,

0.2 ORDERINGS

A partial ordering on 2 i i
Pl 8 On @ nonempty set X is a relation R on X with the following
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e if xRy and y Rz, then zRz;
e if zRy and yRz, then z = y;
e zRz forall z.
If R also satisfies
e ifz,y € X, then either zRy or yRz,

then R is called a linear (or total) ordering. For example, if E is any set, then P(E)
is partially ordered by inclusion, and R is linearly ordered by its usual ordering.
Taking this last example as a model, we shall usually denote partial orderings by
<, and we write z < y to mean that z < y but z # y. We observe that a partial
ordering on X naturally induces a partial ordering on every nonempty subset of X.
Two partially ordered sets X and Y are said to be order isomorphic if there is a
bijection f : X — Y such that z; < 2 iff f(z1) < f(z2).

If X is partially ordered by <, a maximal (resp. minimal) element of X is an
element z € X such that the only y € X satisfying z < y (resp. z > y) is z itself.
Maximal and minimal elements may or may not exist, and they need not be unique
unless the ordering is linear. If £ C X, an upper (resp. lower) bound for E is an
element 2 € X such that y < z (resp. = < y) forall y € E. An upper bound for E
need not be an element of E, and unless F is linearly ordered, a maximal element of
E need not be an upper bound for E. (The reader should think up some examples.)

If X is linearly ordered by < and every nonempty subset of X has a (necessarily
unique) minimal element, X is said to be well ordered by <, and (in defiance of the
laws of grammar) < is called a well ordering on X. For example, N is well ordered
by its natural ordering.

We now state a fundamental principle of set theory and derive some consequences
of it.

0.1 The Hausdorff Maximal Principle. Every partially ordered set has a maximal
linearly ordered subset.

In more detail, this means that if X is partially ordered by <, there isaset E C X
that is linearly ordered by <, such that no subset of X that properly includes E is
linearly ordered by <. Another version of this principle is the following:

0.2 Zorn’s Lemma. If X is a partially ordered set and every linearly ordered subset
of X has an upper bound, then X has a maximal element.

Clearly the Hausdorff maximal principle implies Zorn’s lemma: An upper bound
for a maximal linearly ordered subset of X is a maximal element of X. It is also not
difficult to see that Zorn’s lemma implies the Hausdorff maximal principle. (Apply
Zorn’s lemma to the collection of linearly ordered subsets of X, which is partially
ordered by inclusion.)

0.3 The Well Ordering Principle. Every nonempty set X can be well ordered.
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0.4 The Axiom of Choice. If{Xa}ocaisa nonempty collection of nonempty sets,
then [T e 4 Xa is nonempty.

Proof. LetX =J,eq Xo- Picka well ordering on X and, for @ € A, let f(a)
be the minimal element of Xa. Then f € [Taca Xa- "

0.5 Corollary. If {Xa}aea is a disjoint collection of nonempty sets, there is a set
Y C Upea Xa suchthat Y 0 X, contains precisely one element for each o: € A.

Proof. TakeY = f(A) where f € []oc4 Xa- ¥

We have deduced the axiom of choice from the Hausdorff maximal principle; in
fact, it can be shown that the two are logically equivalent.

0.3 CARDINALITY

If X and Y are nonempty sets, we define the expressions
card(X) < card(Y), card(X) = card(Y), card(X) > card(Y)

to mean that there exists f : X — Y which is injective, bijective, or surjective,
respectively. We also define

card(X) < card(Y),  card(X) > card(Y)

to mean that there is an injection but no bijection, or a surjection but no bijection,
from X to Y. Observe that we attach no meaning to the expression “card(X)” when
it stands alone; there are various ways of doing so, but they are irrelevant for our

purposes (except when X is finite — see below). These relati i
: tionsh d
to the empty set by declaring that i

card(@) < card(X) and card(X) > card(@) for all X # .

For the remai g : ;

nonemplyr?:lcr’lsjer <:f thls'secnon‘ We assume implicitly that all sets in question are

B ot Szr ﬁ0 avoid specnz?l arguments for @. Our first task is to prove that
Ps defined above enjoy the properties that the notation suggests.

CARDINALITY 7

0.6 Proposition. card(X) < card(Y) iff card(Y) > card(X).

Proof. If f: X — Y is injective, pick 2o € X and define g : ¥ — X by
9(y) = f () ify € F(X), g(y) = zo otherwise. Then g is surjective. Conversely,
if g: Y — X is surjective, the sets g~ ({z}) (z € X) are nonempty and disjoint, so
any f € [T cx 97 ({z}) is an injection from X to V. B

0.7 Proposition. For any sets X and Y, either card(X) < card(Y) or card(Y) <
card(X).

Proof. Consider the set J of all injections from subsets of X to Y. The members
of J can be regarded as subsets of X x Y, so J is partially ordered by inclusion. It is
easily verified that Zorn’s lemma applies, so J has a maximal element f, with (say)
domain A and range B. If 2o € X \ Aand yp € Y \ B, then f can be extended
to an injection from A U {zo} to Y U {yo} by setting f(xo) = yo, contradicting
maximality. Hence either A = X, in which case card(X) < card(Y),or B =Y, in
which case f~! is an injection from Y to X and card(Y) < card(X). 5

0.8 The Schrider-Bernstein Theorem. If card(X) < card(Y) and card(Y) <
card(X) then card(X) = card(Y).

Proof. Letf:X —Yandg:Y — X be injections. Consider a point z € X:
Ifz € g(Y), we form g7 (z) € Y3 if g7} (z) € f(X), we form f~(g~}(z)); and
so forth. Either this process can be continued indefinitely, or it terminates with an
element of X \ g(Y") (perhaps  itself), or it terminates with an element of Y\ f(X).
In these three cases we say that z is in Xoo, Xx, or Xy; thus X is the disjoint union
of Xoo, Xx,and Xy. In the same way, Y is the disjoint union of three sets Y, Yx,
and Yy. Clearly f maps Xo onto Yo, and Xx onto Yx, whereas g maps Yy onto
Xy. Therefore, if we define h : X — Y by h(z) = f(z) if X € Xoo U Xx and
h(z) = g~!(z) if z € Xy, then h is bijective. M

0.9 Proposition. For any set X, card(X) < card(P(X)).

Proof.  On the one hand, the map f(z) = {z} is an injection from X to P(X).
On the other, if g : X — P(X),letY = {cx € X : 2 ¢ g(z)}. Then Y ¢ g(X), for
if Y = g(xo) for some z¢ € X, any attempt to answer the question “Is zg € Y'?”
quickly leads to an absurdity. Hence g cannot be surjective. ]

A set X is called countable (or denumerable) if card(X) < card(N). In
particular, all finite sets are countable, and for these it is convenient to interpret
*“card(X)” as the number of elements in X:

card(X) = niff card(X) = card({1,...,n}).

If X is countable but not finite, we say that X is countably infinite.
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0.10 Proposition. ‘
a IfX andY are countable, sois X x Y.

b. If A is countable and X is countable for e

countable.
c. If X is countably infinite, then card

very & € A, then UaGA Xo is

(X) = card(N)

i define
i hat N2 is countable. But we can
* o prove (a) it suffices to prove U I ey
lgzcl(i{on fr(c’nr; N to N2 by listing, for n successw.ely eql.lal to i, 3,' 4,..., those
:Ierglems (4, k) € N2 such that j + k = n in order of increasing J, thus:

@1, (1,2, @1, (1,3, 2.2), G 149, @3, 32 GD.-..

i uriective fo : N = X, and then the map
?S' g;(z)!—fooemh}?aiegnf; ;»eyl;(iz,s cv)J = fa(r{) is surjective.; the n.‘:sult'therefore
foilows from (::S.E AFinally, for (c) it suffices to assume that X is an }nﬁlmte iubs;t
of N. Let f(1) be the smallest element of X, and deﬁfle f (.n) inductively to be the
smallest element of B\ {f(1),..., f(n—1)}. Then f is easily seen to be a bijection

fromNto X. [ ]

0.11 Corollary. Z and Q are countable.

Proof. 7 is the union of the countable sets N, {~n : n € N}, and {0}, and one
can define a surjection f : Z? — Qby f(m,n) = m/nifn # Oand f(m,0) =0.g

A set X is said to have the cardinality of the continuum if card(X) = card(R).
We shall use the letter ¢ as an abbreviation for card(R):

card(X) = ciff card(X) = card(R).
0.12 Proposition. card(P(N)) = c.

Proof. If A C N, define f(A4) € R to be Donea 27" if N\ A is infinite and
1437, c4 27 ™ if N\ Ais finite. (In the two cases, f(A) is the number whose base-2
decimal expansion is 0.ayay - - - or lajag---, where a, = 1ifn € A and an. =10
otherwise.) Then f : P(N) — Risinjective. On the other hand, defineg : P(Z) — R
gyif(A)' ={log(£m 277) if A is bounded below and g(A) = 0 otherwise. Then

IS sunjective since every positive real number has a base-2 decimal ion.
Since card(P(Z)) = card(P(N)), the result follows from the Si(;:ggeﬁgﬁgzlt:?n

theorem.
u
0.13 Corollary. If card(X) > ¢, then X is uncountable,
Proof.  Apply Proposition 0.9,
| ]

The converse of this corollar

i is t - : q
lidity is one of the famous unde v 1s the so-called continuum hypothesis, whose va-

cidable problems of set theory; see §0.7.
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0.14 Proposition.
a. Ifcard(X) < cand card(Y) < ¢, then card(X x Y) < c.
b. Ifcard(A) < cand card(Xs) < cforall o € A, then card(U,e 4 Xa) <.

Proof.  For (a) it suffices to take X =Y = P(N). Define ¢, : N — N by
¢(n) = 2n and (n) = 2n — 1. It is then easy to check that the map f : P(N)2 —
P(N) defined by f(A4, B) = ¢(A) U(B) is bijective. (b) follows from (a) as in the
proof of Proposition 0.10. B

0.4 MORE ABOUT WELL ORDERED SETS

The material in this section is optional; it is used only in a few exercises and in some
notes at the ends of chapters.

Let X be a well ordered set. If A C X is nonempty, A has a minimal element,
which is its maximal lower bound or infimum; we shall denote it by inf A. If A is
bounded above, it also has a minimal upper bound or supremum, denoted by sup A.
If 2 € X, we define the initial segment of z to be

L={yeX:y<a}.

The elements of I, are called predecessors of z.
The principle of mathematical induction is equivalent to the fact that N is well
ordered. It can be extended to arbitrary well ordered sets as follows:

0.15 The Principle of Transfinite Induction. Let X be a well ordered set. If A is
a subset of X such that © € A whenever I, C A, then A = X.

Proof. If X # A, letz = inf(X \ A). Then [; C Abutz ¢ A. ¥

0.16 Proposition. If X is well ordered and A C X, then Uxe a Iz is either an initial
segment or X itself.

Proof. LetJ = c4le. IfJ # X, letb = inf(X \ J). If there existed y € J
with y > b, we would have y € I, for some z € A and hence b € I, contrary to
construction. Hence J C I, and it is obvious that [, C J. B

0.17 Proposition. If X and Y are well ordered, then either X is order isomorphic
t10Y, or X is order isomorphic to an initial segment in'Y, or Y is order isomorphic
to an initial segment in X.

Proof.  Consider the set F of order isomorphisms whose domains are initial
segments in X or X itself and whose ranges are initial segments in Y or Y itself.
F is nonempty since the unique f : {inf X} — {infY} belongs to &, and F is
partially ordered by inclusion (its members being regarded as subsets of X x Y).



40  PROLOGUE B
im t f, with (say
m has a maximal element [,

icati 's lemma shows that g . e
Anmapphcatlog gnzgfg B IftA=1I and B = I, then /; Ud{bx}semnng( (1 a;{) } s
do! _alf‘ A ?"e ments of X and Y, and f could be exten e( ; gom) LA re_sult

A lff“lfi oo lity. Hence either A=XorB= Y (o 2
contradicting maximality. X i

follows.

ch that I is count-

i le well ordered set S su
ere is an uncountab s

0.18 Proposition. Th O other set with the same prop erties,

able foreach z € I
order isomorphic.

rdered sets exist by the well ordering principle; let X
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The set © in Proposition 0.18, which is essentially unique gua well ordered set, is
called the set of countable ordinals. It has the following remarkable property:

Proof.  Uncountable well o

0.19 Proposition. Every countable subset of ! has an upper bound.

Proof. If A C Qis countable, ¢ 4 Iz is countable and hence is not all of Q.
By Proposition 0.16, there exists y € Q such that | J ¢ 4 Iz = Iy, and y is thus an
upper bound for A. ¥

The set N of positive integers may be identified with a subset of 2 as follows. Set
f(1) = inf Q, and proceeding inductively, set f(n) = inf(Q\{f(1),..., f(n—1)}).
The reader may verify that f is an order isomorphism from N to I,,, where w is the
minimal element of © such that I, is infinite.

It is sometimes convenient to add an extra element w; to § to form a set Q* =
QU {w:} and to extend the ordering on Q to Q* by declaring that z < wy for all
z € . wy is called the first uncountable ordinal. (The usual notation for wy is Q,
since wy is generally taken to be the set of countable ordinals itself.)

0.5 THE EXTENDED REAL NUMBER SYSTEM

It its fr;quemly useful to adjoin two extra points oo (= +00) and —oo to R to form the
extended real number system R = RU {~00,00}, and to extend the usual ordering

on R by declaring that —co < z < 00 f

orallz € R. The compl,
be stated as follows: Every subset 4 of R has a least u ety
and a greatest lower bound, or infim i ’

-z}, we also write

max(al,...,an) =supA, min(a;,...,a,) = inf 4.
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From completeness it follows that every sequence {x,,} in R has a limit superior
and a limit inferior:

limsupz, = inf(su z, ) liminf z, =su ('nf )
PZn k21 nzg Lo & kzlz izkzn
The sequence {z} converges (in R) iff these two numbers are equal (and finite), in
which case its limit is their common value. One can also define lim sup and lim inf
for functions f : R — R, for instance:

limsup f(z) = inf( sup f(a:)).

z—a >0 \o<|z—a|<6
The arithmetical operations on R can be partially extended to R:

z+ 00 = +o0 (z € R), 0 + 00 = 00, —00 — 00 = —00,
z - (+o0) = oo (z > 0), z - (£00) = Foo (z < 0).

We make no attempt to define oo — oo, but we abide by the convention that, unless
otherwise stated,
0 (+o0) =0.
(The expression 0 - co turns up now and then in measure theory, and for various
reasons its proper interpretation is almost always 0.)
We employ the following notation for intervals in R: if —co < a < b < oo,

(a,0) = {z:a <z <b}, [a,b] = {z:a <z < b},
(a,b] = {z:a <z < b}, [a,0) = {z:a <z < b}.

We shall occasionally encounter uncountable sums of nonnegative numbers. If X
is an arbitrary set and f : X — [0, 00], we define ). x /() to be the supremum
of its finite partial sums:

N @)= sup{Z f():FcX, F ﬁnite}.

z€X T€F

(Later we shall recognize this as the integral of f with respect to counting measure
on X.)

0.20 Proposition. Given f : X — [0,00], let A = {z : f(z) > 0}. IfAis
uncountable, then 3. x f(x) = co. If Ais countably infinite, then Yy f(z) =
S0 fg(n)) where g : N — A is any bijection and the sum on the right is an
ordinary infinite series.

Proof. We have A = U 4, where A, = {z : f(z) > 1/n}. IfAis
uncountable, then some A, must be uncountable, and Y _c » f(z) > card(F)/n for
F'a finite subset of A,; it follows that 3°_ .y f(z) = co. If A is countably infinite,
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z€F
taking the supremum over F, : ‘
e ded) real-valued functions: A relation be-
understood to hold pointwise. Thus
and max(f, g) is the function whose

Some terminology concerning (extefl )
tween numbers that is applied to functions 15

< g means that f(z) < g(z) for every 2, ; : :
{al_uegatm zis max(f(z), g(z)). If X C Rand f: X — R, f is called increasing

if f(z) € f(y) wheneverz <y and strictly increasing.if i (z) < fly) wheflew?r
<Y si—milarly for decreasing. A function that is either increasing or decreasing is
called monotone. ; v

If f : R — R is an increasing function, then f has right- and left-hand limits at

each point:
f(e+) = lim f(z) = iuf f(z), fla-) = lim f(z) = sup f(z).

Moreover, the limiting values f(00) = sup,eg f(z) and f(—o0) = infser f()
exist (possibly equal to #00). f is called right continuous if f(a) = f(a+) for all
a € R and left continuous if f(a) = f(a—) foralla € R.

For points z in R or C, |z| denotes the ordinary absolute value or modulus of z,
|a + ib| = v/a® + 2. For points z in R™ or C", || denotes the Euclidean norm:

|z| = [Zn: in‘Q] 1/2.
1

We recall that a set U C R is open if, for every z € U, U includes an interval
centered at z.

0.21 Proposition. Everyopen setinR is a countable disjoint union of open intervals.

, Prot;f, If U is open, for each z € U consider t
l?f[eo;:\fnsi n1l eSrL:/CaT that celc U If is easy to check that the union of any family
e isS cz:1ma|nm_g & point In common is again an open interval, and hence
= JZISX - r<.>1pJen J_merval; it is th'e largest element of 7. If z,y € U then
than J, in 9, Thugif § = {rzjj forotherise J, U J, would be a larger open intervel
md U = .. J. Foreach J ¢ g € U}, the (distinct) members of g are disjoints
1+8 ~ Q this define 1 - < & Pick @ rational number f(J) € J. The map
Ly 18 Injective, for if J £ J' then J  Jt @; therefore J i

he collection J, of all open
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0.6 METRIC SPACES

A metric on a set X is a function p : X x X — [0, co) such that
o p(z,y) =0iffz=1y;
o p(z,y) = ply,z) forall z,y € X;
o p(z,2) < p(z,y) + ply, 2) forall z,y,z € X.

(Intuitively, p(z, y) is to be interpreted as the distance from z to y.) A set equipped
with a metric is called a metric space. Some examples:

. The Euclidean distance p(z,y) = |z — y| is a metric on R™.

i p1(f,9) = o £(2) = 9(e)|dz and peo(f,9) = Supo <oy | () = g(a)] are
metrics on the space of continuous functions on [0, 1].

iii. If pis a metric on X and A C X, then p|(A x A) is a metric on A.

iv. If (X, p1) and (X2, p2) are metric spaces, the product metric p on X; x X,
is given by

p((z1,22), (v1,92)) = max (p1(z1,y1), p2(z2,y2)).

Other metrics are sometimes used on X; x Xj, for instance,

1/2
pi(zy,y1) + pa(@e,y2) or  [pi(21,41)% + pa(w2, y2)?] o

These, however, are equivalent to the product metric in the sense that we shall
define at the end of this section.

Let (X, p) be a metric space. If z € X and r > 0, the (open) ball of radius »
about x is

B(r,z)={y € X : p(z,y) < 7},

Aset E C X is open if for every « € E there exists 7 > 0 such that B(r,z) C E,
and closed if its complement is open. For example, every ball B(r, z) is open, for
if y € B(r,z) and p(2,y) = s then B(r — s,y) C B(r,z). Also, X and @ are
both open and closed. Clearly the union of any family of open sets is open, and
hence the intersection of any family of closed sets is closed. Also, the intersection
(resp. union) of any finite family of open (resp. closed) sets is open (resp. closed).
Indeed, if Uy, ... Uy are openand = € (V] U, for each j there exists 5 > O such that
B(ry,z) C U,, and then B(r,z) C N} U; where r = min(ry,...,m,), so ] Uj is
open.

If E C X, the union of all open sets U C E is the largest open set contained in E;
itis called the interior of E and is denoted by E°. Likewise, the intersection of all
closed sets F' O E is the smallest closed set containing E; it is called the closure of
E and is denoted by E. E is said to be dense in X if E = X, and nowhere dense if
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ble if it has @ countable dense subset. (For

) A sequence {z,} in X converges
(zn,z) = 0.

X is called separa

atable dense subset of R® As
_, zorlimza, =2) if limn—oo P

F has empty interior.
example, Q™ is a cou
toz € X (symbolically: Zn
llowi

0.22 Proposition. If X is @ metric space, B C X, and © € X, the following are
equivalent:

a; T'e E.

b B(rz)NE# @forallr> 0.

¢. There is a sequence {z,} in E that converges to x.

2 losed set containing E but not

. If B(r,z ﬂE:@,th@B(T,m)__lsa.C !
z }s)ga;fé E ((Zonv)ersely, if z ¢ E, since (E)° is open there exists » > 0 such
ot Br z) € (E)° C E°. Thus (2)is equivalent to (b). If (b) holds, for each
neN tixere exists z, € B(n~!,z) N E, so that 2, — Z. On the other hand, if
B(r,z)NE = @, then p(y, ) 2 7 for all y € E, so no sequence of E' can converge
to 2. Thus (b) is equivalent to (c). B

If (X1, p1) and (Xa, po) are metric spaces, a map f: Xy — Xy is called contin-
wous at = € X if for every € > 0 there exists 6 > 0 such that 02(f(y), f(z)) < e
whenver ps (z,y) < 6§ — in other words, such that F~YB(e, f(z))) D B(6,x). The
map  is called continuous if it is continuous at each z € X; and uniformly contin-
uwous if, in addition, the & in the definition of continuity can be chosen independent
of z.

0.23 Proposition. f : X1 — Xo is continuous iff f~*(U) is open in X, for every
openU C Xo.

Proof. If the latter condition holds, then for every z € X; and € > 0, the set
SX(B(e, f(x))) is open and contains z, 50 it contains some ball about z; this means
that f is continuous at z. Conversely, suppose that f is continuous and U is open
in X,. Foreach y € U there exists ¢, > 0 such that B(ey,y) C U, and for each’
z € f7'({y}) there exists &; > 0 such that B(6,,z) C Y B(ey,y)) C f71U).
Thus f~1(U) = Uzef—l(U) B(6;, ) is open. ]

A sequence {z,} in a metric space (X, p) is called Cauchy if p(zp, 2m) — 0
asn,m — oo. A subset E of X is called complete if every Cauchy sequence in

E converges and its limit is in £, F i i
- For example, R™ (with the Euclidean metric) is
complete, whereas Q" is not, : - )

0.24 Proposition. A closed subs

et of a complete metric is
complete subset of an arbitrary m i e

etric space is closed,

Proof.  If X is com, i
X plete, £ C X is closed and
ixg}Ehas a limit in X. By Proposition 022,z ¢ E{zz
e by Pr9p0§1tlon (0.22) there is g sequence {z
auchy, so its limit Jjeg nEthus E=F ;

n} is a Cauchy sequence in E,
E. If B C X is complete and
}in E converging to z. {x}

]
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In a metric space (X, p) we can define the distance from a point to a set and the
distance between two sets. Namely, if z € X and E, F' C X,

p(z,E) = inf{p(z,y) : y € E},
o(E,F) =inf{p(z,y) :z € E,y € F} =inf{p(z,F) : 2 € E}.

Observe that, by Proposition 0.22, p(z, E) = 0 iff = € E. We also define the
diameter of £ C X to be

diam E = sup{p(z,y) : z,y € E}.

E is called bounded if diam F < co.

If E C X and {Va}aca is a family of sets such that E C U, ¢ 4 Var {Vataeca
is called a cover of F, and E is said to be covered by the V,’s. F is called totally
bounded if, for every € > 0, E can be covered by finitely many balls of radius e.
Every totally bounded set is bounded, for if z,y € ] B(e, z,), say € B(e, z1)
and y € B(e, z2), then

p(z,y) < p(x, 21) + p(21,22) + p(22,y) < 2¢ + max{p(z;,2,) : 1 < j, k < n}.

(The converse is false in general.) If E is totally bounded, so is E, for it is easily
seen that if E C |J] Bl(e, z,), then E C |JT B(2e, z,).

0.25 Theorem. If E is a subset of the metric space (X, p), the following are equiv-
alent: >
a. I is complete and totally bounded.
b. (The Bolzano-Weierstrass Property) Every sequence in E has a subsequence
that converges to a point of E.
c. (The Heine-Borel Property) If {V,}aca is a cover of E by open sets, there
is a finite set ' C A such that {V, }acr covers E.

Proof. We shall show that (a) and (b) are equivalent, that (a) and (b) together
imply (c), and finally that (c) implies (b). :

(a) implies (b): Suppose that (a) holds and {z,} is a sequence in E. F can be
covered by finitely many balls of radius 27, and at least one of them must contain z,,
for infinitely many n: say, , € By forn € Ni. E N B, can be covered by finitely
many balls of radius 272, and at least one of them must contain z, for infinitely many
n € Nyt say, z, € By forn € Ny. Continuing inductively, we obtain a sequence
of balls B, of radius 277 and a decreasing sequence of subsets V; of N such that
xz, € Bjforn € N;. Pickny, € Ny, ng € Ny,...suchthatny < nyg < ---.
Then {x,, } is a Cauchy sequence, for p(zn,, , zn,) < 2177 if k > j, and since E is
complete, it has a limit in E.

(b) implies (a): We show that if either condition in (a) fails, then so does (b). If
E is not complete, there is a Cauchy sequence {z,,} in E with no limit in E. No
subsequence of {z,} can converge in E, for otherwise the whole squence would
converge to the same limit. On the other hand, if E is not totally bounded, let € > 0



i % s€ Tn € £
i many balls of radius € 00!
be such that E cannot be COVCIed by ﬁmtely A Ch b ,

: < Begin with any @1 € £
inductively asEfo\”St'S.B(}:eng) et Pl i) 8 for all 7, m, 50 {Tx} has no
1 s vt L

pick Zn41 € . 4V} e
convergent subsequence. w that if (b) holds an 1Vasaedl T
(e)end ()inply i sutfsﬁ ie;t(()) Ss}:;h that every ball of radius e that intersects

s

Xi ;
%f'E : to Pr?:dsiertls;c?r:erz for E can be covered by finitely many such.balls by ()
is contat 0

i ius 27™ such
N there is a ball B of radius A
Suppose to the contrary that for egch n € B Eonbi by o
that B, N E # @ and Bn is comamed}m no Va. lt so?ne W
& s to : 4
¢ may assume that {z,} converge ¢
:2? ZZ?:L::r:fea:d sinze V. is open, there exists ¢ > 0 such that 113; (e, z)BC(6‘/;). CBu‘t/ if
n is large e’nough so that p(zn, 7) < €/3and 2-" < ¢/3, then B, C : A
icting the assumption on By :
con(tcr;uiir\l:;{;egst(g): 1f {zp,,} isa seqnuence in E with no convergent subs.equence, for
each z € E there is a ball B, centered at that contains z,, for only ﬁmtely many n
(otherwise some subsequence would converge to z). Then {Bs}ock is acoverof £
by open sets with no finite subcover. 0
A set E that possesses the properties (2)-(c) of Theorem 0.25 is called cor‘npact‘
Every compact set is closed (by Proposition 0.24) and bounded; the converse is false
in general but true in R™.
0.26 Proposition. Every closed and bounded subset of R™ is compact.

Proof. Since closed subsets of R* are complete, it suffices to show that bounded
subsets of R™ are totally bounded. Since every bounded set is contained in some
cube

Q=[-RR"= {z € R" : max(|z1],..., [zn]) < R}v
it is enough to show that @ is totally bounded. Given € > 0, pick an integer
k > Ry/n/e, and express @ as the union of k" congruent subcubes by dividing the
interval [~ R, R} into k equal pieces. The side length of these subcubes is 2R /k and

hence their diameter is \/R(2R/k) < 2e, so they are contained in the balls of radius
¢ about their centers. ]

Two metrics p; and p; on a set X are called equivalent if

Cp1 < pa < C'py for some G, C! >

Itis easily verified that equivalent metrics de

fine the same open, closed, and compact
sets, the same convergent and Cauchy sequ ks ; -

quently, most results concerning metric spaces
hosen but only on its equivalence class.

0.7 NOTES AND REFERENCES

§§0.1-0.4: T .
Smullyan and Feitgisg[ [eIXSPSOSI‘uon of set theory for beginners is Halmos [62], and
115 a good text on 5 more advanced level, Kelley, [83]
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also contains a concise account of of basic axiomatic set theory. All of these books
present a deduction of the Hausdorff maximal principle from the axiom of choice, as
does Hewitt and Stromberg [76].

The axiom of choice (or one of the propositions equivalent to it) is generally taken
as one of the basic postulates in the axiomatic formulations of set theory. Some
mathematicians of the intuitionist or constructivist persuasion reject it on the grounds
that one has not proved the existence of a mathematical object until one has shown
how to construct it in some reasonably explicit fashion, whereas the whole point of
the axiom of choice is to provide existence theorems when constructive methods fail
(or are too cumbersome for comfort). People who are seriously bothered by such
objections belong to a minority that does not include the present writer; in this book
the axiom of choice is used sparingly but freely.

The continuum hypothesis is the assertion that if card(X) < ¢, then X is
countable. (Since it follows easily from the construction of §2, the set of countable
ordinals, that card(Q2) < card(X) for any uncountable X, an equivalent assertion
is that card(Q2) = c.) It is known, thanks to Gédel and Cohen, that the continuum
hypothesis and its negation are both consistent with the standard axioms of set theory
including the axiom of choice, assuming that those axioms are themselves consistent.
(An exposition of the consistency and independence theorems for the axiom of choice
and the continuum hypothesis can be found in Smullyan and Fitting [135].) Some
mathematicians are willing to accept the continuum hypothesis as true, seemingly as
a matter of convenience, but Godel [56] and Cohen [26, p. 151] have both expressed
suspicions that it should be false, and as of this writing no one has found any really
compelling evidence on one side or the other. My own feeling, subject to revision
in the event of a major breakthrough in set theory, is that if the answer to one’s
question turns out to depend on the continuum hypothesis, one should give up and
ask a different question.

§0.6: A more detailed discussion of metric spaces can be found in Loomis and
Sternberg [95] and DePree and Swartz [32].



