1. Let μ be a finitely additive measure on a measurable space (X, \mathcal{M}). Show that the following statements are equivalent:
(i) μ is a measure.
(ii) For any sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{M}-measurable satisfying $0 \leq f_{n} \leq f_{n+1}$ for all $n \in \mathbb{N}$, one has

$$
\int_{X} \sup _{n \in \mathbb{N}} f_{n} d \mu=\sup _{n \in \mathbb{N}} \int_{X} f_{n} d \mu .^{1}
$$

(iii) For any sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{M}-measurable functions satisfying $f_{n} \geq 0$ for all $n \in \mathbb{N}$, one has

$$
\int_{X} \sum_{n=1}^{\infty} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu
$$

Proof. (i) \Rightarrow (ii): Note that $0 \leq f_{n} \leq f_{n+1} \operatorname{implies} \sup _{n} f_{n}=\lim _{n} f_{n}$ and that the integrals are likewise increasing. So by the monotone convergence theorem we have

$$
\int_{X} \sup _{n \in \mathbb{N}} f_{n} d \mu=\int_{X} \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\sup _{n \in \mathbb{N}} \int_{X} f_{n} d \mu .
$$

(ii) \Rightarrow (iii): Observe that $g_{N}:=\sum_{n=1}^{N} f_{n}$ defines an increasing sequence of non-negative functions with $\sup _{N} g_{N}=$ $\sum_{n=1}^{\infty} f_{n}$, and so by (ii) and the linearity of the integral we have

$$
\int_{X} \sum_{n=1}^{\infty} f_{n} d \mu=\int_{X} \sup _{N \in \mathbb{N}} g_{N} d \mu=\sup _{N \in \mathbb{N}} \int_{X} g_{N} d \mu=\sup _{N \in \mathbb{N}} \sum_{n=1}^{N} \int_{X} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu .
$$

(iii) \Rightarrow (i): Let $E_{n} \in \mathcal{M}, n \in \mathbb{N}$ be a sequence of disjoint subsets. Noting that

$$
\sum_{n=1}^{\infty} 1_{E_{n}}=1_{E},
$$

where $E=\bigcup_{n=1}^{\infty} E_{n}$, (iii) then gives

$$
\mu(E)=\int_{X} 1_{E} d \mu=\int_{X} \sum_{n=1}^{\infty} 1_{E_{n}} d \mu=\sum_{n=1}^{\infty} \int_{X} 1_{E_{n}} d \mu=\sum_{n=1}^{\infty} \mu\left(E_{n}\right) .
$$

Hence μ is countably additive and therefore a measure.
2. Let (X, \mathcal{M}, μ) be a measure space and suppose $\left(f_{n}\right)_{n \in \mathbb{N}},\left(g_{n}\right)_{n \in \mathbb{N}}$ are sequences of \mathcal{M}-measurable functions converging in measure to f and g, respectively. Suppose there exists $R>0$ so that $\left|f_{n}(x)\right|,\left|g_{n}(x)\right| \leq R$ for μ-almost every $x \in X$. Show that $\left(f_{n} g_{n}\right)_{n \in \mathbb{N}}$ converges in measure to $f g$.
[Hint: first show $|f(x)|,|g(x)| \leq R$ for μ-almost every $x \in X$.]
Proof. The convergence in measure of $\left(f_{n}\right)_{n \in \mathbb{N}}$ to f implies by a result from lecture that there exists a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ that converges to $f \mu$-almost everywhere. Hence for μ-almost every $x \in X$ we have

$$
|f(x)|=\lim _{k \rightarrow \infty}\left|f_{n_{k}}(x)\right| \leq R
$$

[^0]Similarly for g.
Now, fix $\epsilon>0$ and observe that $\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| \geq \epsilon$ implies

$$
\epsilon \leq\left|f_{n}(x) g_{n}(x)-f(x) g_{n}(x)+f(x) g_{n}(x)-f(x) g(x)\right| \leq\left|f_{n}(x)-f(x)\right|\left|g_{n}(x)\right|+|f(x)|\left|g_{n}(x)-g(x)\right|
$$

and for μ-almost every $x \in X$ we further have

$$
\epsilon \leq\left|f_{n}(x)-f(x)\right| R+R\left|g_{n}(x)-g(x)\right|
$$

Also note that, in this case at least one of $\left|f_{n}(x)-f(x)\right| R \geq \frac{\epsilon}{2}$ or $R\left|g_{n}(x)-g(x)\right| \geq \frac{\epsilon}{2}$ must be true, since otherwise we obtain the following contradiction:

$$
\epsilon \leq\left|f_{n}(x)-f(x)\right| R+R\left|g_{n}(x)-g(x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

These observations imply that

$$
\begin{aligned}
\mu(\{x \in X & \left.\left.:\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| \geq \epsilon\right\}\right) \\
& \leq \mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| R \geq \frac{\epsilon}{2}\right\} \cup\left\{x \in X: R\left|g_{n}(x)-g(x)\right| \geq \frac{\epsilon}{2}\right\}\right) \\
& \leq \mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \frac{\epsilon}{2 R}\right\}\right)+\mu\left(\left\{x \in X:\left|g_{n}(x)-g(x)\right| \geq \frac{\epsilon}{2 R}\right\}\right)
\end{aligned}
$$

The last two terms tend to zero as $n \rightarrow \infty$ by the assumed convergence in measure, and consequently $\left(f_{n} g_{n}\right)_{n \in \mathbb{N}}$ converges to $f g$ in measure.
3. Let $\left\{\nu_{n}: n \in \mathbb{N}\right\}$ is a family of finite signed measures on (X, \mathcal{M}) satisfying

$$
\sum_{n=1}^{\infty}\left|\nu_{n}\right|(X)<\infty
$$

Show that $\nu:=\sum_{n=1}^{\infty} \nu_{n}$ is a finite signed measure on (X, \mathcal{M}).
Proof. First observe $\nu(\emptyset)=\sum_{n=1}^{\infty} \nu_{n}(\emptyset)=0$. Next, suppose $E_{k} \in \mathcal{M}, k \in \mathbb{N}$, is a disjoint collection of subsets with union $E=\bigcup E_{k}$. Before showing ν is countable additive, we observe that Tonelli's theorem (applied to the counting measure) implies

$$
\sum_{k=1}^{\infty}\left|\nu\left(E_{k}\right)\right| \leq \sum_{k=1}^{\infty} \sum_{n=1}^{\infty}\left|\nu_{n}\right|\left(E_{k}\right)=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left|\nu_{n}\right|\left(E_{k}\right)=\sum_{n=1}^{\infty}\left|\nu_{n}\right|(E) \leq \sum_{n=1}^{\infty}\left|\nu_{n}\right|(X)<\infty
$$

Consequently Fubini's theorem (applied to the counting measure) gives

$$
\sum_{k=1}^{\infty} \nu\left(E_{k}\right)=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \nu_{n}\left(E_{k}\right)=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \nu_{n}\left(E_{k}\right)=\sum_{n=1}^{\infty} \nu_{n}(E)=\nu(E)
$$

Additionally, the sum in the first expression is absolutely convergent by the above estimate. Hence ν is a signed measure. To see that ν is finite, we observe that

$$
|\nu(E)| \leq \sum_{n=1}^{\infty}\left|\nu_{n}\right|(E) \leq \sum_{n=1}^{\infty}\left|\nu_{n}\right|(X)<\infty
$$

for all $E \in \mathcal{M}$.

[^0]: ${ }^{1}$ For an \mathcal{M}-measurable function $f: X \rightarrow[0,+\infty]$, we define its integral with respect to μ in exactly the same way as with respect to a measure, and in particular you may assume integration is linear and monotone.

