Name:		
NetID:		

Instructions:

- 1. You will have 50 minutes to complete the exam.
- 2. The exam is a total of 3 questions, their respective points values are listed below.
- 3. Unless stated otherwise, you must justify your answers with proofs.
- 4. You may cite any results from lecture or the homework.
- 5. No books, notes, calculators, or electronic devices are permitted.
- 6. If you require additional space, please use the reverse side of the pages.
- 7. The exam has a total of 4 pages, please verify that your copy has all 4 pages.

Question	Score	Points
1.		15
2.		20
3.		15
Total		50

- 1. Let μ be a **finitely additive** measure on a measurable space (X, \mathcal{M}) . Show that the following statements are equivalent:
 - (i) μ is a measure.
 - (ii) For any sequence $(f_n)_{n\in\mathbb{N}}$ of \mathcal{M} -measurable satisfying $0 \leq f_n \leq f_{n+1}$ for all $n \in \mathbb{N}$, one has

$$\int_X \sup_{n \in \mathbb{N}} f_n \ d\mu = \sup_{n \in \mathbb{N}} \int_X f_n \ d\mu.$$

(iii) For any sequence $(f_n)_{n \in \mathbb{N}}$ of \mathcal{M} -measurable functions satisfying $f_n \geq 0$ for all $n \in \mathbb{N}$, one has

$$\int_X \sum_{n=1}^{\infty} f_n \ d\mu = \sum_{n=1}^{\infty} \int_X f_n \ d\mu.$$

¹For an \mathcal{M} -measurable function $f: X \to [0, +\infty]$, we define its integral with respect to μ in exactly the same way as with respect to a measure, and in particular you may assume integration is linear and monotone.

2. Let (X, \mathcal{M}, μ) be a measure space and suppose $(f_n)_{n \in \mathbb{N}}$, $(g_n)_{n \in \mathbb{N}}$ are sequences of \mathcal{M} -measurable functions converging in measure to f and g, respectively. Suppose there exists R > 0 so that $|f_n(x)|, |g_n(x)| \leq R$ for μ -almost every $x \in X$. Show that $(f_n g_n)_{n \in \mathbb{N}}$ converges in measure to fg. [**Hint:** first show $|f(x)|, |g(x)| \leq R$ for μ -almost every $x \in X$.] 3. Let $\{\nu_n \colon n \in \mathbb{N}\}$ is a family of finite signed measures on (X, \mathcal{M}) satisfying

$$\sum_{n=1}^{\infty} |\nu_n|(X) < \infty.$$

Show that $\nu := \sum_{n=1}^{\infty} \nu_n$ is a finite signed measure on (X, \mathcal{M}) .