- 1. Let (X, \mathcal{M}) be a measurable space.
 - (a) For each $n \in \mathbb{N}$, let μ_n be a measure on \mathcal{M} and let $\alpha_n \in [0, +\infty)$. Show that

$$\mu(E) := \sum_{n=1}^{\infty} \alpha_n \mu_n(E)$$

defines a measure on \mathcal{M} .

- (b) Let μ be a measure on \mathcal{M} and $E_0 \in \mathcal{M}$. Show that $\nu(E) := \mu(E \cap E_0)$ defines a measure on \mathcal{M} .
- (c) Given a σ -finite measure μ on \mathcal{M} , show that there exists a finite measure ν on \mathcal{M} satisfying that $E \in \mathcal{M}$ is μ -null if and only if it is ν -null. (We say μ and ν are **equivalent** in this case.)

Proof. (a) We have

$$\mu(\emptyset) = \sum_{n=1}^{\infty} \alpha_n \cdot 0 = 0.$$

If $E = \bigcup_{k=1}^{\infty} E_k$ is a disjoint union with $A_n \in \mathcal{M}$, then using countable additivity for each μ_n we have

$$\mu(E) = \sum_{n=1}^{\infty} \alpha_n \mu_n(E) = \sum_{n=1}^{\infty} \alpha_n \sum_{k=1}^{\infty} \mu_n(E_k) = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \alpha_n \mu_n(E_k) = \sum_{k=1}^{\infty} \mu(E_k).$$

Hence μ is a measure.

(b) We have $\nu(\emptyset) = \mu(\emptyset) = 0$, and for a disjoint union $E = \bigcup_{k=1}^{\infty} E_k$ of \mathcal{M} -measurable sets one has

$$\nu(E) = \mu(E \cap E_0) = \sum_{k=1}^{\infty} \mu(E_k \cap E_0) = \sum_{k=1}^{\infty} \nu(E_k).$$

Hence ν is a measure.

(c) Using σ -finiteness of μ , we can write $X = \bigcup_{n=1}^{\infty} E_n$ where $\mu(E_n) < \infty$ for each $n \in \mathbb{N}$. Using parts (a) and (b), the following formula defines a measure:

$$\nu(E) := \sum_{n=1}^{\infty} \frac{2^{-n}}{1 + \mu(E_n)} \mu(E \cap E_n).$$

Since

$$\frac{2^{-n}}{1+\mu(E_n)}\mu(E\cap E_n) \le \frac{2^{-n}}{1+\mu(E_n)}\mu(E_n) \le 2^{-n},$$

it follows that

$$\nu(E) \le \sum_{n=1}^{\infty} 2^{-n} = 1$$

for all $E \in \mathcal{M}$. Hence ν is finite. Now, if E is μ -null, then $\mu(E \cap E_n) \leq \mu(E) = 0$ for all $n \in \mathbb{N}$ and hence $\nu(E) = 0$. Conversely, if E is ν -null, then we must have $\mu(E \cap E_n) = 0$ for all $n \in \mathbb{N}$. But then by countable subadditivity we have

$$\mu(E) \le \sum_{n=1}^{\infty} \mu(E \cap E_n) = 0.$$

Hence E is μ -null.

2. Suppose $F \colon \mathbb{R} \to \mathbb{R}$ is an increasing, differentiable function with $\sup_{t \in \mathbb{R}} F'(t) < \infty$, and let μ_F be the associated Lebesgue–Stieltjes measure. Denote the Lebesgue measure by m.

¹Interchanging series of positive terms without proof was explicitly permitted during the exam.

- (a) Show that every *m*-null set is μ_F -null.
- (b) Find an example of such a function F for which the converse is false.

Proof. (a) Denote

$$R := \sup_{t \in \mathbb{R}} F'(t).$$

Note that $0 \leq F' \leq R$ since F is increasing. For any $a, b \in \mathbb{R}$ with a < b, the Mean Value Theorem implies

$$\frac{F(b) - F(a)}{b - a} = F'(c) \le R \tag{1}$$

for some a < c < b. Now, suppose $E \subset \mathbb{R}$ is *m*-null. Then for $\epsilon > 0$ we can find a countable cover $E \subset \bigcup_{n=1}^{\infty} (a_n, b_n)$ satisfying

$$\sum_{n=1}^{\infty} (b_n - a_n) < \epsilon$$

Consequently, by (1) one has

$$\mu_F(E) \le \sum_{n=1}^{\infty} \mu_F((a_n, b_n)) \le \sum_{n=1}^{\infty} (F(b_n) - F(a_n)) \le \sum_{n=1}^{\infty} R(b_n - a_n) < R\epsilon.$$

Thus E is μ_F -null.

[Note: technically the question also asks one to verify that E is μ_F -measurable, but this was not required for grading purposes. The above argument actually shows E is null for the outer measure μ_F^* associated to F. But this implies E is also μ_F^* -measurable:

$$\mu_F^*(A) \le \mu_F^*(A \cap E) + \mu_F^*(A \cap E^c) = \mu_F^*(A \cap E^c) \le \mu_F^*(A).$$

Since μ_F is the complete measure given by restricting μ_F^* to such measurable sets, we see that E is in fact μ_F -measurable with $\mu_F(E) = 0$.]

- (b) Consider the constant function F(t) = 0 for all $t \in \mathbb{R}$. Then $\mu_F((a, b]) = F(b) F(a) = 0$ for all *h*-intervals. Thus (0, 1] is μ_F -null but not *m*-null.
- 3. Suppose $f \colon \mathbb{R} \to \mathbb{R}$ has a countable discontinuity set. Show that f is Borel measurable.

[**Hint:** the ϵ - δ definition of continuity will be more helpful than the sequential definition.]

Proof. By Proposition 2.1 from lecture it suffices to show $f^{-1}(U)$ is Borel measurable for all open sets $U \subset \mathbb{R}$. Fix such an open set and denote the discontinuity set of f by D. Observe that if f is continuous at x and $f(x) \in U$, then x lies in the interior of $f^{-1}(U)$ by definition of continuity. Thus

$$f^{-1}(U) = f^{-1}(U)^{\circ} \cup [D \cap f^{-1}(U) \setminus f^{-1}(U)^{\circ}].$$

Since the latter set is at most countable, it is Borel as a countable union of singletons. The interior is Borel as an open set, and thus $f^{-1}(U)$ is Borel.