Name:				

NetID:

Instructions:

- 1. You will have 50 minutes to complete the exam.
- 2. The exam is a total of 3 questions, their respective points values are listed below.
- 3. Unless stated otherwise, you must justify your answers with proofs.
- 4. You may cite any results from lecture or the homework.
- 5. No books, notes, calculators, or electronic devices are permitted.
- 6. If you require additional space, please use the reverse side of the pages.
- 7. The exam has a total of 4 pages, please verify that your copy has all 4 pages.

Question	Score	Points
1.		25
2.		15
3.		10
Total		50

- 1. Let (X, \mathcal{M}) be a measurable space.
 - (a) For each $n \in \mathbb{N}$, let μ_n be a measure on \mathcal{M} and let $\alpha_n \in [0, +\infty)$. Show that

$$\mu(E) := \sum_{n=1}^{\infty} \alpha_n \mu_n(E)$$

defines a measure on \mathcal{M} .

- (b) Let μ be a measure on \mathcal{M} and $E_0 \in \mathcal{M}$. Show that $\nu(E) := \mu(E \cap E_0)$ defines a measure on \mathcal{M} .
- (c) Given a σ -finite measure μ on \mathcal{M} , show that there exists a finite measure ν on \mathcal{M} satisfying that $E \in \mathcal{M}$ is μ -null if and only if it is ν -null. (We say μ and ν are **equivalent** in this case.)

- 2. Suppose $F \colon \mathbb{R} \to \mathbb{R}$ is an increasing, differentiable function with $\sup_{t \in \mathbb{R}} F'(t) < \infty$, and let μ_F be the associated Lebesgue–Stieltjes measure. Denote the Lebesgue measure by m.
 - (a) Show that every *m*-null set is μ_F -null.
 - (b) Find an example of such a function F for which the converse is false.

3. Suppose $f : \mathbb{R} \to \mathbb{R}$ has a countable discontinuity set. Show that f is Borel measurable. [Hint: the ϵ - δ definition of continuity will be more helpful than the sequential definition.]