Name: \qquad

NetID: \qquad

Instructions:

1. You will have 50 minutes to complete the exam.
2. The exam is a total of 3 questions, their respective points values are listed below.
3. Unless stated otherwise, you must justify your answers with proofs.
4. You may cite any results from lecture or the homework.
5. No books, notes, calculators, or electronic devices are permitted.
6. If you require additional space, please use the reverse side of the pages.
7. The exam has a total of 4 pages, please verify that your copy has all 4 pages.

Question	Score	Points
1.		25
2.		15
3.		10
Total		50

1. Let (X, \mathcal{M}) be a measurable space.
(a) For each $n \in \mathbb{N}$, let μ_{n} be a measure on \mathcal{M} and let $\alpha_{n} \in[0,+\infty)$. Show that

$$
\mu(E):=\sum_{n=1}^{\infty} \alpha_{n} \mu_{n}(E)
$$

defines a measure on \mathcal{M}.
(b) Let μ be a measure on \mathcal{M} and $E_{0} \in \mathcal{M}$. Show that $\nu(E):=\mu\left(E \cap E_{0}\right)$ defines a measure on \mathcal{M}.
(c) Given a σ-finite measure μ on \mathcal{M}, show that there exists a finite measure ν on \mathcal{M} satisfying that $E \in \mathcal{M}$ is μ-null if and only if it is ν-null. (We say μ and ν are equivalent in this case.)
2. Suppose $F: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing, differentiable function with $\sup _{t \in \mathbb{R}} F^{\prime}(t)<\infty$, and let μ_{F} be the associated Lebesgue-Stieltjes measure. Denote the Lebesgue measure by m.
(a) Show that every m-null set is μ_{F}-null.
(b) Find an example of such a function F for which the converse is false.
3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ has a countable discontinuity set. Show that f is Borel measurable. [Hint: the $\epsilon-\delta$ definition of continuity will be more helpful than the sequential definition.]

