Exercises: (Sections 3.1, 3.2)

1. Let $\nu$ be a signed measure on a measurable space $(X, \mathcal{M})$.
(a) Show $L^{1}(X, \nu)=L^{1}(X,|\nu|)$.
(b) For $f \in L^{1}(X, \nu)$, show $\left|\int_{X} f d \nu\right| \leq \int_{X}|f| d|\nu|$.
(c) For $E \in \mathcal{M}$, prove the following formulas:
(i) $\nu^{+}(E)=\sup \{\nu(F): F \subset E, F \in \mathcal{M}\}$
(ii) $\nu^{-}(E)=-\inf \{\nu(F): F \subset E, F \in \mathcal{M}\}$
(iii) assuming $\nu$ is $\sigma$-finite, $|\nu|(E)=\sup \left\{\left|\int_{E} f d \nu\right|: f \in L^{1}(X, \nu)\right.$ and $\left.|f| \leq 1\right\}$
(iv) $|\nu|(E)=\sup \left\{\left|\nu\left(E_{1}\right)\right|+\cdots+\left|\nu\left(E_{n}\right)\right|: n \in \mathbb{N}, E=E_{1} \cup \cdots \cup E_{n}\right.$ is a partition $\}$
2. Let $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ be a sequence of positive measures and let $\mu$ be a positive measure, all defined on the same measurable space $(X, \mathcal{M})$. Denote $\nu=\sum_{n=1}^{\infty} \nu_{n}$.
(a) Show that if $\nu_{n} \perp \mu$ for all $n \in \mathbb{N}$, then $\nu \perp \mu$.
(b) Show that if $\nu_{n} \ll \mu$ for all $n \in \mathbb{N}$, then $\nu \ll \mu$.
3. For $j=1,2$, let $\mu_{j}, \nu_{j}$ be $\sigma$-finite measures on $\left(X_{j}, \mathcal{M}_{j}\right)$ with $\nu_{j} \ll \mu_{j}$. Show that $\nu_{1} \times \nu_{2} \ll \mu_{1} \times \mu_{2}$ with

$$
\frac{d\left(\nu_{1} \times \nu_{2}\right)}{d\left(\mu_{1} \times \mu_{2}\right)}\left(x_{1}, x_{2}\right)=\frac{d \nu_{1}}{d \mu_{1}}\left(x_{1}\right) \frac{d \nu_{2}}{d \mu_{2}}\left(x_{2}\right)
$$

for $\left(\mu_{1} \times \mu_{2}\right)$-almost every $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$.
4. On $\left([0,1], \mathcal{B}_{[0,1]}\right)$, let $m$ be the Lebesgue measure and let $\nu$ be the counting measure.
(a) Show that $m \ll \nu$, but $d m \neq f d \nu$ for any function $f$.
(b) Show that there does not exist $\lambda \perp m$ and $\rho \ll m$ so that $\nu=\lambda+\rho$.
[Note: this shows the $\sigma$-finiteness assumption in the Lebesgue-Radon-Nikodym theorem is necessary.]
5. Let $(X, \mathcal{M}, \mu)$ be a $\sigma$-finite measure space, and let $\nu$ be a $\sigma$-finite signed measure on $(X, \mathcal{M})$ with $\nu \ll \mu$.
(a) Show that $\left|\frac{d \nu}{d \mu}\right|=\frac{d|\nu|}{d \mu}$.
(b) Show that $\frac{d \nu}{d \mu} \in L^{1}(X, \mu)$ if and only if $\nu$ is finite.
(c) Suppose $\nu$ is positive and let $\lambda:=\nu+\mu$. Show that $0 \leq \frac{d \nu}{d \lambda}<1 \mu$-almost everywhere and that

$$
\frac{d \nu}{d \mu}=\frac{\frac{d \nu}{d \lambda}}{1-\frac{d \nu}{d \lambda}} .
$$

## Solutions:

1. (a) By definition $L^{1}(X, \nu)=L^{1}\left(X, \nu^{+}\right) \cap L^{1}\left(X, \nu^{-}\right)$. So for $f \in L^{1}(X, \nu)$ we have

$$
\int_{X}|f| d|\nu|=\int_{X}|f| d \nu^{+}+\int_{X}|f| d \nu^{-}<\infty,
$$

and so $f \in L^{1}(X,|\nu|)$. Conversely, if $f \in L^{1}(X,|\nu|)$, then

$$
\int_{X}|f| d \nu^{+}+\int_{X}|f| d \nu^{-}=\int_{X}|f| d|\nu|<\infty
$$

implies $f \in L^{1}\left(X, \nu^{+}\right) \cap L^{1}\left(X, \nu^{-}\right)=L^{1}(X, \nu)$.
(b) Using Proposition 2.22 we have

$$
\begin{aligned}
\left|\int_{X} f d \nu\right| & =\left|\int_{X} f d \nu^{+}-\int_{X} f d \nu^{-}\right| \\
& \leq\left|\int_{X} f d \nu^{+}\right|+\left|\int_{X} f d \nu^{-}\right| \\
& \leq \int_{X}|f| d \nu^{+}+\int_{X}|f| d \nu^{-}=\int_{X}|f| d|\nu|
\end{aligned}
$$

(c) Let $X=P \cup N$ be a partition so that $P$ and $N$ are positive and negative for $\nu$, respectively.
(i) We have $\nu^{+}(E)=\nu(E \cap P)$ and so $\nu^{+}(E)$ is bounded above by the supremum. Conversely, for measurable $F \subset E$, we have $\nu(F)=\nu^{+}(F)-\nu^{-}(F) \leq \nu^{+}(F) \leq \nu^{+}(E)$.
(ii) We have $\nu^{-}(E)=-\nu(E \cap N)$ and so $\nu^{-}(E)$ is bounded above by the negative infimum. Conversely, for measurable $F \subset E$, we have $-\nu(F)=-\nu^{+}(F)+\nu^{-}(F) \leq \nu^{-}(F) \leq \nu^{-}(E)$.
(iii) Using part (b), if $|f| \leq 1$ then $\left|\int_{E} f d \nu\right| \leq \int_{E}|f| d|\nu| \leq|\nu|(E)$. So $|\nu|(E)$ is bounds the supremum above. On the other hand, recall $\nu$ being $\sigma$-finite means $|\nu|$ is $\sigma$-finite and so we have $X=\bigcup_{n=1}^{\infty} F_{n}$ with $|\nu|\left(F_{n}\right)<\infty$ and $F_{n} \subset F_{n+1}$ for each $n \in \mathbb{N}$. Consider $f_{n}:=1_{P \cap F_{n}}-1_{N \cap F_{n}}$, which satisfies

$$
\int_{X}\left|f_{n}\right| d|\nu|=\int_{X} 1_{F_{n}} d|\nu|=|\nu|\left(F_{n}\right)<\infty
$$

Thus $f_{n} \in L^{1}(X,|\nu|)$, and hence $f_{n} \in L^{1}(X, \nu)$ by part (a). Now, $f_{n}=1_{P \cap F_{n}} \nu^{+}$-a.e. and $f=-1_{N \cap F_{n}} \nu^{-}$-a.e. and therefore

$$
\begin{aligned}
\int_{E} f_{n} d \nu & =\int_{E} f_{n} d \nu^{+}-\int_{E} f_{n} d \nu^{-}=\int_{E} 1_{P \cap F_{n}} d \nu^{+}+\int_{E} 1_{N \cap F_{n}} d \nu^{-} \\
& =\nu^{+}\left(E \cap P \cap F_{n}\right)+\nu^{-}\left(E \cap N \cap F_{n}\right)=\nu^{+}\left(E \cap F_{n}\right)+\nu^{-}\left(E \cap F_{n}\right)=|\nu|\left(E \cap F_{n}\right)
\end{aligned}
$$

Since the $F_{n}$ 's increase to $X$, taking supremum of the above quantity over $n \in \mathbb{N}$ yields $|\nu|(E)$ by continuity from below.
(iv) For any partition $E=E_{1} \cup \cdots \cup E_{n}$, we have

$$
\left|\nu\left(E_{1}\right)\right|+\cdots+\left|\nu\left(E_{n}\right)\right| \leq|\nu|\left(E_{1}\right)+\cdots+|\nu|\left(E_{n}\right)=|\nu|\left(E_{1} \cup \cdots \cup E_{n}\right)=|\nu|(E)
$$

Hence $|\nu|(E)$ bounds the supremum above. Conversely, let $X=P \cup N$ be a Hahn decomposition for $\nu$. Then

$$
|\nu|(E)=\nu^{+}(E)+\nu^{-}(E)=|\nu(E \cap P)|+|\nu(E \cap N)|,
$$

and so $|\nu|(E)$ is bounded by the supremum.
2. (a) For each $n \in \mathbb{N}$, let $X=E_{n} \sqcup F_{n}$ be a partition such that $E_{n}$ is $\nu_{n}$-null and $F_{n}$ is $\mu$-null. Define

$$
E:=\bigcap_{n=1}^{\infty} E_{n} \quad \text { and } \quad F:=\bigcup_{n=1}^{\infty} F_{n} .
$$

Then

$$
E^{c}=\bigcup_{n=1}^{\infty} E_{n}^{c}=\bigcup_{n=1}^{\infty} F_{n}=F
$$

so that $X=E \sqcup F$ is a partition. Additionally, $F$ is $\mu$-null as the countable union of $\mu$-null sets. Finallly, $E \subset E_{n}$ so that $E$ is $\nu_{n}$-null for all $n \in \mathbb{N}$. Consequently,

$$
\nu(E)=\sum_{n=1}^{\infty} \nu_{n}(E)=\sum_{n=1}^{\infty} 0=0
$$

That is, $E$ is $\nu$-null and therefore $\nu \perp \mu$.
(b) Let $E \in \mathcal{M}$ be $\mu$-null. By assumption it is $\nu_{n}$-null for all $n \in \mathbb{N}$, and hence

$$
\nu(E)=\sum_{n=1}^{\infty} \nu_{n}(E)=\sum_{n=1}^{\infty} 0=0
$$

Thus $\nu \ll \mu$.
3. Let $E \in \mathcal{M}_{1} \otimes \mathcal{M}_{2}$. Then Tonelli's theorem (applied twice) and Exercise 3 on Homework 5 imply

$$
\left(\nu_{1} \times \nu_{2}\right)(E)=\int 1_{E} d\left(\nu_{1} \otimes \nu_{2}\right)=\iint 1_{E} d \nu_{1} d \nu_{2}=\iint 1_{E} \frac{d \nu_{1}}{d \mu_{1}} d \mu_{1} \frac{d \nu_{2}}{d \mu_{2}} d \mu_{2}=\int_{E} \frac{d \nu_{1}}{d \mu_{1}} \frac{d \nu_{2}}{d \mu_{2}} d\left(\mu_{1} \times \mu_{2}\right)
$$

Thus if $\left(\mu_{1} \times \mu_{2}\right)(E)=0$, then the above equals zero and so $\nu_{1} \times \nu_{2} \ll \mu_{1} \times \mu_{2}$. The same computation shows the claimed equality by the uniqueness in the Lebesgue-Radon-Nikodym theorem.
4. (a) If $\nu(E)=0$, then necessarily $E=\emptyset$ and so $\mu(E)=0$. Hence $m \ll \nu$. Suppose, towards a contradiction, that $d m=f d \nu$ for some $f$. Then for each $t \in \mathbb{R}$

$$
0=m(\{t\})=\int_{\{t\}} f d \nu=f(t)
$$

Hence $f \equiv 0$, but then $m([0,1])=1 \neq 0=\int_{[0,1]} f d \nu$, a contradiction.
(b) Suppose towards a contradiction that $\nu=\lambda+\rho$ for $\lambda \perp \mu$ and $\rho \ll m$. Let $[0,1]=E \cup F$ where $E$ is $\lambda$-null and $F$ is $m$-null (and hence $\rho$-null). For each $t \in[0,1], \rho(\{t\})=0$ and so $\lambda(\{t\})=\nu(\{t\})=1>0$. Thus we must have $\{t\} \subset F$ for each $t \in[0,1]$ and therefore $F=[0,1]$. But this set is not $m$-null.
5. (a) We have $\frac{d \nu}{d \mu}=\frac{d \nu^{+}}{d \mu}-\frac{d \nu^{-}}{d \mu}$, and $\frac{d \nu^{ \pm}}{d \mu} \geq 0$ since $\nu^{ \pm}$are positive. Let $X=P \cup N$ be a Hahn decomposition for $\nu$. Then

$$
\int_{P} \frac{d \nu^{-}}{d \mu} d \mu=\nu^{-}(P)=0
$$

and so $\frac{d \nu^{-}}{d \mu}(x)=0$ for $\mu$-almost every $x \in P$ by Proposition 2.16. Similarly $\frac{d \nu^{+}}{d \mu}(x)=0$ for $\mu$-almost every $x \in N$. Hence $\frac{d \nu^{+}}{d \mu}=\frac{d \nu^{+}}{d \mu} 1_{P}$ and $\frac{d \nu^{-}}{d \mu}=\frac{d \nu^{-}}{d \mu} 1_{N}$ and since $P \cap N=\emptyset$ we have

$$
\left|\frac{d \nu}{d \mu}\right|=\left|\frac{d \nu^{+}}{d \mu} 1_{P}-\frac{d \nu^{-}}{d \mu} 1_{N}\right|=\frac{d \nu^{+}}{d \mu} 1_{P}+\frac{d \nu^{-}}{d \mu} 1_{N}=\frac{d \nu^{+}}{d \mu}+\frac{d \nu^{-}}{d \mu}=\frac{d|\nu|}{d \mu}
$$

(b) By part (a),

$$
|\nu|(X)=\int_{X} \frac{d|\nu|}{d \mu} d \mu=\int_{X}\left|\frac{d \nu}{d \mu}\right| d \mu
$$

Thus $|\nu|(X)<\infty$ (i.e. $\nu$ is finite) iff $\frac{d \nu}{d \mu} \in L^{1}(X, \mu)$.
(c) We have $\frac{d \nu}{d \lambda} \geq 0$ since $\nu$ is positive. Observe that for $E:=\left\{x \in X: \frac{d \nu}{d \lambda}(x) \geq 1\right\}$ we have

$$
0 \leq \int_{E} 1-\frac{d \nu}{d \lambda} d \lambda=\lambda(E)-\nu(E)=\mu(E)
$$

Thus $\mu(E)=0$ and so $\frac{d \nu}{d \mu}<1 \mu$-almost everywhere. Now, Theorem 3.10 implies

$$
\frac{d \nu}{d \lambda}=\frac{d \nu}{d \mu} \frac{d \mu}{d \lambda}=\frac{d \nu}{d \mu} \frac{d(\lambda-\nu)}{d \lambda}=\frac{d \nu}{d \mu}\left(1-\frac{d \nu}{d \lambda}\right)
$$

Solving for $\frac{d \nu}{d \mu}$ yields the claimed equality.

