Exercises: (Sections 3.1, 3.2)

- 1. Let ν be a signed measure on a measurable space (X, \mathcal{M}) .
 - (a) Show $L^1(X, \nu) = L^1(X, |\nu|)$.
 - (b) For $f \in L^1(X, \nu)$, show $|\int_X f d\nu| \le \int_X |f| d|\nu|$.
 - (c) For $E \in \mathcal{M}$, prove the following formulas:
 - (i) $\nu^+(E) = \sup\{\nu(F) \colon F \subset E, F \in \mathcal{M}\}$
 - (ii) $\nu^{-}(E) = -\inf\{\nu(F) \colon F \subset E, F \in \mathcal{M}\}$
 - (iii) assuming ν is σ -finite, $|\nu|(E) = \sup\{|\int_E f d\nu| : f \in L^1(X, \nu) \text{ and } |f| \le 1\}$
 - (iv) $|\nu|(E) = \sup\{|\nu(E_1)| + \dots + |\nu(E_n)|: n \in \mathbb{N}, E = E_1 \cup \dots \cup E_n \text{ is a partition}\}$
- 2. Let $(\nu_n)_{n \in \mathbb{N}}$ be a sequence of positive measures and let μ be a positive measure, all defined on the same measurable space (X, \mathcal{M}) . Denote $\nu = \sum_{n=1}^{\infty} \nu_n$.
 - (a) Show that if $\nu_n \perp \mu$ for all $n \in \mathbb{N}$, then $\nu \perp \mu$.
 - (b) Show that if $\nu_n \ll \mu$ for all $n \in \mathbb{N}$, then $\nu \ll \mu$.
- 3. For j = 1, 2, let μ_j , ν_j be σ -finite measures on (X_j, \mathcal{M}_j) with $\nu_j \ll \mu_j$. Show that $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ with

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1)\frac{d\nu_2}{d\mu_2}(x_2)$$

for $(\mu_1 \times \mu_2)$ -almost every $(x_1, x_2) \in X_1 \times X_2$.

- 4. On $([0,1], \mathcal{B}_{[0,1]})$, let *m* be the Lebesgue measure and let ν be the counting measure.
 - (a) Show that $m \ll \nu$, but $dm \neq f d\nu$ for any function f.
 - (b) Show that there does **not** exist $\lambda \perp m$ and $\rho \ll m$ so that $\nu = \lambda + \rho$.

[Note: this shows the σ -finiteness assumption in the Lebesgue–Radon–Nikodym theorem is necessary.]

- 5. Let (X, \mathcal{M}, μ) be a σ -finite measure space, and let ν be a σ -finite signed measure on (X, \mathcal{M}) with $\nu \ll \mu$.
 - (a) Show that $\left|\frac{d\nu}{d\mu}\right| = \frac{d|\nu|}{d\mu}$.
 - (b) Show that $\frac{d\nu}{d\mu} \in L^1(X,\mu)$ if and only if ν is finite.
 - (c) Suppose ν is positive and let $\lambda := \nu + \mu$. Show that $0 \leq \frac{d\nu}{d\lambda} < 1$ μ -almost everywhere and that

$$\frac{d\nu}{d\mu} = \frac{\frac{d\nu}{d\lambda}}{1 - \frac{d\nu}{d\lambda}}$$

Solutions:

1. (a) By definition $L^1(X,\nu) = L^1(X,\nu^+) \cap L^1(X,\nu^-)$. So for $f \in L^1(X,\nu)$ we have

$$\int_{X} |f| \ d|\nu| = \int_{X} |f| \ d\nu^{+} + \int_{X} |f| \ d\nu^{-} < \infty,$$

and so $f \in L^1(X, |\nu|)$. Conversely, if $f \in L^1(X, |\nu|)$, then

$$\int_{X} |f| \, d\nu^{+} + \int_{X} |f| \, d\nu^{-} = \int_{X} |f| \, d|\nu| < \infty$$

implies $f \in L^1(X, \nu^+) \cap L^1(X, \nu^-) = L^1(X, \nu).$

(b) Using Proposition 2.22 we have

$$\begin{split} \int_X f \, d\nu \bigg| &= \left| \int_X f \, d\nu^+ - \int_X f \, d\nu^- \right| \\ &\leq \left| \int_X f \, d\nu^+ \right| + \left| \int_X f \, d\nu^- \right| \\ &\leq \int_X |f| \, d\nu^+ + \int_X |f| \, d\nu^- = \int_X |f| \, d|\nu| \end{split}$$

- (c) Let $X = P \cup N$ be a partition so that P and N are positive and negative for ν , respectively.
 - (i) We have $\nu^+(E) = \nu(E \cap P)$ and so $\nu^+(E)$ is bounded above by the supremum. Conversely, for measurable $F \subset E$, we have $\nu(F) = \nu^+(F) \nu^-(F) \le \nu^+(F) \le \nu^+(E)$.
 - (ii) We have $\nu^{-}(E) = -\nu(E \cap N)$ and so $\nu^{-}(E)$ is bounded above by the negative infimum. Conversely, for measurable $F \subset E$, we have $-\nu(F) = -\nu^{+}(F) + \nu^{-}(F) \leq \nu^{-}(F) \leq \nu^{-}(E)$.
 - (iii) Using part (b), if $|f| \leq 1$ then $|\int_E f d\nu| \leq \int_E |f| d|\nu| \leq |\nu|(E)$. So $|\nu|(E)$ is bounds the supremum above. On the other hand, recall ν being σ -finite means $|\nu|$ is σ -finite and so we have $X = \bigcup_{n=1}^{\infty} F_n$ with $|\nu|(F_n) < \infty$ and $F_n \subset F_{n+1}$ for each $n \in \mathbb{N}$. Consider $f_n := 1_{P \cap F_n} - 1_{N \cap F_n}$, which satisfies

$$\int_X |f_n| \ d|\nu| = \int_X \mathbf{1}_{F_n} \ d|\nu| = |\nu|(F_n) < \infty.$$

Thus $f_n \in L^1(X, |\nu|)$, and hence $f_n \in L^1(X, \nu)$ by part (a). Now, $f_n = \mathbb{1}_{P \cap F_n} \nu^+$ -a.e. and $f = -\mathbb{1}_{N \cap F_n} \nu^-$ -a.e. and therefore

$$\int_E f_n \, d\nu = \int_E f_n \, d\nu^+ - \int_E f_n \, d\nu^- = \int_E 1_{P \cap F_n} \, d\nu^+ + \int_E 1_{N \cap F_n} \, d\nu^-$$
$$= \nu^+ (E \cap P \cap F_n) + \nu^- (E \cap N \cap F_n) = \nu^+ (E \cap F_n) + \nu^- (E \cap F_n) = |\nu| (E \cap F_n).$$

Since the F_n 's increase to X, taking supremum of the above quantity over $n \in \mathbb{N}$ yields $|\nu|(E)$ by continuity from below.

(iv) For any partition $E = E_1 \cup \cdots \cup E_n$, we have

$$|\nu(E_1)| + \dots + |\nu(E_n)| \le |\nu|(E_1) + \dots + |\nu|(E_n) = |\nu|(E_1 \cup \dots \cup E_n) = |\nu|(E).$$

Hence $|\nu|(E)$ bounds the supremum above. Conversely, let $X = P \cup N$ be a Hahn decomposition for ν . Then

$$|\nu|(E) = \nu^+(E) + \nu^-(E) = |\nu(E \cap P)| + |\nu(E \cap N)|$$

and so $|\nu|(E)$ is bounded by the supremum.

2. (a) For each $n \in \mathbb{N}$, let $X = E_n \sqcup F_n$ be a partition such that E_n is ν_n -null and F_n is μ -null. Define

$$E := \bigcap_{n=1}^{\infty} E_n$$
 and $F := \bigcup_{n=1}^{\infty} F_n$.

Then

$$E^c = \bigcup_{n=1}^{\infty} E_n^c = \bigcup_{n=1}^{\infty} F_n = F,$$

so that $X = E \sqcup F$ is a partition. Additionally, F is μ -null as the countable union of μ -null sets. Finally, $E \subset E_n$ so that E is ν_n -null for all $n \in \mathbb{N}$. Consequently,

$$\nu(E) = \sum_{n=1}^{\infty} \nu_n(E) = \sum_{n=1}^{\infty} 0 = 0.$$

That is, E is ν -null and therefore $\nu \perp \mu$.

(b) Let $E \in \mathcal{M}$ be μ -null. By assumption it is ν_n -null for all $n \in \mathbb{N}$, and hence

$$\nu(E) = \sum_{n=1}^{\infty} \nu_n(E) = \sum_{n=1}^{\infty} 0 = 0.$$

Thus $\nu \ll \mu$.

3. Let $E \in \mathcal{M}_1 \otimes \mathcal{M}_2$. Then Tonelli's theorem (applied twice) and Exercise 3 on Homework 5 imply

$$(\nu_1 \times \nu_2)(E) = \int 1_E \ d(\nu_1 \otimes \nu_2) = \iint 1_E \ d\nu_1 d\nu_2 = \iint 1_E \frac{d\nu_1}{d\mu_1} d\mu_1 \frac{d\nu_2}{d\mu_2} d\mu_2 = \int_E \frac{d\nu_1}{d\mu_1} \frac{d\nu_2}{d\mu_2} \ d(\mu_1 \times \mu_2).$$

Thus if $(\mu_1 \times \mu_2)(E) = 0$, then the above equals zero and so $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$. The same computation shows the claimed equality by the uniqueness in the Lebesgue–Radon–Nikodym theorem.

4. (a) If $\nu(E) = 0$, then necessarily $E = \emptyset$ and so $\mu(E) = 0$. Hence $m \ll \nu$. Suppose, towards a contradiction, that $dm = f d\nu$ for some f. Then for each $t \in \mathbb{R}$

$$0 = m(\{t\}) = \int_{\{t\}} f \, d\nu = f(t).$$

Hence $f \equiv 0$, but then $m([0,1]) = 1 \neq 0 = \int_{[0,1]} f \, d\nu$, a contradiction.

- (b) Suppose towards a contradiction that $\nu = \lambda + \rho$ for $\lambda \perp \mu$ and $\rho \ll m$. Let $[0,1] = E \cup F$ where E is λ -null and F is m-null (and hence ρ -null). For each $t \in [0,1]$, $\rho(\{t\}) = 0$ and so $\lambda({t}) = \nu({t}) = 1 > 0$. Thus we must have ${t} \subset F$ for each $t \in [0, 1]$ and therefore F = [0, 1]. But this set is not m-null. \square
- 5. (a) We have $\frac{d\nu}{d\mu} = \frac{d\nu^+}{d\mu} \frac{d\nu^-}{d\mu}$, and $\frac{d\nu^{\pm}}{d\mu} \ge 0$ since ν^{\pm} are positive. Let $X = P \cup N$ be a Hahn decomposition for ν . Then

$$\int_P \frac{d\nu^-}{d\mu} \ d\mu = \nu^-(P) = 0,$$

and so $\frac{d\nu^-}{d\mu}(x) = 0$ for μ -almost every $x \in P$ by Proposition 2.16. Similarly $\frac{d\nu^+}{d\mu}(x) = 0$ for μ -almost every $x \in N$. Hence $\frac{d\nu^+}{d\mu} = \frac{d\nu^+}{d\mu} \mathbf{1}_P$ and $\frac{d\nu^-}{d\mu} = \frac{d\nu^-}{d\mu} \mathbf{1}_N$ and since $P \cap N = \emptyset$ we have

$$\left|\frac{d\nu}{d\mu}\right| = \left|\frac{d\nu^+}{d\mu}1_P - \frac{d\nu^-}{d\mu}1_N\right| = \frac{d\nu^+}{d\mu}1_P + \frac{d\nu^-}{d\mu}1_N = \frac{d\nu^+}{d\mu} + \frac{d\nu^-}{d\mu} = \frac{d|\nu|}{d\mu}.$$

(b) By part (a),

$$|\nu|(X) = \int_X \frac{d|\nu|}{d\mu} \ d\mu = \int_X \left| \frac{d\nu}{d\mu} \right| d\mu.$$

Thus $|\nu|(X) < \infty$ (i.e. ν is finite) iff $\frac{d\nu}{d\mu} \in L^1(X,\mu)$.

(c) We have $\frac{d\nu}{d\lambda} \ge 0$ since ν is positive. Observe that for $E := \{x \in X : \frac{d\nu}{d\lambda}(x) \ge 1\}$ we have

$$0 \le \int_E 1 - \frac{d\nu}{d\lambda} \ d\lambda = \lambda(E) - \nu(E) = \mu(E)$$

Thus $\mu(E) = 0$ and so $\frac{d\nu}{d\mu} < 1$ μ -almost everywhere. Now, Theorem 3.10 implies

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu}\frac{d\mu}{d\lambda} = \frac{d\nu}{d\mu}\frac{d(\lambda-\nu)}{d\lambda} = \frac{d\nu}{d\mu}\left(1 - \frac{d\nu}{d\lambda}\right)$$

Solving for $\frac{d\nu}{d\mu}$ yields the claimed equality.