Exercises: (Sections 2.5, 3.1)

1. On $\left([0,1], \mathcal{B}_{[0,1]}\right)$, let m be the Lebesgue measure and let ν be the counting measure. For the diagonal set

$$
D:=\left\{(t, t) \in[0,1]^{2}: 0 \leq t \leq 1\right\}
$$

show that $\iint 1_{D} d m d \nu, \iint 1_{D} d \nu d m$, and $\int 1_{D} d(m \times \nu)$ are all distinct.
[Note: this shows the σ-finiteness assumption in the Fubini-Tonelli theorem is necessary.]
2. Let (X, \mathcal{M}, μ) be a σ-finite measure space and $f \in L^{+}(X, \mu)$.
(a) Show that

$$
G_{f}:=\{(x, t) \in X \times[0, \infty): t \leq f(x)\}
$$

is $\mathcal{M} \otimes \mathcal{B}_{\mathbb{R}}$-measurable with $\mu \times m\left(G_{f}\right)=\int_{X} f d \mu$.
(b) Prove the layer cake formula:

$$
\int_{X} f d \mu=\int_{[0, \infty)} \mu(\{x \in X: f(x) \geq t\}) d m(t)
$$

(c) Use part (a) and continuity from below to give an alternate (albeit circular) proof of the monotone convergence theorem.
3. Suppose $f \in L^{1}((0,1), m)$, and define

$$
g(x):=\int_{(x, 1)} \frac{1}{t} f(t) d m(t) \quad 0<x<1 .
$$

Show that $g \in L^{1}((0,1), m)$ with $\int_{(0,1)} g d m=\int_{(0,1)} f d m$.
4. Let ν and μ be signed measures on a measurable space (X, \mathcal{M}).
(a) Show that E is ν-null if and only if $|\nu|(E)=0$.
(b) Show the following are equivalent:
(i) $\nu \perp \mu$
(ii) $|\nu| \perp \mu$
(iii) $\nu^{+} \perp \mu$ and $\nu^{-} \perp \mu$.
5. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces, let $f: X \rightarrow \mathbb{C}$ be \mathcal{M}-measurable, and let $g: Y \rightarrow \mathbb{C}$ be \mathcal{N}-measurable.
(a) Show that $h: X \times Y \rightarrow \mathbb{C}$ defined by $h(x, y):=f(x) g(y)$ is $\mathcal{M} \otimes \mathcal{N}$-measurable.
(b) Show that if $f \in L^{1}(X, \mu)$ and $g \in L^{1}(Y, \nu)$, then $h \in L^{1}(X \times Y, \mu \times \nu)$ with

$$
\int_{X \times Y} h d(\mu \times \nu)=\left(\int_{X} f d \mu\right)\left(\int_{Y} g d \nu\right) .
$$

Solutions:

1. For $t \in[0,1]$, we have $\left(1_{D}\right)^{t}(s)=1_{D}(s, t)=1_{\{t\}}(s)$. Since $1_{\{t\}}=0 m$-almost everywhere, we have $\int 1_{D}(s, t) d m(s)=0$ for all $t \in[0,1]$ and hence $\iint 1_{D} d m \nu=0$. On the other hand,

$$
\int_{[0,1]} 1_{D}(s, t) d \nu(t)=\int_{[0,1]} 1_{\{s\}}(t) d \nu(t)=\nu(\{s\})=1
$$

and so $\iint 1_{D} d \nu d m=\int 1 d m=1$. Finally, we have $\int 1_{D} d(m \times \nu)=m \times \nu(D)$. To compute this, recall that $\mu \times \nu$ is by construction the restriction of the outer measure defined by the premeasure π from lecture. Consequently,

$$
m \times \nu(D)=\inf \left\{\sum_{n=1}^{\infty} m\left(A_{n}\right) \nu\left(B_{n}\right): D \subset \bigcup_{n=1}^{\infty} A_{n} \times B_{n}, A_{n}, B_{n} \in \mathcal{B}_{[0,1]}\right\}
$$

Fix some cover $D \subset \bigcup_{n=1}^{\infty} A_{n} \times B_{n}$. Then $[0,1] \subset \bigcup_{n=1}^{\infty} A_{n}$, and so $\sum_{n=1}^{\infty} m\left(A_{n}\right) \geq 1$. Let $I=\{n \in$ $\left.\mathbb{N}: m\left(A_{n}\right)=0\right\}$ and $E:=[0,1] \backslash \bigcup_{n \in I} A_{n}$. Then $m(E)=1$ and hence E is necessarily uncountable. We also have

$$
\left\{(t, t) \in[0,1]^{2}: t \in E\right\} \subset \bigcup_{n \notin I} A_{n} \times B_{n}
$$

and so $E \subset \bigcup_{n \notin I} B_{n}$. Since E is uncountable, at least one $B_{n}, n \notin I$, must be uncountable. Since $m\left(A_{n}\right)>0$ by definition of I, it follows that $m\left(A_{n}\right) \nu\left(B_{n}\right)=\infty$. Since this was an arbitrary cover of D by measurable rectangles, it follows that $m \times \nu(D)=\infty$.
2. (a) Consider $F(x, t):=(f(x), t)$, which is $\left(\mathcal{M} \otimes \mathcal{B}_{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}} \otimes \mathcal{B}_{\mathbb{R}}\right)$-measurable by Proposition 2.4, and $[0, \infty] \times[0, \infty) \ni(s, t) \mapsto s-t$ which is continuous and hence $\mathcal{B}_{\overline{\mathbb{R}}} \otimes \mathcal{B}_{\mathbb{R}}$-measurable. Thus $(x, t) \mapsto$ $f(x)-t$, the composition of these maps, is $\mathcal{M} \otimes \mathcal{B}_{\mathbb{R}}$ measurable, and G_{f} is the preimage of $[0, \infty]$ under this map. Note that for $x \in X,\left(G_{f}\right)_{x}=[0, f(x)]$ and so $m\left(\left(G_{f}\right)_{x}\right)=f(x)$. Using Theorem 2.35 we have

$$
\mu \times m\left(G_{f}\right) \int_{X} m\left(\left(G_{f}\right)_{x}\right) d \mu(x)=\int_{X} f(x) d \mu(x)=\int_{X} f d \mu
$$

(b) For $t \in[0, \infty)$, observe that $\left(G_{f}\right)^{t}=\left\{x \in X:(x, t) \in G_{f}\right\}=\{x \in X: f(x) \geq t\}$. So using the other part of Theorem 2.35, we have

$$
\int_{X} f d \mu=\mu \times m\left(G_{f}\right)=\int_{[0, \infty)} \mu\left(\left(G_{f}\right)^{t}\right) d m(t)=\int_{[0, \infty)} \mu(\{x \in X: f(x) \geq t\}) d m(t)
$$

(c) Suppose $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{+}(X, \mu)$ increase pointwise to $f \in L^{+}(X, \mu)$. Then $G_{f_{n}} \subset G_{f_{n+1}}$ for each $n \in \mathbb{N}$ and

$$
\bigcup_{n=1}^{\infty} G_{f_{n}}=G_{f}
$$

Thus by continuity from below and part (a) we have

$$
\int_{X} f d \mu=\mu \times m\left(G_{f}\right)=\lim _{n \rightarrow \infty} \mu \otimes m\left(G_{f_{n}}\right)=\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu
$$

3. Consider $F(x, t):=1_{(x, 1)}(t) \frac{1}{t} f(t)$. Note that $1_{(x, 1)}(t)=1_{(0, t)}(x)$ for $x, t \in(0,1)$. So by Tonelli's theorem we have

$$
\int_{(0,1)^{2}}|F(x, t)| d(m \times m)=\int_{0}^{1} \int_{0}^{1} 1_{(0, t)}(x) \frac{1}{t}|f(t)| d m(x) d m(t)=\int_{0}^{1}|f(t)| d m(t)<\infty
$$

So $F \in L^{1}\left((0,1)^{2}, m \times m\right)$ and therefore $g(x)=\int_{(0,1)} F_{x} d m \in L^{1}((0,1), m)$ by Fubini's theorem. Fubini's theorem also implies

$$
\int_{(0,1)} g(x)=\int_{(0,1)^{2}} F d(m \times m)=\int_{0}^{1} \int_{0}^{1} 1_{(0, t)}(x) \frac{1}{t} f(t) d m(x) d m(t)
$$

which equals $\int_{0}^{1} f(t) d m(t)$ by the same computation as above.
4. (a) Suppose E is ν-null. Recall that $\nu^{+}(E)=\nu(E \cap P)$ and $\nu^{-}(E)=-\nu(E \cap N)$ where $X=P \cup N$ is a partition of X into positive and negative sets for ν. Since $E \cap P \subset E$, we have $\nu(E \cap P)=0$ and similarly $\nu(E \cap N)=0$. Hence

$$
|\nu|(E)=\nu^{+}(E)+\nu^{-}(E)=\nu(E \cap P)+\nu(E \cap N)=0
$$

Conversely, suppose $|\nu|(E)=0$. If there exists a measurable subset $F \subset E$ with $\nu(F) \neq 0$, then without loss of generality we may assume $\nu(F)>0$. Consequently, $\nu^{+}(F)=\nu(F)+\nu^{-}(F)>0$ and hence $|\nu|(F) \geq \nu^{+}(F)>0$. But since $|\nu|$ is a measure, this contradicts monotonicity. Thus we must have $\nu(F)=0$ for all measurable subsets $F \subset E$, and hence E is ν-null.
(b) $(i) \Rightarrow(i i)$: Suppose $\nu \perp \mu$ and let $X=E \cup F$ be a partition such that E is μ-null and F is ν-null. By part (a), F satisfies $|\nu|(F)=0$ and hence is $|\nu|$-null. Consequently $|\nu| \perp \mu$.
(ii) $\Rightarrow($ iii $):$ Let $X=E \cup F$ be a partition such that E is μ-null and F is $|\nu|$-null. Then $0=|\nu|(F)=\nu^{+}(F)+\nu^{-}(F)$, and so F is ν^{+}-null so that $\nu^{+} \perp \mu$, and F is ν^{-}-null so that $\nu^{-} \perp \mu$.
$(i i i) \Rightarrow(i)$: Let $X=E_{+} \cup F_{+}=E_{-} \cup F_{-}$be partitions such that $E_{ \pm}$are μ-null and $F_{ \pm}$is $\nu^{ \pm}$-null. Then $E:=E_{+} \cup E_{-}$is also μ-null and $F:=X \backslash E=F_{+} \cap F_{-}$which is both ν^{+}-null and ν^{-}-null. Thus F is ν-null: for any measurable subset $A \subset F$ we have $\nu(A)=\nu^{+}(A)-\nu^{-}(A)=0-0=0$. Hence $\nu \perp \mu$.
5. (a) First observe that for $A \in \mathcal{M}$ and $B \in \mathcal{N}$ that $1_{A}(x) 1_{B}(y)=1_{A \times B}(x, y)$. Thus products of measurable simple functions on (X, \mathcal{M}) and (Y, \mathcal{N}) yield measurable simple functions on $(X \times$ $Y, \mathcal{M} \otimes \mathcal{N})$. So, letting $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ and $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ be sequences of simple functions converging pointwise to f and g, respectively, we have

$$
h(x, y)=\lim _{n \rightarrow \infty} \phi_{n}(x) \psi_{n}(y)
$$

Since h is a pointwise limit of measurable functions, it is measurable by Proposition 2.7 from lecture.
(b) We first suppose $f=\sum_{i=1}^{m} \alpha_{i} 1_{A_{i}}$ and $g=\sum_{j=1}^{n} \beta_{j} 1_{B_{j}}$ are non-negative simple functions. Then

$$
h=\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i} \beta_{j} 1_{A_{i} \times B_{j}}
$$

and

$$
\begin{aligned}
\int_{X \times Y} h d(\mu \times \nu) & =\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i} \beta_{j}(\mu \times \nu)\left(A_{i} \times B_{j}\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{i} \beta_{j} \mu\left(A_{i}\right) \nu\left(B_{j}\right) \\
& =\left(\sum_{i=1}^{m} \alpha_{i} \mu\left(A_{i}\right)\right)\left(\sum_{j=1}^{n} \beta_{j} \nu\left(B_{j}\right)\right)=\left(\int_{X} f d \mu\right)\left(\int_{Y} g d \nu\right) .
\end{aligned}
$$

Note that this quantity is finite since $f \in L^{1}(X, \mu)$ and $g \in L^{1}(Y, \nu)$, and so $h \in L^{1}(X \times Y, \mu \times \nu)$. Now let $f \in L^{1}(X, \mu)$ and $g \in L^{1}(Y, \nu)$ be arbitrary. Using Theorem 2.10 we can find sequences of simple functions $\left(\phi_{n}\right)_{n \in \mathbb{N}},\left(\psi_{n}\right)_{n \in \mathbb{N}}$ converging pointwise to f and g, respectively, and satisfying $\left|\phi_{1}\right| \leq\left|\phi_{2}\right| \leq \cdots \leq|f|$ and $\left|\psi_{1}\right| \leq\left|\psi_{2}\right| \leq \cdots \leq|g|$. Then $\left|\phi_{1}(x) \psi_{1}(y)\right| \leq\left|\phi_{2}(x) \psi_{2}(y)\right| \leq \cdots \leq$ $|h(x, y)|$ and $\phi_{n}(x) \psi_{n}(y) \rightarrow h(x, y)$ for all $(x, y) \in X \times Y$. Thus the monotone convergence theorem and the first part of the proof gives us

$$
\begin{aligned}
\int_{X \times Y}|h| d(\mu \times \nu) & =\lim _{n \rightarrow \infty} \int_{X \times Y}\left|\phi_{n} \psi_{n}\right| d(\mu \times \nu) \\
& =\lim _{n \rightarrow \infty}\left(\int_{X}\left|\phi_{n}\right| d \mu\right)\left(\int_{Y}\left|\psi_{n}\right| d \nu\right)=\left(\int_{X}|f| d \mu\right)\left(\int_{Y}|g| d \nu\right)<\infty
\end{aligned}
$$

So $h \in L^{1}(X \times Y, \mu \times \nu)$. In particular, this implies $\phi_{n} \psi_{n} \in L^{1}(X \times Y, \mu \times \nu)$ and the same computation as in the first part of the proof yields

$$
\int_{X \times Y} \phi_{n} \psi_{n} d(\mu \times \nu)=\left(\int_{X} \phi_{n} d \mu\right)\left(\int_{Y} \psi_{n} d \nu\right) .
$$

Finally, using the dominated convergence theorem three times (with dominating functions $|h|,|f|$, and $|g|$ respectively) gives

$$
\begin{aligned}
\int_{X \times Y} h d(\mu \times \nu) & =\lim _{n \rightarrow \infty} \int_{X \times Y} \phi_{n} \psi_{n} d(\mu \times \nu) \\
& =\lim _{n \rightarrow \infty}\left(\int_{X} \phi_{n} d \mu\right)\left(\int_{Y} \psi_{n} d \nu\right)=\left(\int_{X} f d \mu\right)\left(\int_{Y} g d \nu\right)
\end{aligned}
$$

as claimed.

