Exercises: (Sections 2.5, 3.1)

1. On $([0,1], \mathcal{B}_{[0,1]})$, let *m* be the Lebesgue measure and let ν be the counting measure. For the diagonal set

$$D := \{ (t,t) \in [0,1]^2 : 0 \le t \le 1 \},\$$

show that $\iint 1_D \, dm d\nu$, $\iint 1_D \, d\nu dm$, and $\int 1_D \, d(m \times \nu)$ are all distinct.

[Note: this shows the σ -finiteness assumption in the Fubini–Tonelli theorem is necessary.]

- 2. Let (X, \mathcal{M}, μ) be a σ -finite measure space and $f \in L^+(X, \mu)$.
 - (a) Show that

$$G_f := \{(x,t) \in X \times [0,\infty) \colon t \le f(x)\}$$

is $\mathcal{M} \otimes \mathcal{B}_{\mathbb{R}}$ -measurable with $\mu \times m(G_f) = \int_X f \ d\mu$.

(b) Prove the **layer cake formula**:

$$\int_X f \ d\mu = \int_{[0,\infty)} \mu(\{x \in X \colon f(x) \ge t\}) \ dm(t).$$

- (c) Use part (a) and continuity from below to give an alternate (albeit circular) proof of the monotone convergence theorem.
- 3. Suppose $f \in L^1((0,1), m)$, and define

$$g(x) := \int_{(x,1)} \frac{1}{t} f(t) \ dm(t) \qquad 0 < x < 1.$$

Show that $g \in L^1((0,1), m)$ with $\int_{(0,1)} g \, dm = \int_{(0,1)} f \, dm$.

- 4. Let ν and μ be signed measures on a measurable space (X, \mathcal{M}) .
 - (a) Show that E is ν -null if and only if $|\nu|(E) = 0$.
 - (b) Show the following are equivalent:
 - (i) $\nu \perp \mu$
 - (ii) $|\nu| \perp \mu$
 - (iii) $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.
- 5. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces, let $f: X \to \mathbb{C}$ be \mathcal{M} -measurable, and let $g: Y \to \mathbb{C}$ be \mathcal{N} -measurable.
 - (a) Show that $h: X \times Y \to \mathbb{C}$ defined by h(x, y) := f(x)g(y) is $\mathcal{M} \otimes \mathcal{N}$ -measurable.
 - (b) Show that if $f \in L^1(X, \mu)$ and $g \in L^1(Y, \nu)$, then $h \in L^1(X \times Y, \mu \times \nu)$ with

$$\int_{X \times Y} h \ d(\mu \times \nu) = \left(\int_X f \ d\mu \right) \left(\int_Y g \ d\nu \right).$$

Solutions:

1. For $t \in [0,1]$, we have $(1_D)^t(s) = 1_D(s,t) = 1_{\{t\}}(s)$. Since $1_{\{t\}} = 0$ *m*-almost everywhere, we have $\int 1_D(s,t) dm(s) = 0$ for all $t \in [0,1]$ and hence $\iint 1_D dm\nu = 0$. On the other hand,

$$\int_{[0,1]} 1_D(s,t) \, d\nu(t) = \int_{[0,1]} 1_{\{s\}}(t) \, d\nu(t) = \nu(\{s\}) = 1,$$

and so $\iint 1_D d\nu dm = \int 1 dm = 1$. Finally, we have $\int 1_D d(m \times \nu) = m \times \nu(D)$. To compute this, recall that $\mu \times \nu$ is by construction the restriction of the outer measure defined by the premeasure π from lecture. Consequently,

$$m \times \nu(D) = \inf \left\{ \sum_{n=1}^{\infty} m(A_n) \nu(B_n) \colon D \subset \bigcup_{n=1}^{\infty} A_n \times B_n, \ A_n, B_n \in \mathcal{B}_{[0,1]} \right\}.$$

Fix some cover $D \subset \bigcup_{n=1}^{\infty} A_n \times B_n$. Then $[0,1] \subset \bigcup_{n=1}^{\infty} A_n$, and so $\sum_{n=1}^{\infty} m(A_n) \ge 1$. Let $I = \{n \in \mathbb{N} : m(A_n) = 0\}$ and $E := [0,1] \setminus \bigcup_{n \in I} A_n$. Then m(E) = 1 and hence E is necessarily uncountable. We also have

$$\{(t,t)\in[0,1]^2:t\in E\}\subset \bigcup_{n\notin I}A_n\times B_n$$

and so $E \subset \bigcup_{n \notin I} B_n$. Since E is uncountable, at least one B_n , $n \notin I$, must be uncountable. Since $m(A_n) > 0$ by definition of I, it follows that $m(A_n)\nu(B_n) = \infty$. Since this was an arbitrary cover of D by measurable rectangles, it follows that $m \times \nu(D) = \infty$.

2. (a) Consider F(x,t) := (f(x),t), which is $(\mathcal{M} \otimes \mathcal{B}_{\mathbb{R}}, \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}})$ -measurable by Proposition 2.4, and $[0,\infty] \times [0,\infty) \ni (s,t) \mapsto s-t$ which is continuous and hence $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$ -measurable. Thus $(x,t) \mapsto f(x) - t$, the composition of these maps, is $\mathcal{M} \otimes \mathcal{B}_{\mathbb{R}}$ measurable, and G_f is the preimage of $[0,\infty]$ under this map. Note that for $x \in X$, $(G_f)_x = [0, f(x)]$ and so $m((G_f)_x) = f(x)$. Using Theorem 2.35 we have

$$\mu \times m(G_f) \int_X m((G_f)_x) \ d\mu(x) = \int_X f(x) \ d\mu(x) = \int_X f \ d\mu.$$

(b) For $t \in [0, \infty)$, observe that $(G_f)^t = \{x \in X : (x, t) \in G_f\} = \{x \in X : f(x) \ge t\}$. So using the other part of Theorem 2.35, we have

$$\int_X f \ d\mu = \mu \times m(G_f) = \int_{[0,\infty)} \mu((G_f)^t) \ dm(t) = \int_{[0,\infty)} \mu(\{x \in X \colon f(x) \ge t\}) \ dm(t).$$

(c) Suppose $(f_n)_{n \in \mathbb{N}} \subset L^+(X,\mu)$ increase pointwise to $f \in L^+(X,\mu)$. Then $G_{f_n} \subset G_{f_{n+1}}$ for each $n \in \mathbb{N}$ and

$$\bigcup_{n=1}^{\infty} G_{f_n} = G_f$$

Thus by continuity from below and part (a) we have

$$\int_X f \ d\mu = \mu \times m(G_f) = \lim_{n \to \infty} \mu \otimes m(G_{f_n}) = \lim_{n \to \infty} \int_X f_n \ d\mu.$$

3. Consider $F(x,t) := 1_{(x,1)}(t) \frac{1}{t} f(t)$. Note that $1_{(x,1)}(t) = 1_{(0,t)}(x)$ for $x, t \in (0,1)$. So by Tonelli's theorem we have

$$\int_{(0,1)^2} |F(x,t)| d(m \times m) = \int_0^1 \int_0^1 \mathbf{1}_{(0,t)}(x) \frac{1}{t} |f(t)| \ dm(x) dm(t) = \int_0^1 |f(t)| \ dm(t) < \infty.$$

So $F \in L^1((0,1)^2, m \times m)$ and therefore $g(x) = \int_{(0,1)} F_x dm \in L^1((0,1), m)$ by Fubini's theorem. Fubini's theorem also implies

$$\int_{(0,1)} g(x) = \int_{(0,1)^2} F \ d(m \times m) = \int_0^1 \int_0^1 \mathbf{1}_{(0,t)}(x) \frac{1}{t} f(t) \ dm(x) dm(t),$$

which equals $\int_0^1 f(t) dm(t)$ by the same computation as above.

4. (a) Suppose E is ν -null. Recall that $\nu^+(E) = \nu(E \cap P)$ and $\nu^-(E) = -\nu(E \cap N)$ where $X = P \cup N$ is a partition of X into positive and negative sets for ν . Since $E \cap P \subset E$, we have $\nu(E \cap P) = 0$ and similarly $\nu(E \cap N) = 0$. Hence

$$|\nu|(E) = \nu^+(E) + \nu^-(E) = \nu(E \cap P) + \nu(E \cap N) = 0.$$

Conversely, suppose $|\nu|(E) = 0$. If there exists a measurable subset $F \subset E$ with $\nu(F) \neq 0$, then without loss of generality we may assume $\nu(F) > 0$. Consequently, $\nu^+(F) = \nu(F) + \nu^-(F) > 0$ and hence $|\nu|(F) \ge \nu^+(F) > 0$. But since $|\nu|$ is a measure, this contradicts monotonicity. Thus we must have $\nu(F) = 0$ for all measurable subsets $F \subset E$, and hence E is ν -null.

(b) $(i) \Rightarrow (ii)$: Suppose $\nu \perp \mu$ and let $X = E \cup F$ be a partition such that E is μ -null and F is ν -null. By part (a), F satisfies $|\nu|(F) = 0$ and hence is $|\nu|$ -null. Consequently $|\nu| \perp \mu$.

 $(ii) \Rightarrow (iii)$: Let $X = E \cup F$ be a partition such that E is μ -null and F is $|\nu|$ -null. Then $0 = |\nu|(F) = \nu^+(F) + \nu^-(F)$, and so F is ν^+ -null so that $\nu^+ \perp \mu$, and F is ν^- -null so that $\nu^- \perp \mu$.

 $(iii) \Rightarrow (i)$: Let $X = E_+ \cup F_+ = E_- \cup F_-$ be partitions such that E_{\pm} are μ -null and F_{\pm} is ν^{\pm} -null. Then $E := E_+ \cup E_-$ is also μ -null and $F := X \setminus E = F_+ \cap F_-$ which is both ν^+ -null and ν^- -null. Thus F is ν -null: for any measurable subset $A \subset F$ we have $\nu(A) = \nu^+(A) - \nu^-(A) = 0 - 0 = 0$. Hence $\nu \perp \mu$.

5. (a) First observe that for $A \in \mathcal{M}$ and $B \in \mathcal{N}$ that $1_A(x)1_B(y) = 1_{A \times B}(x, y)$. Thus products of measurable simple functions on (X, \mathcal{M}) and (Y, \mathcal{N}) yield measurable simple functions on $(X \times Y, \mathcal{M} \otimes \mathcal{N})$. So, letting $(\phi_n)_{n \in \mathbb{N}}$ and $(\psi_n)_{n \in \mathbb{N}}$ be sequences of simple functions converging pointwise to f and g, respectively, we have

$$h(x,y) = \lim_{x \to 0} \phi_n(x)\psi_n(y).$$

Since h is a pointwise limit of measurable functions, it is measurable by Proposition 2.7 from lecture.

(b) We first suppose $f = \sum_{i=1}^{m} \alpha_i \mathbf{1}_{A_i}$ and $g = \sum_{j=1}^{n} \beta_j \mathbf{1}_{B_j}$ are non-negative simple functions. Then

$$h = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j \mathbf{1}_{A_i \times B_j},$$

and

$$\int_{X \times Y} h \ d(\mu \times \nu) = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j (\mu \times \nu) (A_i \times B_j)$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j \mu(A_i) \nu(B_j)$$
$$= \left(\sum_{i=1}^{m} \alpha_i \mu(A_i)\right) \left(\sum_{j=1}^{n} \beta_j \nu(B_j)\right) = \left(\int_X f \ d\mu\right) \left(\int_Y g \ d\nu\right)$$

Note that this quantity is finite since $f \in L^1(X, \mu)$ and $g \in L^1(Y, \nu)$, and so $h \in L^1(X \times Y, \mu \times \nu)$. Now let $f \in L^1(X, \mu)$ and $g \in L^1(Y, \nu)$ be arbitrary. Using Theorem 2.10 we can find sequences of simple functions $(\phi_n)_{n \in \mathbb{N}}, (\psi_n)_{n \in \mathbb{N}}$ converging pointwise to f and g, respectively, and satisfying $|\phi_1| \leq |\phi_2| \leq \cdots \leq |f|$ and $|\psi_1| \leq |\psi_2| \leq \cdots \leq |g|$. Then $|\phi_1(x)\psi_1(y)| \leq |\phi_2(x)\psi_2(y)| \leq \cdots \leq |h(x,y)|$ and $\phi_n(x)\psi_n(y) \to h(x,y)$ for all $(x,y) \in X \times Y$. Thus the monotone convergence theorem and the first part of the proof gives us

$$\int_{X \times Y} |h| \ d(\mu \times \nu) = \lim_{n \to \infty} \int_{X \times Y} |\phi_n \psi_n| \ d(\mu \times \nu)$$
$$= \lim_{n \to \infty} \left(\int_X |\phi_n| \ d\mu \right) \left(\int_Y |\psi_n| \ d\nu \right) = \left(\int_X |f| \ d\mu \right) \left(\int_Y |g| \ d\nu \right) < \infty$$

So $h \in L^1(X \times Y, \mu \times \nu)$. In particular, this implies $\phi_n \psi_n \in L^1(X \times Y, \mu \times \nu)$ and the same computation as in the first part of the proof yields

$$\int_{X \times Y} \phi_n \psi_n \ d(\mu \times \nu) = \left(\int_X \phi_n \ d\mu \right) \left(\int_Y \psi_n \ d\nu \right).$$

Finally, using the dominated convergence theorem three times (with dominating functions |h|, |f|, and |g| respectively) gives

$$\int_{X \times Y} h \ d(\mu \times \nu) = \lim_{n \to \infty} \int_{X \times Y} \phi_n \psi_n \ d(\mu \times \nu)$$
$$= \lim_{n \to \infty} \left(\int_X \phi_n \ d\mu \right) \left(\int_Y \psi_n \ d\nu \right) = \left(\int_X f \ d\mu \right) \left(\int_Y g \ d\nu \right),$$

as claimed.