Exercises: (Sections 2.3, 2.4)

1. Let $f \in L^{1}(\mathbb{R}, m)$. Show that $F: \mathbb{R} \rightarrow \mathbb{C}$ is continuous where $F(t)=\int_{(-\infty, t]} f d m$.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function and consider $h, H:[a, b] \rightarrow \mathbb{R}$ defined by

$$
h(t):=\lim _{\delta \rightarrow 0} \inf _{|s-t| \leq \delta} f(s) \quad H(t):=\lim _{\delta \rightarrow 0} \sup _{|s-t| \leq \delta} f(s) .
$$

(a) Show that f is continuous at $t \in[a, b]$ if and only if $h(t)=H(t)$.
(b) Show that $\int_{[a, b]} h d m$ and $\int_{[a, b]} H d m$ equal the lower and upper Darboux integrals of f, respectively.
[Hint: show that $h=g$ and $H=G m$-almost everywhere, where g and G are as in the proof of the Riemann-Lebesgue theorem.]
(c) Deduce that f is Riemann integrable if and only if

$$
m(\{t \in[a, b]: f \text { is discontinuous at } t\})=0 .
$$

3. Let $\left\{q_{n}: n \in \mathbb{N}\right\}=\mathbb{Q}$ be an enumeration of the rationals, and for $x \in \mathbb{R}$ define

$$
g(x):=\sum_{n=1}^{\infty} \frac{1}{2^{n} \sqrt{x-q_{n}}} 1_{\left(q_{n}, q_{n}+1\right)}
$$

(a) Show that $g \in L^{1}(\mathbb{R}, m)$ and hence $g<\infty m$-almost everywhere.
(b) Show that g is discontinuous everywhere and unbounded on every open interval.
(c) Show that the conclusions of (b) hold for any function equal to $g m$-almost everywhere.
(d) Show that $g^{2}<\infty m$-almost everywhere, but g^{2} is not integrable on any interval.
4. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)<\infty$. For $f, g: X \rightarrow \mathbb{C} \mathcal{M}$-measurable define

$$
\rho(f, g)=\int_{X} \frac{|f-g|}{1+|f-g|} d \mu
$$

(a) Show that ρ defines a metric on equivalence classes of \mathbb{C}-valued \mathcal{M}-measurable functions under the relation of μ-almost everywhere equality.
(b) Show that $f_{n} \rightarrow f$ in measure if and only if $\rho\left(f_{n}, f\right) \rightarrow 0$.
5. (Lusin's Theorem) Let $f:[a, b] \rightarrow \mathbb{C}$ be Lebesgue measurable. Show that for all $\epsilon>0$ there exists a compact set $K \subset[a, b]$ with $m(K)>(b-a)-\epsilon$ such that $\left.f\right|_{K}$ is continuous.
[Hint: use Egoroff's theorem and the L^{1}-density of continuous functions.]

Solutions:

1. It suffices to show F is separately left and right continuous. We will show left continuity, with the proof for right continuity being similar. Fix $t_{0} \in \mathbb{R}$ and suppose $t_{n} \nearrow t_{0}$. Observe that

$$
\left|F\left(t_{0}\right)-F\left(t_{n}\right)\right|=\left|\int_{\left(t_{n}, t_{0}\right]} f d m\right| \leq \int_{\left(t_{n}, t_{0}\right]}|f| d m=\int_{\mathbb{R}} 1_{\left(t_{n}, t_{0}\right]}|f| d m
$$

Now, the sequence $1_{\left(t_{n}, t_{0}\right]}|f|$ decreases to $1_{\left\{t_{0}\right\}}|f|$ and the first function has finite integral (since $f \in$ $L^{1}(\mathbb{R}, m)$). Thus Exercise 2.(d) on Homework 5 implies

$$
\lim _{n \rightarrow \infty}\left|F\left(t_{0}\right)-F\left(t_{n}\right)\right|=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} 1_{\left(t_{n}, t_{0}\right]}|f| d m=\int_{\mathbb{R}} 1_{\left\{t_{0}\right\}}|f| d m=0
$$

where in the last equality we have used that $1_{\left\{t_{0}\right\}}|f|=0 \mathrm{~m}$-almost everywhere.
2. (a) (\Rightarrow): Given $\epsilon>0$ let $\delta>0$ be such that $|f(s)-f(t)|<\epsilon$ whenever $|s-t|<\delta$. In particular, for any $\delta^{\prime}<\delta$ we have $f(t)-\epsilon<f(s)<f(t)+\epsilon$ when $|s-t| \leq \delta^{\prime}$. Thus

$$
\begin{aligned}
& \inf _{|s-t| \leq \delta^{\prime}} f(s) \geq f(t)-\epsilon \\
& \sup _{|s-t| \leq \delta^{\prime}} f(s) \leq f(t)+\epsilon
\end{aligned}
$$

This implies $f(t)-\epsilon \leq h(t) \leq H(t) \leq f(t)+\epsilon$ and so $|H(t)-h(t)|<\epsilon$. Since $\epsilon>0$ was arbitrary, we must have $h(t)=H(t)$.
(\Leftarrow) : Let $\epsilon>0$. The equality $h(t)=H(t)$ implies there exists $\delta>0$ so that

$$
\sup _{|s-t| \leq \delta} f(s)-\inf _{|s-t| \leq \delta} f(s)<\epsilon
$$

The expression on the left dominates $\left|f(s)-f\left(s^{\prime}\right)\right|$ for any $s, s^{\prime} \in[t-\delta, t+\delta]$. So, in particular, if $|s-t|<\delta$ then we have $|f(s)-f(t)|<\epsilon$. That is, f is continuous at t.
(b) Let $\left(P_{n}\right)_{n \in \mathbb{N}}$ be an increasing sequence of partitions of $[a, b]$ so that the lower and upper Darboux sums satisfied $L\left(f, P_{n}\right) \nearrow L(f)$ and $U\left(f, P_{n}\right) \searrow U(f)$. By taking the union of P_{n} with the "uniform partition"

$$
\left\{a<a+\frac{(b-a)}{2^{n}}<a+\frac{2(b-a)}{2^{n}}<\cdots<b\right\}
$$

we may assume the lengths of the subintervals determined by P_{n} tend to zero. For each $n \in \mathbb{N}$, if $P_{n}=\left\{a=t_{0}<t_{1}<\cdots<t_{m}=b\right\}$ define

$$
\begin{aligned}
g\left(P_{n}\right) & =\sum_{j=1}^{m} 1_{\left(t_{j-1}, t\right]} \inf _{t_{j-1} \leq t \leq t_{j}} f(t) \\
G\left(P_{n}\right) & =\sum_{j=1}^{m} 1_{\left(t_{j-1}, t\right]} \sup _{t_{j-1} \leq t \leq t_{j}} f(t)
\end{aligned}
$$

so that $\int g\left(P_{n}\right) d m=L\left(f, P_{n}\right)$ and $\int G\left(P_{n}\right) d m=U\left(f, P_{n}\right)$. Note that $P_{1} \subset P_{2} \subset \cdots$ implies $g\left(P_{n}\right) \leq g\left(P_{n+1}\right)$ and $G\left(P_{n}\right) \geq G\left(P_{n+1}\right)$ for each $n \in \mathbb{N}$, and so

$$
g:=\sup _{n \in \mathbb{N}} g\left(P_{n}\right)=\lim _{n \rightarrow \infty} g\left(P_{n}\right) \quad \text { and } \quad G:=\inf _{n \in \mathbb{N}} G\left(P_{n}\right)=\lim _{n \rightarrow \infty} G\left(P_{n}\right)
$$

The dominated convergence theorem (where our dominating function can always be taken to be $\left.1_{[a, b]} \sup _{t}|f(t)|\right)$ then implies

$$
\int_{[a, b]} g d m=\lim _{n \rightarrow \infty} \int_{[a, b]} g\left(P_{n}\right) d m=\lim _{n \rightarrow \infty} L\left(f, P_{n}\right)=L(P)
$$

and similarly $\int_{[a, b]} G d m=U(p)$. So it suffices to show $h=g$ and $H=G m$-almost everywhere. We will show these functions agree outside of $P:=\bigcup_{n} P_{n}$, which is countable and hence m-null. Fix $t \in[a, b] \backslash P$, let $\epsilon>0$, and let $\delta>0$ be such that

$$
\left|h(t)-\inf _{|s-t| \leq \delta} f(s)\right|<\epsilon .
$$

Let $N \in \mathbb{N}$ be large enough so that P_{n} has subintervals of length at most $\frac{\delta}{2}$ for all $n \geq N$. Then for $n \geq N$, if t is in the subinterval $\left(t_{j-1}, t_{j}\right)$ we have that $|s-t| \leq \delta$ for all $s \in\left[t_{j-1}, t_{j}\right]$. Hence

$$
g\left(P_{n}\right)(t)=\inf _{t_{j-1} \leq t \leq t_{j}} f(s) \geq \inf _{|s-t| \leq \delta} f(s)>h(t)-\epsilon .
$$

Since this holds for all $n \geq N$, we have $g(t) \geq h(t)-\epsilon$ and so $g(t) \geq h(t)$ since $\epsilon>0$ was arbitrary. Conversely, given $\epsilon>0$ let $n \in \mathbb{N}$ be such that $g\left(P_{n}\right)(t) \geq g(t)-\epsilon$. Since $t \notin P$, we can find $\delta>0$ so that $[t-\delta, t+\delta]$ is entirely contained in some subinterval $\left(t_{j-1}, t_{j}\right)$ of P_{n}. Then

$$
\inf _{|s-t| \geq \delta} f(s) \geq \inf _{t_{j-1} \leq t \leq t_{j}} f(s)=g\left(P_{n}\right)(t) \geq g(t)-\epsilon
$$

Let $\delta \rightarrow 0$ and then $\epsilon \rightarrow 0$ yields $h(t) \geq g(t)$. Hence $h(t)=g(t)$ for all $t \in[a, b] \backslash P$. The proof for H and G is similar.
$(\mathrm{c})(\Rightarrow)$: This implies the lower and upper Darboux integrals to agree, and hence $\int_{[a, b]} H-h d m=0$ by part (b). Since $H-h \geq 0$, Proposition 2.16 implies $H-h=0 m$-almost everywhere. Thus the set where H and h differ is m-null, but by part (a) this is precisely the set where f is discontinuous. (\Leftarrow) : This implies $H=h m$-almost everywhere. Hence their integrals agree, and which by part (b) means the upper and lower Darboux integrals agree and f is therefore Riemann integrable
3. (a) Since the terms in the series defining g are all positive Lebesgue measurable functions, Theorem 2.15 implies

$$
\int_{\mathbb{R}} g d m=\sum_{n=1}^{\infty} \int_{\left(q_{n}, q_{n}+1\right)} \frac{1}{2^{n} \sqrt{x-q_{n}}} 1_{\left(q_{n}, q_{n}+1\right)} d m
$$

Now, the integrand in each term is Riemann integrable and so by the Riemann-Lebesgue theorem we have

$$
\int_{\left(q_{n}, q_{n}+1\right)} \frac{1}{2^{n} \sqrt{x-q_{n}}} 1_{\left(q_{n}, q_{n}+1\right)} d m=\int_{q_{n}}^{q_{n}+1} \frac{1}{2^{n} \sqrt{x-q_{n}}} d x=\left[\frac{\sqrt{x-q_{n}}}{2^{n-1}}\right]_{q_{n}}^{q_{n}+1}=\frac{1}{2^{n-1}}
$$

Hence

$$
\int_{\mathbb{R}} g d m=\sum_{n=1}^{\infty} 2^{-(n-1)}=2<\infty
$$

So $g \in L^{1}(\mathbb{R}, m)$, and therefore $g<\infty m$-almost everywhere by Proposition 2.20 (or Exercise 2.(a) on Homework 5).
(b) For any q_{n}, and $0<\epsilon<1$

$$
g\left(q_{n}+\epsilon\right) \geq \frac{1}{2^{n} \sqrt{\epsilon}}
$$

which can be made arbitrarily large. Since $\mathbb{Q} \cap(a, b) \neq \emptyset$ for all open intervals, we see that g is unbounded. Moreover, this shows that for any $t \in \mathbb{R}$ where $g(t)<\infty$, we can first find a sequence of rationals $r_{n} \searrow t$ and then find $0<\epsilon_{n}<1$ so that $g\left(r_{n}+\epsilon_{n}\right) \geq n$. Thus

$$
\lim _{n \rightarrow \infty} g\left(r_{n}+\epsilon_{n}\right)=\infty \neq g(t)
$$

and so g is discontinuous at t. If $g(t)=\infty$, then it can only be continuous if g identically infinite on an interval around t, but such an interval would have positive measure and contradict part (a).
(c) Suppose $h=g$ except on a subset $E \subset \mathbb{R}$ with $m(E)=0$. Given a rational q_{n} and $R>0$, there exists an open interval $\left(q_{n}, q_{n}+\epsilon\right)$ so that $g \geq R$ on this interval. Since this interval has positive measure, $h \geq R$ at some points on this interval. Then proceeding as in the previous part, we can show h is unbounded on any interval and discontinuous everywhere.
(d) Whenever $g(x)<\infty$, we have $g(x)^{2}<\infty$. Thus $g^{2}<\infty m$-almost everywhere by part (a). To see that g^{2} is not integrable, note that if $n \in \mathbb{N}$ is such that $q_{n}=0$, then

$$
g^{2} \geq \frac{1}{2^{2 n} x} 1_{(0,1)}
$$

So it suffices to show $f(x):=\frac{1}{x} 1_{(0,1)}$ is not integrable. Consider the sequence of functions $f_{n}(x):=\frac{1}{x} 1_{(1 / n, 1)}$, which increase to f. The monotone convergence theorem and RiemannLebesgue theorem imply

$$
\int_{\mathbb{R}} f d m=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n} d m=\lim _{n \rightarrow \infty} \int_{1 / n}^{1} \frac{1}{x} d x=\lim _{n \rightarrow \infty}[\ln (1)-\ln (1 / n)]=\lim _{n \rightarrow \infty} \ln (n)=\infty
$$

Thus f is not integrable.
4. (a) Symmetry follows from $|f-g|=|g-f|$, and the triangle inequality follows from $|f-g| \leq$ $|f-h|+|h-g|$ and the observation that for all $s, t \geq 0$

$$
\frac{s+t}{1+s+t}=\frac{s}{1+s+t}+\frac{t}{1+s+t} \leq \frac{s}{1+s}+\frac{t}{1+t} .
$$

Finally, $\rho(f, g)=0$ if and only if $\frac{|f-g|}{1+|f-g|}=0 \mu$-almost everywhere by Proposition 2.16. Since the dominator is bounded below by 1 , this fraction is zero if and only if $|f(x)-g(x)|=0$. Thus $\rho(f, g)=0$ if and only if $f=g \mu$-almost everywhere. So ρ is a metric on the space of these equivalence classes.
(b) (\Rightarrow) : Suppose $f_{n} \rightarrow f$ in measure. Let $\epsilon>0$ and let $N \in \mathbb{N}$ be such that $E_{n}:=\{x \in$ $\left.X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}$ satisfies $\mu\left(E_{n}\right)<\epsilon$ for all $n \geq N$. Observe that for $x \in E_{n}^{c}$ we have

$$
\frac{\left|f_{n}(x)-f(x)\right|}{1+\left|f_{n}(x)-f(x)\right|}<\frac{\epsilon}{1+\left|f_{n}(x)-f(x)\right|} \leq \epsilon,
$$

and for $x \in E_{n}$ we can bound the above by 1 . Thus

$$
\begin{aligned}
\rho\left(f_{n}, f\right) & =\int_{E_{n}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu+\int_{E_{n}^{c}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \\
& \leq \int_{E_{n}} 1 d \mu+\int_{E_{n}^{c}} \epsilon d \mu=\mu\left(E_{n}\right)+\epsilon \mu\left(E_{n}^{c}\right)<\epsilon(1+\mu(X)) .
\end{aligned}
$$

Thus $\rho\left(f_{n}, f\right) \rightarrow 0$ since $\mu(X)<\infty$.
(\Leftarrow) : Suppose $\rho\left(f_{n}, f\right) \rightarrow 0$. Let $\epsilon>0$ and consider $E_{n}:=\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}$. Then since $t \mapsto \frac{t}{1+t}$ is increasing, we have

$$
\frac{\left|f_{n}(x)-f(x)\right|}{1+\left|f_{n}(x)-f(x)\right|} \geq \frac{\epsilon}{1+\epsilon}
$$

for all $x \in E_{n}$. Thus

$$
\rho\left(f_{n}, f\right) \geq \int_{E_{n}} \frac{\left|f_{n}-f\right|}{1+\left|f_{n}-f\right|} d \mu \geq \int_{E_{n}} \frac{\epsilon}{1+\epsilon} d \mu=\frac{\epsilon}{1+\epsilon} \mu\left(E_{n}\right),
$$

which implies $\mu\left(E_{n}\right) \leq \frac{1+\epsilon}{\epsilon} \rho\left(f_{n}, f\right) \rightarrow 0$. Thus $f_{n} \rightarrow f$ in measure.
5. For each $n \in \mathbb{N}$, let $B_{n}=\{t \in[a, b]:|f(t)| \leq n\}$. Then $f_{n}:=1_{B_{n}} f$ converges everywhere to f since $[a, b]=\bigcup B_{n}$. So by Egoroff's theorem we can find $E_{0} \subset[a, b]$ with $\mu\left(E_{0}\right)<\frac{\epsilon}{2}$ and such that $f_{n} \rightarrow f$ uniformly on $[a, b] \backslash E_{0}$.
Now, each f_{n} is bounded and therefore integrable on $[a, b]$. So using Theorem 2.26 we can find a sequence of continuous functions $\left(g_{k}^{(n)}\right)_{k \in \mathbb{N}}$ so that

$$
\int_{[a, b]}\left|f_{n}-g_{k}^{(n)}\right| d m \rightarrow 0
$$

By Corollary 2.32, there is a subsequence $\left(g_{k_{\ell}}^{(n)}\right)_{\ell \in \mathbb{N}}$ that converges to $f_{n} m$-almost everywhere. Using Egoroff's theorem again we can find $E_{n} \subset[a, b]$ such that $\mu\left(E_{n}\right)<2^{-(n+1)} \epsilon$ and the subsequence $\left(g_{k_{\ell}}^{(n)}\right)_{\ell \in \mathbb{N}}$ converges to f_{n} uniformly on $[a, b] \backslash E_{n}$. Then $\left.f_{n}\right|_{[a, b] \backslash E_{n}}$ is continuous as the uniform limit of continuous functions. Now

$$
E:=\bigcup_{n=0}^{\infty} E_{n}
$$

has $m(E)<\epsilon$ by countable subadditivity, and using the regularity of the Lebesgue measure (Theorem 1.18) we can find an open set $U \supset E$ with $m(U)<\epsilon$. Then $K:=[a, b] \backslash U$ is closed and bounded, hence compact, with $m(K)>m([a, b])-m(U)=(b-a)-\epsilon$. Furthermore, for each $n \in \mathbb{N}$ we have $K=[a, b] \backslash U \subset[a, b] \backslash E_{n}$, and so $\left.f_{n}\right|_{K}$ is continuous. Also $K \subset[a, b] \backslash E_{0}$, which means $f_{n} \rightarrow f$ uniformly on K, and therefore $\left.f\right|_{K}$ is continuous as the uniform limit of continuous functions.

