Math 828 Homework 6 Solutions 10/18/2023

Exercises: (Sections 2.3, 2.4)

1. Let f € LY(R,m). Show that F: R — C is continuous where F(t) = f(_oo’t] f dm.

2. Let f: [a,b] = R be a bounded function and consider h, H: [a,b] — R defined by
h(t) ;= lim inf f(s) H(t):=lim sup f(s).

6—0 |s—t|<é8 6*>0\s—t\§5
(a) Show that f is continuous at t € [a, b] if and only if h(t) = H(¢).
(b) Show that f[a_b] h dm and f[a ] H dm equal the lower and upper Darboux integrals of f, respec-
tively.
[Hint: show that h = g and H = G m-almost everywhere, where g and G are as in the proof of
the Riemann—Lebesgue theorem.]

(¢) Deduce that f is Riemann integrable if and only if
m({t € [a,b]: f is discontinuous at ¢}) = 0.

3. Let {gn: n € N} = Q be an enumeration of the rationals, and for € R define

oo

1
gla):=>_ ml(qmqn-‘rl)

n=1
a) Show that g € L'(R,m) and hence g < oo m-almost everywhere.

(a)
(b)
)
)

Show that g is discontinuous everywhere and unbounded on every open interval.

(c

(d) Show that g% < co m-almost everywhere, but g2 is not integrable on any interval.

Show that the conclusions of (b) hold for any function equal to g m-almost everywhere.

4. Let (X, M, ) be a measure space with u(X) < oo. For f,g: X — C M-measurable define

B lf — g
p(f’g)_/)(71+|f—g| dp.

(a) Show that p defines a metric on equivalence classes of C-valued M-measurable functions under
the relation of p-almost everywhere equality.
(b) Show that f, — f in measure if and only if p(f,, f) — 0.
5. (Lusin’s Theorem) Let f: [a,b] — C be Lebesgue measurable. Show that for all € > 0 there exists a
compact set K C [a, b] with m(K) > (b — a) — € such that f|x is continuous.

[Hint: use Egoroff’s theorem and the L'-density of continuous functions.]

Solutions:

1. It suffices to show F' is separately left and right continuous. We will show left continuity, with the
proof for right continuity being similar. Fix ty € R and suppose t,,  ty. Observe that

el
(tn,to] (

tn,
Now, the sequence 1(;, 4]|f| decreases to 1y;,3|f| and the first function has finite integral (since f €
LY(R,m)). Thus Exercise 2.(d) on Homework 5 implies

[F(to) = F(tn)| =

If| dm = / 1(tn,to]|f‘ dm.
f,g] R

n—0o0

lim |F(tg) — F(tn)| = ILm /1(tn7t0]\f| dm:/l{t0}|f\ dm =0,

where in the last equality we have used that 1y,3[f| = 0 m-almost everywhere. ]
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2.

(a)

(=) : Given € > 0 let § > 0 be such that |f(s) — f(¢)| < e whenever |s — t| < §. In particular, for
any ¢’ < d we have f(t) —e < f(s) < f(t) + € when |s — t| < ¢’. Thus
inf > f(t) —
o fls) 2 f(#)
sup f(s) < f(t)+e

|s—t[<o’
This implies f(t) —e < h(t) < H(t) < f(t)+ € and so |H(t) — h(t)| < €. Since € > 0 was arbitrary,
we must have h(t) = H(t).
(<) : Let € > 0. The equality h(t) = H(t) implies there exists § > 0 so that
— inf <
sup f(s)~ it f(s) <c

|s—t|<6 [s—
The expression on the left dominates |f(s) — f(s')| for any s,s" € [t — d,t 4+ d]. So, in particular,
if |s — t| < § then we have |f(s) — f(¢)| < e. That is, f is continuous at ¢. O

Let (P,,)nen be an increasing sequence of partitions of [a, b] so that the lower and upper Darboux
sums satisfied L(f, P,) , L(f) and U(f, P,) \ U(f). By taking the union of P, with the

“uniform partition”
b— 2(b—
{a<a+(2 )< +(2a)<---<b}

we may assume the lengths of the subintervals determined by P, tend to zero. For each n € N, if
Pn:{a:t0<t1 <<tm:b} define

Z S i ()

t; 1<t<t;

Z (tJ 1,t sup f(t)

]71Stgtj

so that [ g(P,) dm = L(f,P,) and [ G(P,) dm = U(f,P,). Note that P, C P, C --- implies
g(P,) < g(Pn+1) and G(P,) > G(Pp+1) for each n € N, and so

g :=supg(P,) = lim g(P,) and G := inf G(P,) = lim G(R,).
neN n—o0

neN n— 00

The dominated convergence theorem (where our dominating function can always be taken to be
L,y supy | f(£)]) then implies

/ g dm = lim g(Pp) dm = lim L(f, P,)= L(P),
[(l b] n—oo [a,b] n—oo
and similarly f[a ] G dm = U(p). So it suffices to show h = g and H = G m-almost everywhere.

We will show these functions agree outside of P :=J,, P,, which is countable and hence m-null.
Fix t € [a,b] \ P, let € > 0, and let 6 > 0 be such that

[h(t) — inf f(s)] <e.

|s—t|<d

Let N € N be large enough so that P, has subintervals of length at most g for all n > N. Then
for n > N, if ¢ is in the subinterval (t;_1,t;) we have that |s —t| < ¢ for all s € [t;_1,t;]. Hence

g(P)(E) =, inf_ fs)= inf f(s) > i)~ e

tj—1<t<t; [s—t|

Since this holds for all n > N, we have g(t) > h(t) —e and so g(t) > h(t) since € > 0 was arbitrary.
Conversely, given € > 0 let n € N be such that g(P,)(t) > g(t) —e. Since t € P, we can find 6 > 0
so that [t — 6,¢ 4+ d] is entirely contained in some subinterval (¢;_1,t;) of P,,. Then

inf f(s)> —inf_ f(s) =g(Pn)(t) > g(t) -

|s—t|>6 bty 1<t<t
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Let § — 0 and then € — 0 yields h(t) > g(t). Hence h(t) = g(¢) for all ¢ € [a,b] \ P. The proof for
H and G is similar. O
(=) : This implies the lower and upper Darboux integrals to agree, and hence f[a ) H—hdmn=0

by part (b). Since H —h > 0, Proposition 2.16 implies H —h = 0 m-almost everywhere. Thus the
set where H and h differ is m-null, but by part (a) this is precisely the set where f is discontinuous.

(<) : This implies H = h m-almost everywhere. Hence their integrals agree, and which by part
(b) means the upper and lower Darboux integrals agree and f is therefore Riemann integrable.[]

Since the terms in the series defining g are all positive Lebesgue measurable functions, Theorem
2.15 implies
> 1
g dm = / ————1(4, qn+1) AT
/R 7;1 (st t1) 2T — g T

Now, the integrand in each term is Riemann integrable and so by the Riemann-Lebesgue theorem
we have

! ntl 1 NoErmbas 1
nil(qﬂqu"rl) dm = on — dx = v —
(guant1) 2"VT = n o 2T 2

n—1"
qn 2
Hence

gdm= 2~ = 2 < .
JLodm=3

n=1
So g € L*(R,m), and therefore g < oo m-almost everywhere by Proposition 2.20 (or Exercise
2.(a) on Homework 5). O

For any ¢,, and 0 < e < 1

(0t 6) > 5

n T €) 2 )

9(q NG

which can be made arbitrarily large. Since Q N (a,b) # () for all open intervals, we see that g is
unbounded. Moreover, this shows that for any ¢ € R where g(t) < oo, we can first find a sequence
of rationals r, N\, t and then find 0 < €, < 1 so that g(r, + €,) > n. Thus

nh_{gog(rn + 6n) =00 7é g(t),

and so g is discontinuous at t. If g(¢) = oo, then it can only be continuous if g identically infinite
on an interval around ¢, but such an interval would have positive measure and contradict part
(a). O
Suppose h = g except on a subset E C R with m(F) = 0. Given a rational ¢, and R > 0, there
exists an open interval (¢n, g, + €) so that g > R on this interval. Since this interval has positive
measure, h > R at some points on this interval. Then proceeding as in the previous part, we can
show h is unbounded on any interval and discontinuous everywhere. O

Whenever g(z) < oo, we have g(z)? < co. Thus g2 < oo m-almost everywhere by part (a). To
see that g2 is not integrable, note that if n € N is such that ¢, = 0, then

9 1
9 = Sy Le0,1)-

So it suffices to show f(z) := %1(071) is not integrable. Consider the sequence of functions
folz) = %1(1 /n,1), which increase to f. The monotone convergence theorem and Riemann—
Lebesgue theorem imply

1
/ fdm= lim [ f,dn= lim 1 dr = lim [In(1) —In(1/n)] = lim In(n) = oco.
R

Thus f is not integrable. |
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4.

5.

(a) Symmetry follows from |f — g| = |g — f|, and the triangle inequality follows from |f — g| <
|f — h| + |h — ¢g| and the observation that for all s,¢ > 0

s+t S t S t
= + < + .
14+s+t 1+s+t 14+s+t 1+s 1+t
lf—gl _

Finally, p(f,g) = 0 if and only if 0 p-almost everywhere by Proposition 2.16. Since

4| f—g] ™
the dominator is bounded below by 1, this fraction is zero if and only if |f(z) — g(z)| = 0. Thus

o(f,g) = 0 if and only if f = g p-almost everywhere. So p is a metric on the space of these
equivalence classes. O

(b) (=) : Suppose f, — f in measure. Let ¢ > 0 and let N € N be such that E, = {z €
X: | fo(x) — f(x)] > €} satisfies u(E,) < € for all n > N. Observe that for z € ES we have
fale) @
L [fu(@) = f(@)] 1+ [ful2) - f(2)
and for x € F,, we can bound the above by 1. Thus

[ Sl it {8

< [ v [ edu= B+ () < 1+ ()

c
n n

|S67

Thus p(fn, f) = 0 since p(X) < oco.
(<) : Suppose p(fn, f) = 0. Let € > 0 and consider E,, := {x € X: |fn(z) — f(z)] > €}. Then

. t . . .
since ¢ — 17 is increasing, we have

fule) — I e
T4 [fu(@) — f@)] = T+
for all x € E,,. Thus

|fn*f| € o €
p(fn,f)Z/EnHUn_ﬂd'uZ/Enl‘f‘Edu_l-i-E'u(En)’

which implies p(E,) < E<p(f,, f) — 0. Thus f, — f in measure. |

€

For each n € N, let B,, = {t € [a,b]: |f(t)] < n}. Then f, := 1p, f converges everywhere to f since
la,b] = U B,. So by Egoroff’s theorem we can find Ey C [a, b] with u(Ep) < § and such that f, — f
uniformly on [a,b] \ Ep.

Now, each f, is bounded and therefore integrable on [a,b]. So using Theorem 2.26 we can find a

sequence of continuous functions (g,(cn)) keN so that

/ |fnfg,(€n)|dmﬁ().
[a,b]

By Corollary 2.32; there is a subsequence (g,(fj)) ¢en that converges to f,, m-almost everywhere. Using

Egoroff’s theorem again we can find E, C [a,b] such that u(E,) < 2~ (""Ve and the subsequence
(gliz))geN converges to f, uniformly on [a,b] \ E,. Then f,|(, )\ g, is continuous as the uniform limit

of continuous functions. Now -
E:=|]JE.
n=0

has m(E) < e by countable subadditivity, and using the regularity of the Lebesgue measure (Theorem
1.18) we can find an open set U D E with m(U) < e. Then K := [a,b] \ U is closed and bounded,
hence compact, with m(K) > m([a,b]) — m(U) = (b — a) — e. Furthermore, for each n € N we have
K = [a,b]\U C [a,b] \ Ep, and so f,|x is continuous. Also K C [a,b] \ Ep, which means f, — f
uniformly on K, and therefore f|x is continuous as the uniform limit of continuous functions. O
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