
Math 828 Homework 6 Solutions 10/18/2023

Exercises: (Sections 2.3, 2.4)

1. Let f ∈ L1(R,m). Show that F : R→ C is continuous where F (t) =
∫
(−∞,t] f dm.

2. Let f : [a, b]→ R be a bounded function and consider h,H : [a, b]→ R defined by

h(t) := lim
δ→0

inf
|s−t|≤δ

f(s) H(t) := lim
δ→0

sup
|s−t|≤δ

f(s).

(a) Show that f is continuous at t ∈ [a, b] if and only if h(t) = H(t).

(b) Show that
∫
[a,b]

h dm and
∫
[a,b]

H dm equal the lower and upper Darboux integrals of f , respec-

tively.

[Hint: show that h = g and H = G m-almost everywhere, where g and G are as in the proof of
the Riemann–Lebesgue theorem.]

(c) Deduce that f is Riemann integrable if and only if

m({t ∈ [a, b] : f is discontinuous at t}) = 0.

3. Let {qn : n ∈ N} = Q be an enumeration of the rationals, and for x ∈ R define

g(x) :=

∞∑
n=1

1

2n
√
x− qn

1(qn,qn+1)

(a) Show that g ∈ L1(R,m) and hence g <∞ m-almost everywhere.

(b) Show that g is discontinuous everywhere and unbounded on every open interval.

(c) Show that the conclusions of (b) hold for any function equal to g m-almost everywhere.

(d) Show that g2 <∞ m-almost everywhere, but g2 is not integrable on any interval.

4. Let (X,M, µ) be a measure space with µ(X) <∞. For f, g : X → CM-measurable define

ρ(f, g) =

∫
X

|f − g|
1 + |f − g|

dµ.

(a) Show that ρ defines a metric on equivalence classes of C-valued M-measurable functions under
the relation of µ-almost everywhere equality.

(b) Show that fn → f in measure if and only if ρ(fn, f)→ 0.

5. (Lusin’s Theorem) Let f : [a, b]→ C be Lebesgue measurable. Show that for all ε > 0 there exists a
compact set K ⊂ [a, b] with m(K) > (b− a)− ε such that f |K is continuous.

[Hint: use Egoroff’s theorem and the L1-density of continuous functions.]

———————————————————————————————————————————–

Solutions:

1. It suffices to show F is separately left and right continuous. We will show left continuity, with the
proof for right continuity being similar. Fix t0 ∈ R and suppose tn ↗ t0. Observe that

|F (t0)− F (tn)| =

∣∣∣∣∣
∫
(tn,t0]

f dm

∣∣∣∣∣ ≤
∫
(tn,t0]

|f | dm =

∫
R

1(tn,t0]|f | dm.

Now, the sequence 1(tn,t0]|f | decreases to 1{t0}|f | and the first function has finite integral (since f ∈
L1(R,m)). Thus Exercise 2.(d) on Homework 5 implies

lim
n→∞

|F (t0)− F (tn)| = lim
n→∞

∫
R

1(tn,t0]|f | dm =

∫
R

1{t0}|f | dm = 0,

where in the last equality we have used that 1{t0}|f | = 0 m-almost everywhere. �
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2. (a) (⇒) : Given ε > 0 let δ > 0 be such that |f(s)− f(t)| < ε whenever |s− t| < δ. In particular, for
any δ′ < δ we have f(t)− ε < f(s) < f(t) + ε when |s− t| ≤ δ′. Thus

inf
|s−t|≤δ′

f(s) ≥ f(t)− ε

sup
|s−t|≤δ′

f(s) ≤ f(t) + ε.

This implies f(t)− ε ≤ h(t) ≤ H(t) ≤ f(t) + ε and so |H(t)−h(t)| < ε. Since ε > 0 was arbitrary,
we must have h(t) = H(t).

(⇐) : Let ε > 0. The equality h(t) = H(t) implies there exists δ > 0 so that

sup
|s−t|≤δ

f(s)− inf
|s−t|≤δ

f(s) < ε.

The expression on the left dominates |f(s)− f(s′)| for any s, s′ ∈ [t− δ, t+ δ]. So, in particular,
if |s− t| < δ then we have |f(s)− f(t)| < ε. That is, f is continuous at t. �

(b) Let (Pn)n∈N be an increasing sequence of partitions of [a, b] so that the lower and upper Darboux
sums satisfied L(f, Pn) ↗ L(f) and U(f, Pn) ↘ U(f). By taking the union of Pn with the
“uniform partition” {

a < a+
(b− a)

2n
< a+

2(b− a)

2n
< · · · < b

}
we may assume the lengths of the subintervals determined by Pn tend to zero. For each n ∈ N, if
Pn = {a = t0 < t1 < · · · < tm = b} define

g(Pn) =

m∑
j=1

1(tj−1,t] inf
tj−1≤t≤tj

f(t)

G(Pn) =

m∑
j=1

1(tj−1,t] sup
tj−1≤t≤tj

f(t)

so that
∫
g(Pn) dm = L(f, Pn) and

∫
G(Pn) dm = U(f, Pn). Note that P1 ⊂ P2 ⊂ · · · implies

g(Pn) ≤ g(Pn+1) and G(Pn) ≥ G(Pn+1) for each n ∈ N, and so

g := sup
n∈N

g(Pn) = lim
n→∞

g(Pn) and G := inf
n∈N

G(Pn) = lim
n→∞

G(Pn).

The dominated convergence theorem (where our dominating function can always be taken to be
1[a,b] supt |f(t)|) then implies∫

[a,b]

g dm = lim
n→∞

∫
[a,b]

g(Pn) dm = lim
n→∞

L(f, Pn) = L(P ),

and similarly
∫
[a,b]

G dm = U(p). So it suffices to show h = g and H = G m-almost everywhere.

We will show these functions agree outside of P :=
⋃
n Pn, which is countable and hence m-null.

Fix t ∈ [a, b] \ P , let ε > 0, and let δ > 0 be such that

|h(t)− inf
|s−t|≤δ

f(s)| < ε.

Let N ∈ N be large enough so that Pn has subintervals of length at most δ
2 for all n ≥ N . Then

for n ≥ N , if t is in the subinterval (tj−1, tj) we have that |s− t| ≤ δ for all s ∈ [tj−1, tj ]. Hence

g(Pn)(t) = inf
tj−1≤t≤tj

f(s) ≥ inf
|s−t|≤δ

f(s) > h(t)− ε.

Since this holds for all n ≥ N , we have g(t) ≥ h(t)−ε and so g(t) ≥ h(t) since ε > 0 was arbitrary.
Conversely, given ε > 0 let n ∈ N be such that g(Pn)(t) ≥ g(t)− ε. Since t 6∈ P , we can find δ > 0
so that [t− δ, t+ δ] is entirely contained in some subinterval (tj−1, tj) of Pn. Then

inf
|s−t|≥δ

f(s) ≥ inf
tj−1≤t≤tj

f(s) = g(Pn)(t) ≥ g(t)− ε.
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Let δ → 0 and then ε→ 0 yields h(t) ≥ g(t). Hence h(t) = g(t) for all t ∈ [a, b] \P . The proof for
H and G is similar. �

(c) (⇒) : This implies the lower and upper Darboux integrals to agree, and hence
∫
[a,b]

H−h dm = 0

by part (b). Since H−h ≥ 0, Proposition 2.16 implies H−h = 0 m-almost everywhere. Thus the
set where H and h differ is m-null, but by part (a) this is precisely the set where f is discontinuous.

(⇐) : This implies H = h m-almost everywhere. Hence their integrals agree, and which by part
(b) means the upper and lower Darboux integrals agree and f is therefore Riemann integrable.�

3. (a) Since the terms in the series defining g are all positive Lebesgue measurable functions, Theorem
2.15 implies ∫

R
g dm =

∞∑
n=1

∫
(qn,qn+1)

1

2n
√
x− qn

1(qn,qn+1) dm.

Now, the integrand in each term is Riemann integrable and so by the Riemann–Lebesgue theorem
we have∫

(qn,qn+1)

1

2n
√
x− qn

1(qn,qn+1) dm =

∫ qn+1

qn

1

2n
√
x− qn

dx =

[√
x− qn
2n−1

]qn+1

qn

=
1

2n−1
.

Hence ∫
R
g dm =

∞∑
n=1

2−(n−1) = 2 <∞.

So g ∈ L1(R,m), and therefore g < ∞ m-almost everywhere by Proposition 2.20 (or Exercise
2.(a) on Homework 5). �

(b) For any qn, and 0 < ε < 1

g(qn + ε) ≥ 1

2n
√
ε
,

which can be made arbitrarily large. Since Q ∩ (a, b) 6= ∅ for all open intervals, we see that g is
unbounded. Moreover, this shows that for any t ∈ R where g(t) <∞, we can first find a sequence
of rationals rn ↘ t and then find 0 < εn < 1 so that g(rn + εn) ≥ n. Thus

lim
n→∞

g(rn + εn) =∞ 6= g(t),

and so g is discontinuous at t. If g(t) =∞, then it can only be continuous if g identically infinite
on an interval around t, but such an interval would have positive measure and contradict part
(a). �

(c) Suppose h = g except on a subset E ⊂ R with m(E) = 0. Given a rational qn and R > 0, there
exists an open interval (qn, qn + ε) so that g ≥ R on this interval. Since this interval has positive
measure, h ≥ R at some points on this interval. Then proceeding as in the previous part, we can
show h is unbounded on any interval and discontinuous everywhere. �

(d) Whenever g(x) < ∞, we have g(x)2 < ∞. Thus g2 < ∞ m-almost everywhere by part (a). To
see that g2 is not integrable, note that if n ∈ N is such that qn = 0, then

g2 ≥ 1

22nx
1(0,1).

So it suffices to show f(x) := 1
x1(0,1) is not integrable. Consider the sequence of functions

fn(x) := 1
x1(1/n,1), which increase to f . The monotone convergence theorem and Riemann–

Lebesgue theorem imply∫
R
f dm = lim

n→∞

∫
R
fn dm = lim

n→∞

∫ 1

1/n

1

x
dx = lim

n→∞
[ln(1)− ln(1/n)] = lim

n→∞
ln(n) =∞.

Thus f is not integrable. �
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4. (a) Symmetry follows from |f − g| = |g − f |, and the triangle inequality follows from |f − g| ≤
|f − h|+ |h− g| and the observation that for all s, t ≥ 0

s+ t

1 + s+ t
=

s

1 + s+ t
+

t

1 + s+ t
≤ s

1 + s
+

t

1 + t
.

Finally, ρ(f, g) = 0 if and only if |f−g|
1+|f−g| = 0 µ-almost everywhere by Proposition 2.16. Since

the dominator is bounded below by 1, this fraction is zero if and only if |f(x)− g(x)| = 0. Thus
ρ(f, g) = 0 if and only if f = g µ-almost everywhere. So ρ is a metric on the space of these
equivalence classes. �

(b) (⇒) : Suppose fn → f in measure. Let ε > 0 and let N ∈ N be such that En := {x ∈
X : |fn(x)− f(x)| ≥ ε} satisfies µ(En) < ε for all n ≥ N . Observe that for x ∈ Ecn we have

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

<
ε

1 + |fn(x)− f(x)|
≤ ε,

and for x ∈ En we can bound the above by 1. Thus

ρ(fn, f) =

∫
En

|fn − f |
1 + |fn − f |

dµ+

∫
Ec

n

|fn − f |
1 + |fn − f |

dµ

≤
∫
En

1 dµ+

∫
Ec

n

ε dµ = µ(En) + εµ(Ecn) < ε(1 + µ(X)).

Thus ρ(fn, f)→ 0 since µ(X) <∞.

(⇐) : Suppose ρ(fn, f) → 0. Let ε > 0 and consider En := {x ∈ X : |fn(x) − f(x)| ≥ ε}. Then
since t 7→ t

1+t is increasing, we have

|fn(x)− f(x)|
1 + |fn(x)− f(x)|

≥ ε

1 + ε

for all x ∈ En. Thus

ρ(fn, f) ≥
∫
En

|fn − f |
1 + |fn − f |

dµ ≥
∫
En

ε

1 + ε
dµ =

ε

1 + ε
µ(En),

which implies µ(En) ≤ 1+ε
ε ρ(fn, f)→ 0. Thus fn → f in measure. �

5. For each n ∈ N, let Bn = {t ∈ [a, b] : |f(t)| ≤ n}. Then fn := 1Bnf converges everywhere to f since
[a, b] =

⋃
Bn. So by Egoroff’s theorem we can find E0 ⊂ [a, b] with µ(E0) < ε

2 and such that fn → f
uniformly on [a, b] \ E0.

Now, each fn is bounded and therefore integrable on [a, b]. So using Theorem 2.26 we can find a

sequence of continuous functions (g
(n)
k )k∈N so that∫

[a,b]

|fn − g(n)k | dm→ 0.

By Corollary 2.32, there is a subsequence (g
(n)
k`

)`∈N that converges to fn m-almost everywhere. Using

Egoroff’s theorem again we can find En ⊂ [a, b] such that µ(En) < 2−(n+1)ε and the subsequence

(g
(n)
k`

)`∈N converges to fn uniformly on [a, b] \ En. Then fn|[a,b]\En
is continuous as the uniform limit

of continuous functions. Now

E :=

∞⋃
n=0

En

has m(E) < ε by countable subadditivity, and using the regularity of the Lebesgue measure (Theorem
1.18) we can find an open set U ⊃ E with m(U) < ε. Then K := [a, b] \ U is closed and bounded,
hence compact, with m(K) > m([a, b]) −m(U) = (b − a) − ε. Furthermore, for each n ∈ N we have
K = [a, b] \ U ⊂ [a, b] \ En, and so fn|K is continuous. Also K ⊂ [a, b] \ E0, which means fn → f
uniformly on K, and therefore f |K is continuous as the uniform limit of continuous functions. �
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