Exercises: (Sections 2.2, 2.3)

- 1. Let $f: [0,1] \to [0,1]$ be the Cantor function, and define g(x) := f(x) + x.
 - (a) Show that $g: [0,1] \to [0,2]$ is a bijection with continuous inverse.
 - (b) If $C \subset [0,1]$ is the Cantor set, show that m(g(C)) = 1. [Hint: compute $m(g(C)^c)$.]
 - (c) Show that there exists $A \subset g(C)$ such that $A \notin \mathcal{L}$ and $g^{-1}(A) \in \mathcal{L} \setminus \mathcal{B}_{\mathbb{R}}$.
 - (d) Deduce that there exists a Lebesgue measurable function F and a continuous function G such that $F \circ G$ is not Lebesgue measurable.
- 2. Let $f \in L^+(X, \mathcal{M}, \mu)$ with $\int_X f \ d\mu < \infty$.
 - (a) Show that $\{x \in X : f(x) = \infty\}$ is a μ -null set.
 - (b) Show that $\{x \in X : f(x) > 0\}$ is σ -finite.
 - (c) Show that for all $\epsilon > 0$, there exists $E \in \mathcal{M}$ with $\mu(E) < \infty$ and such that $\int_X f \ d\mu < \int_E f \ d\mu + \epsilon$.
 - (d) Suppose $(f_n)_{n \in \mathbb{N}} \subset L^+(X,\mu)$ decreases to f and $\int_X f_1 d\mu < \infty$. Show that

$$\lim_{n \to \infty} \int_X f_n \ d\mu = \int_X f \ d\mu.$$

3. For $f \in L^+(X, \mathcal{M}, \mu)$, define $\nu \colon \mathcal{M} \to [0, \infty]$ by $\nu(E) := \int_E f d\mu$. Show that ν is a measure satisfying

$$\int_X g \, d\nu = \int_X g f \, d\mu$$

for all $g \in L^+(X, \mathcal{M}, \mu)$.

4. Let $(f_n)_{n \in \mathbb{N}}, (g_n)_{n \in \mathbb{N}} \in L^1(X, \mu)$ be sequences converging μ -almost everywhere to $f, g \in L^1(X, \mu)$, respectively. Suppose $|f_n| \leq g_n$ for each $n \in \mathbb{N}$ and $\int g_n d\mu \to \int g d\mu$. Show that

$$\lim_{n \to \infty} \int_X f_n \ d\mu = \int_X f \ d\mu.$$

5. Suppose $(f_n)_{n \in \mathbb{N}} \subset L^1(X, \mu)$ converges μ -almost everywhere to $f \in L^1(X, \mu)$. Show that

$$\lim_{n \to \infty} \int_X |f_n - f| \ d\mu = 0 \qquad \Longleftrightarrow \qquad \lim_{n \to \infty} \int_X |f_n| \ d\mu = \int_X |f| \ d\mu.$$

Solutions:

1. (a) If $x, y \in [0, 1]$ satisfy x < y, then $f(x) \le f(y)$ and hence

$$g(x) = f(x) + x \le f(y) + x < f(y) + y = g(y).$$

Thus g is injective. Recall that f is continuous (since it is increasing and onto [0,1]), hence g is continuous as the sum of continuous functions. Since g(0) = f(0) + 0 = 0 and g(1) = f(1) + 1 = 2, the intermediate value theorem implies g is onto [0,2]. Thus g is a a bijection. Its inverse $g^{-1}: [0,2] \rightarrow [0,1]$ is increasing since g is increasing, which we showed above. Hence it is continuous since it is also onto [0,1]: any discontinuity would necessarily be a jump discontinuity, and hence contradict the surjectivity of g^{-1} .

- 10/11/2023
- (b) Recall that [0,1] \ C is a countable union of open intervals (namely (¹/₃, ²/₃), (¹/₉, ²/₉), (⁷/₉, ⁸/₉), etc.), and f is constant on each of these intervals. Denote the intervals by I_n, n ∈ N, and let c_n be such that f(x) = c_n for all x ∈ I_n. Then for x ∈ I_n we have g(x) = c_n + x, and hence g(I_n) = I_n + c_n. Moreover, {I_n + c_n: n ∈ N} is a disjoint collection since g is a bijection. So using the translation invariance of the Lebesgue measure, we have

$$m(g([0,1] \setminus C)) = \sum_{n=1}^{\infty} m(I_n + c_n) = \sum_{n=1}^{\infty} m(I_n) = m([0,1] \setminus C) = 1,$$

where we have used m(C) = 0. Since g is onto [0, 2], we also have

$$m(g([0,1] \setminus C)) = m(g([0,1]) \setminus g(C)) = m([0,2] \setminus g(C)) = 2 - m(g(C)).$$

Hence m(g(C)) = 1.

- (c) By Exercise 2.(b) on Homework 4, m(g(C)) > 0 implies there exists $A \subset g(C)$ which is not Lebesgue measurable. Then $B := g^{-1}(A) \subset C$ is a subset of a null set and hence is Lebesgue measurable. However, if we had $B \in \mathcal{B}_{\mathbb{R}}$, then the continuity of g^{-1} would imply $A = g(B) = (g^{-1})^{-1}(B)$ is Borel measurable, a contradiction.
- (d) Let $F := 1_{g^{-1}(A)}$, which is Lebesgue measurable since $g^{-1}(A) \in \mathcal{L}$. Let $G := g^{-1}$, which is continuous by part (a). Then $F \circ G$ is **not** Lebesgue measurable because

$$(F \circ G)^{-1}(\{1\}) = G^{-1}(F^{-1}(\{1\})) = G^{-1}(g^{-1}(A)) = g(g^{-1}(A)) = A$$

is not Lebesgue measurable.

2. (a) Denote $E = \{x \in X : f(x) = \infty\}$. Suppose, towards a contradiction, that $\mu(E) > 0$ and denote $R := \frac{1}{\mu(E)} \left(\int_X f \ d\mu + 1 \right)$. Then $\phi := R \mathbf{1}_E$ is a simple function satisfying $0 \le \phi \le f$. Thus

$$\int_X f \ d\mu \ge \int_X \phi \ d\mu = R\mu(E) = \int_X f \ d\mu + 1,$$

a contradiction.

(b) Let $E_n = \{x \in X : f(x) \ge \frac{1}{n}\}$ so that

$$\bigcup_{n=1}^{\infty} E_n = \{ x \in X \colon f(x) > 0 \}.$$

Then $\int_X f \ d\mu \ge \int_{E_n} f \ d\mu \ge \frac{1}{n} \mu(E_n)$ implies $\mu(E_n) < \infty$ for all $n \in \mathbb{N}$.

(c) Let $\epsilon > 0$ and let E_n be as in the previous part, and let $F = \{x \in X : f(x) > 0\}$. Then $E_n \subset E_{n+1}$ implies the sequence $f_n := 1_{E_n} f$ increases to $1_F f = f$ pointwise. So the monotone convergence theorem implies

$$\int_{E_n} f \ d\mu = \int_X \mathbf{1}_{E_n} f \ d\mu \to \int_X f \ d\mu.$$

Consequently there exists sufficiently large $n \in \mathbb{N}$ so that $\int_{E_n} f \, d\mu \ge \int_X f \, d\mu - \epsilon$. Then E_n is the desired set.

(d) Since the sequence is decreasing, f_1 having finite integral implies each f_n has finite integral. Thus $E_n := \{x \in X : f_n(x) = \infty\}$ is a μ -set for each $n \in \mathbb{N}$ by part (a). Now, define

$$g_n(x) := \begin{cases} f_1(x) - f_n(x) & \text{if } x \in E_n^c \\ 0 & \text{otherwise} \end{cases}$$

Then $g_n \in L^+(X, \mu)$ by measurable by Exercise 4 on Homework 4 (note that f_1 is infinite whenever f_n is and neither ever equals $-\infty$). Now, $E := \bigcup_n E_n$ is a μ -null set (it actually equals E_1) and for any $x \in E^c$ we have

$$g_n(x) = f_1(x) - f_n(x) \nearrow f_1(x) - f(x)$$

Thus the monotone convergence theorem implies

$$\lim_{n \to \infty} \int_{E^c} f_1 - f_n \ d\mu = \int_{E^c} f_1 - f(x) \ d\mu.$$

Thus

$$\lim_{n \to \infty} \int_{E^c} f_n \ d\mu = \lim_{n \to \infty} \int_{E^c} f_1 \ d\mu - \int_{E^c} f_1 - f_n \ d\mu = \int_{E^c} f_1 \ d\mu - \int_{E^c} f_1 - f \ d\mu = \int_{E^c} f \ d\mu,$$

where we have used that $f_1 = (f_1 - f_n) + f_n$ and $f_1 = (f_1 - f) + f$ are sums are positive functions on E^c . Finally, since $\mu(E) = 0$, the above integrals of f_n and f over E^c equal the integrals over all of X.

3. Since $1_{\emptyset}f = 0$, we have $\nu(\emptyset) = \int_{\emptyset} f \ d\mu = \int_X 1_{\emptyset} f \ d\mu = 0$. Now suppose $\{E_n : n \in \mathbb{N}\} \subset \mathcal{M}$ is a disjoint collection. Observe that $\sum 1_{E_n} = 1_{\bigcup E_n}$. Then by Theorem 2.15 from lecture we have

$$\sum_{n=1}^{\infty} \nu(E_n) = \sum_{n=1}^{\infty} \int_X \mathbf{1}_{E_n} f \, d\mu = \int_X \sum_{n=1}^{\infty} \mathbf{1}_{E_n} f \, d\mu = \int \mathbf{1}_{\bigcup E_n} f \, d\mu = \nu\left(\bigcup_{n=1}^{\infty} E_n\right) + \sum_{n=1}^{\infty} \left(\sum_{n=1}^{\infty} E_n\right) + \sum_{n=1}^{\infty} E_n + \sum_{n=1}^{\infty$$

Hence ν is a measure.

Now, first suppose $g \in L^+(X,\mu)$ is simple with standard representation $g = \sum \alpha_j 1_{E_j}$. Then

$$\int_{X} g \, d\nu = \sum_{j=1}^{n} \alpha_{j} \nu(E_{j}) = \sum_{j=1}^{n} \alpha_{j} \int_{X} \mathbb{1}_{E_{j}} f \, d\mu = \int_{X} g f \, d\mu$$

For general $g \in L^+(X,\mu)$, we use Theorem 2.10 to find a sequence of simple functions $(\phi_n)_{n\in\mathbb{N}} \subset$ $L^+(X,\mu)$ which increase pointwise to g. Then above computation and the monotone convergence theorem imply

$$\int_X g \, d\nu = \lim_{n \to \infty} \int_X \phi_n \, d\nu = \lim_{n \to \infty} \int_X \phi_n f \, d\mu = \int_X g f \, d\mu,$$

where in the last equality we have used that $\phi_n f$ increases to gf.

4. As in the proof of the dominated convergence theorem, by considering real and imaginary parts of these integrals it suffices to assume the f_n and f are real-valued. In this case, $|f_n| \leq g_n$ implies $g_n \pm f_n \geq 0$, and similarly $g \pm f \ge 0$. Applying Fatou's Lemma, we have

$$\int_X g \ d\mu \pm \int_X f \ d\mu = \int_X g \pm f \ d\mu \le \liminf_{n \to \infty} \int_X g_n \pm f_n \ d\mu = \liminf_{n \to \infty} \int_X g_n \ d\mu \pm \int_X f_n \ d\mu.$$

Now, the convergence $\int g_n d\mu \to \int g d\mu$ implies the above is either $\int g d\mu + \liminf_n \int f_n d\mu$ or $\int g \, d\mu - \limsup_n \int_X f_n \, d\mu$. It follows that

$$\limsup_{n \to \infty} \int_X f_n \ d\mu \le \int_X f \ d\mu \le \liminf_{n \to \infty} \int_X f_n \ d\mu,$$

which implies the claimed convergence.

5. (\Longrightarrow) : Note that $|f_n(x)| \leq |f(x)| + |f_n(x) - f(x)|$ for all $x \in X$ and all $n \in \mathbb{N}$. Thus

$$\limsup_{n \to \infty} \int_X |f_n| \ d\mu \le \int_X |f| \ d\mu + \limsup_{n \to \infty} \int_X |f_n - f| \ d\mu = \int_X |f| \ d\mu.$$

Combining this with the inequality from Fatou's Lemma yields the desired convergence.

 (\Leftarrow) : Define $g_n := |f_n| + |f|$ and g := 2|f|. Then by assumption $\int g_n \to \int g$. Since $|f_n - f|$ converges to zero μ -almost everywhere and is dominated by g_n , Exercise 4 gives

$$\lim_{n \to \infty} \int_X |f_n - f| \ d\mu = \int_X 0 \ d\mu = 0.$$