
Math 828 Homework 5 Solutions 10/11/2023

Exercises: (Sections 2.2, 2.3)

1. Let f : [0, 1]→ [0, 1] be the Cantor function, and define g(x) := f(x) + x.

(a) Show that g : [0, 1]→ [0, 2] is a bijection with continuous inverse.

(b) If C ⊂ [0, 1] is the Cantor set, show that m(g(C)) = 1. [Hint: compute m(g(C)c).]

(c) Show that there exists A ⊂ g(C) such that A 6∈ L and g−1(A) ∈ L \ BR.

(d) Deduce that there exists a Lebesgue measurable function F and a continuous function G such
that F ◦G is not Lebesgue measurable.

2. Let f ∈ L+(X,M, µ) with
∫
X
f dµ <∞.

(a) Show that {x ∈ X : f(x) =∞} is a µ-null set.

(b) Show that {x ∈ X : f(x) > 0} is σ-finite.

(c) Show that for all ε > 0, there exists E ∈M with µ(E) <∞ and such that
∫
X
f dµ <

∫
E
f dµ+ ε.

(d) Suppose (fn)n∈N ⊂ L+(X,µ) decreases to f and
∫
X
f1 dµ <∞. Show that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

3. For f ∈ L+(X,M, µ), define ν : M→ [0,∞] by ν(E) :=
∫
E
f dµ. Show that ν is a measure satisfying∫

X

g dν =

∫
X

gf dµ

for all g ∈ L+(X,M, µ).

4. Let (fn)n∈N, (gn)n∈N ∈ L1(X,µ) be sequences converging µ-almost everywhere to f, g ∈ L1(X,µ),
respectively. Suppose |fn| ≤ gn for each n ∈ N and

∫
gn dµ→

∫
g dµ. Show that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

5. Suppose (fn)n∈N ⊂ L1(X,µ) converges µ-almost everywhere to f ∈ L1(X,µ). Show that

lim
n→∞

∫
X

|fn − f | dµ = 0 ⇐⇒ lim
n→∞

∫
X

|fn| dµ =

∫
X

|f | dµ.

———————————————————————————————————————————–

Solutions:

1. (a) If x, y ∈ [0, 1] satisfy x < y, then f(x) ≤ f(y) and hence

g(x) = f(x) + x ≤ f(y) + x < f(y) + y = g(y).

Thus g is injective. Recall that f is continuous (since it is increasing and onto [0, 1]), hence
g is continuous as the sum of continuous functions. Since g(0) = f(0) + 0 = 0 and g(1) =
f(1) + 1 = 2, the intermediate value theorem implies g is onto [0, 2]. Thus g is a a bijection. Its
inverse g−1 : [0, 2]→ [0, 1] is increasing since g is increasing, which we showed above. Hence it is
continuous since it is also onto [0, 1]: any discontinuity would necessarily be a jump discontinuity,
and hence contradict the surjectivity of g−1. �
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(b) Recall that [0, 1]\C is a countable union of open intervals (namely ( 1
3 ,

2
3 ), ( 1

9 ,
2
9 ), ( 7

9 ,
8
9 ), etc.), and

f is constant on each of these intervals. Denote the intervals by In, n ∈ N, and let cn be such
that f(x) = cn for all x ∈ In. Then for x ∈ In we have g(x) = cn + x, and hence g(In) = In + cn.
Moreover, {In + cn : n ∈ N} is a disjoint collection since g is a bijection. So using the translation
invariance of the Lebesgue measure, we have

m(g([0, 1] \ C)) =

∞∑
n=1

m(In + cn) =

∞∑
n=1

m(In) = m([0, 1] \ C) = 1,

where we have used m(C) = 0. Since g is onto [0, 2], we also have

m(g([0, 1] \ C)) = m(g([0, 1]) \ g(C)) = m([0, 2] \ g(C)) = 2−m(g(C)).

Hence m(g(C)) = 1. �

(c) By Exercise 2.(b) on Homework 4, m(g(C)) > 0 implies there exists A ⊂ g(C) which is not
Lebesgue measurable. Then B := g−1(A) ⊂ C is a subset of a null set and hence is Lebesgue
measurable. However, if we had B ∈ BR, then the continuity of g−1 would imply A = g(B) =
(g−1)−1(B) is Borel measurable, a contradiction. �

(d) Let F := 1g−1(A), which is Lebesgue measurable since g−1(A) ∈ L. Let G := g−1, which is
continuous by part (a). Then F ◦G is not Lebesgue measurable because

(F ◦G)−1({1}) = G−1(F−1({1})) = G−1(g−1(A)) = g(g−1(A)) = A

is not Lebesgue measurable. �

2. (a) Denote E = {x ∈ X : f(x) = ∞}. Suppose, towards a contradiction, that µ(E) > 0 and denote
R := 1

µ(E)

(∫
X
f dµ+ 1

)
. Then φ := R1E is a simple function satisfying 0 ≤ φ ≤ f . Thus∫

X

f dµ ≥
∫
X

φ dµ = Rµ(E) =

∫
X

f dµ+ 1,

a contradiction. �

(b) Let En = {x ∈ X : f(x) ≥ 1
n} so that

∞⋃
n=1

En = {x ∈ X : f(x) > 0}.

Then
∫
X
f dµ ≥

∫
En
f dµ ≥ 1

nµ(En) implies µ(En) <∞ for all n ∈ N. �

(c) Let ε > 0 and let En be as in the previous part, and let F = {x ∈ X : f(x) > 0}. Then En ⊂ En+1

implies the sequence fn := 1En
f increases to 1F f = f pointwise. So the monotone convergence

theorem implies ∫
En

f dµ =

∫
X

1En
f dµ→

∫
X

f dµ.

Consequently there exists sufficiently large n ∈ N so that
∫
En
f dµ ≥

∫
X
f dµ− ε. Then En is the

desired set. �

(d) Since the sequence is decreasing, f1 having finite integral implies each fn has finite integral. Thus
En := {x ∈ X : fn(x) =∞} is a µ-set for each n ∈ N by part (a). Now, define

gn(x) :=

{
f1(x)− fn(x) if x ∈ Ecn
0 otherwise

.

Then gn ∈ L+(X,µ) by measurable by Exercise 4 on Homework 4 (note that f1 is infinite whenever
fn is and neither ever equals −∞). Now, E :=

⋃
nEn is a µ-null set (it actually equals E1) and

for any x ∈ Ec we have
gn(x) = f1(x)− fn(x)↗ f1(x)− f(x).
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Thus the monotone convergence theorem implies

lim
n→∞

∫
Ec

f1 − fn dµ =

∫
Ec

f1 − f(x) dµ.

Thus

lim
n→∞

∫
Ec

fn dµ = lim
n→∞

∫
Ec

f1 dµ−
∫
Ec

f1 − fn dµ =

∫
Ec

f1 dµ−
∫
Ec

f1 − f dµ =

∫
Ec

f dµ,

where we have used that f1 = (f1−fn) +fn and f1 = (f1−f) +f are sums are positive functions
on Ec. Finally, since µ(E) = 0, the above integrals of fn and f over Ec equal the integrals over
all of X. �

3. Since 1∅f = 0, we have ν(∅) =
∫
∅ f dµ =

∫
X

1∅f dµ = 0. Now suppose {En : n ∈ N} ⊂ M is a disjoint
collection. Observe that

∑
1En

= 1⋃En
. Then by Theorem 2.15 from lecture we have

∞∑
n=1

ν(En) =

∞∑
n=1

∫
X

1En
f dµ =

∫
X

∞∑
n=1

1En
f dµ =

∫
1⋃En

f dµ = ν

( ∞⋃
n=1

En

)
.

Hence ν is a measure.

Now, first suppose g ∈ L+(X,µ) is simple with standard representation g =
∑
αj1Ej

. Then∫
X

g dν =

n∑
j=1

αjν(Ej) =

n∑
j=1

αj

∫
X

1Ej
f dµ =

∫
X

gf dµ.

For general g ∈ L+(X,µ), we use Theorem 2.10 to find a sequence of simple functions (φn)n∈N ⊂
L+(X,µ) which increase pointwise to g. Then above computation and the monotone convergence
theorem imply ∫

X

g dν = lim
n→∞

∫
X

φn dν = lim
n→∞

∫
X

φnf dµ =

∫
X

gf dµ,

where in the last equality we have used that φnf increases to gf . �

4. As in the proof of the dominated convergence theorem, by considering real and imaginary parts of these
integrals it suffices to assume the fn and f are real-valued. In this case, |fn| ≤ gn implies gn± fn ≥ 0,
and similarly g ± f ≥ 0. Applying Fatou’s Lemma, we have∫

X

g dµ±
∫
X

f dµ =

∫
X

g ± f dµ ≤ lim inf
n→∞

∫
X

gn ± fn dµ = lim inf
n→∞

∫
X

gn dµ±
∫
X

fn dµ.

Now, the convergence
∫
gn dµ →

∫
g dµ implies the above is either

∫
g dµ + lim infn

∫
fn dµ or∫

g dµ− lim supn
∫
X
fn dµ. It follows that

lim sup
n→∞

∫
X

fn dµ ≤
∫
X

f dµ ≤ lim inf
n→∞

∫
X

fn dµ,

which implies the claimed convergence. �

5. (=⇒) : Note that |fn(x)| ≤ |f(x)|+ |fn(x)− f(x)| for all x ∈ X and all n ∈ N. Thus

lim sup
n→∞

∫
X

|fn| dµ ≤
∫
X

|f | dµ+ lim sup
n→∞

∫
X

|fn − f | dµ =

∫
X

|f | dµ.

Combining this with the inequality from Fatou’s Lemma yields the desired convergence.

(⇐=) : Define gn := |fn|+ |f | and g := 2|f |. Then by assumption
∫
gn →

∫
g. Since |fn− f | converges

to zero µ-almost everywhere and is dominated by gn, Exercise 4 gives

lim
n→∞

∫
X

|fn − f | dµ =

∫
X

0 dµ = 0.

�
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