Exercises: (Sections 2.2, 2.3)

1. Let $f:[0,1] \rightarrow[0,1]$ be the Cantor function, and define $g(x):=f(x)+x$.
(a) Show that $g:[0,1] \rightarrow[0,2]$ is a bijection with continuous inverse.
(b) If $C \subset[0,1]$ is the Cantor set, show that $m(g(C))=1$. [Hint: compute $m\left(g(C)^{c}\right)$.]
(c) Show that there exists $A \subset g(C)$ such that $A \notin \mathcal{L}$ and $g^{-1}(A) \in \mathcal{L} \backslash \mathcal{B}_{\mathbb{R}}$.
(d) Deduce that there exists a Lebesgue measurable function F and a continuous function G such that $F \circ G$ is not Lebesgue measurable.
2. Let $f \in L^{+}(X, \mathcal{M}, \mu)$ with $\int_{X} f d \mu<\infty$.
(a) Show that $\{x \in X: f(x)=\infty\}$ is a μ-null set.
(b) Show that $\{x \in X: f(x)>0\}$ is σ-finite.
(c) Show that for all $\epsilon>0$, there exists $E \in \mathcal{M}$ with $\mu(E)<\infty$ and such that $\int_{X} f d \mu<\int_{E} f d \mu+\epsilon$.
(d) Suppose $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{+}(X, \mu)$ decreases to f and $\int_{X} f_{1} d \mu<\infty$. Show that

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu .
$$

3. For $f \in L^{+}(X, \mathcal{M}, \mu)$, define $\nu: \mathcal{M} \rightarrow[0, \infty]$ by $\nu(E):=\int_{E} f d \mu$. Show that ν is a measure satisfying

$$
\int_{X} g d \nu=\int_{X} g f d \mu
$$

for all $g \in L^{+}(X, \mathcal{M}, \mu)$.
4. Let $\left(f_{n}\right)_{n \in \mathbb{N}},\left(g_{n}\right)_{n \in \mathbb{N}} \in L^{1}(X, \mu)$ be sequences converging μ-almost everywhere to $f, g \in L^{1}(X, \mu)$, respectively. Suppose $\left|f_{n}\right| \leq g_{n}$ for each $n \in \mathbb{N}$ and $\int g_{n} d \mu \rightarrow \int g d \mu$. Show that

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu .
$$

5. Suppose $\left(f_{n}\right)_{n \in \mathbb{N}} \subset L^{1}(X, \mu)$ converges μ-almost everywhere to $f \in L^{1}(X, \mu)$. Show that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=0 \quad \Longleftrightarrow \quad \lim _{n \rightarrow \infty} \int_{X}\left|f_{n}\right| d \mu=\int_{X}|f| d \mu
$$

Solutions:

1. (a) If $x, y \in[0,1]$ satisfy $x<y$, then $f(x) \leq f(y)$ and hence

$$
g(x)=f(x)+x \leq f(y)+x<f(y)+y=g(y) .
$$

Thus g is injective. Recall that f is continuous (since it is increasing and onto $[0,1]$), hence g is continuous as the sum of continuous functions. Since $g(0)=f(0)+0=0$ and $g(1)=$ $f(1)+1=2$, the intermediate value theorem implies g is onto $[0,2]$. Thus g is a a bijection. Its inverse $g^{-1}:[0,2] \rightarrow[0,1]$ is increasing since g is increasing, which we showed above. Hence it is continuous since it is also onto $[0,1]$: any discontinuity would necessarily be a jump discontinuity, and hence contradict the surjectivity of g^{-1}.
(b) Recall that $[0,1] \backslash C$ is a countable union of open intervals (namely $\left(\frac{1}{3}, \frac{2}{3}\right),\left(\frac{1}{9}, \frac{2}{9}\right),\left(\frac{7}{9}, \frac{8}{9}\right)$, etc.), and f is constant on each of these intervals. Denote the intervals by $I_{n}, n \in \mathbb{N}$, and let c_{n} be such that $f(x)=c_{n}$ for all $x \in I_{n}$. Then for $x \in I_{n}$ we have $g(x)=c_{n}+x$, and hence $g\left(I_{n}\right)=I_{n}+c_{n}$. Moreover, $\left\{I_{n}+c_{n}: n \in \mathbb{N}\right\}$ is a disjoint collection since g is a bijection. So using the translation invariance of the Lebesgue measure, we have

$$
m(g([0,1] \backslash C))=\sum_{n=1}^{\infty} m\left(I_{n}+c_{n}\right)=\sum_{n=1}^{\infty} m\left(I_{n}\right)=m([0,1] \backslash C)=1
$$

where we have used $m(C)=0$. Since g is onto $[0,2]$, we also have

$$
m(g([0,1] \backslash C))=m(g([0,1]) \backslash g(C))=m([0,2] \backslash g(C))=2-m(g(C))
$$

Hence $m(g(C))=1$.
(c) By Exercise 2.(b) on Homework 4, $m(g(C))>0$ implies there exists $A \subset g(C)$ which is not Lebesgue measurable. Then $B:=g^{-1}(A) \subset C$ is a subset of a null set and hence is Lebesgue measurable. However, if we had $B \in \mathcal{B}_{\mathbb{R}}$, then the continuity of g^{-1} would imply $A=g(B)=$ $\left(g^{-1}\right)^{-1}(B)$ is Borel measurable, a contradiction.
(d) Let $F:=1_{g^{-1}(A)}$, which is Lebesgue measurable since $g^{-1}(A) \in \mathcal{L}$. Let $G:=g^{-1}$, which is continuous by part (a). Then $F \circ G$ is not Lebesgue measurable because

$$
(F \circ G)^{-1}(\{1\})=G^{-1}\left(F^{-1}(\{1\})\right)=G^{-1}\left(g^{-1}(A)\right)=g\left(g^{-1}(A)\right)=A
$$

is not Lebesgue measurable.
2. (a) Denote $E=\{x \in X: f(x)=\infty\}$. Suppose, towards a contradiction, that $\mu(E)>0$ and denote $R:=\frac{1}{\mu(E)}\left(\int_{X} f d \mu+1\right)$. Then $\phi:=R 1_{E}$ is a simple function satisfying $0 \leq \phi \leq f$. Thus

$$
\int_{X} f d \mu \geq \int_{X} \phi d \mu=R \mu(E)=\int_{X} f d \mu+1
$$

a contradiction.
(b) Let $E_{n}=\left\{x \in X: f(x) \geq \frac{1}{n}\right\}$ so that

$$
\bigcup_{n=1}^{\infty} E_{n}=\{x \in X: f(x)>0\}
$$

Then $\int_{X} f d \mu \geq \int_{E_{n}} f d \mu \geq \frac{1}{n} \mu\left(E_{n}\right)$ implies $\mu\left(E_{n}\right)<\infty$ for all $n \in \mathbb{N}$.
(c) Let $\epsilon>0$ and let E_{n} be as in the previous part, and let $F=\{x \in X: f(x)>0\}$. Then $E_{n} \subset E_{n+1}$ implies the sequence $f_{n}:=1_{E_{n}} f$ increases to $1_{F} f=f$ pointwise. So the monotone convergence theorem implies

$$
\int_{E_{n}} f d \mu=\int_{X} 1_{E_{n}} f d \mu \rightarrow \int_{X} f d \mu .
$$

Consequently there exists sufficiently large $n \in \mathbb{N}$ so that $\int_{E_{n}} f d \mu \geq \int_{X} f d \mu-\epsilon$. Then E_{n} is the desired set.
(d) Since the sequence is decreasing, f_{1} having finite integral implies each f_{n} has finite integral. Thus $E_{n}:=\left\{x \in X: f_{n}(x)=\infty\right\}$ is a μ-set for each $n \in \mathbb{N}$ by part (a). Now, define

$$
g_{n}(x):= \begin{cases}f_{1}(x)-f_{n}(x) & \text { if } x \in E_{n}^{c} \\ 0 & \text { otherwise }\end{cases}
$$

Then $g_{n} \in L^{+}(X, \mu)$ by measurable by Exercise 4 on Homework 4 (note that f_{1} is infinite whenever f_{n} is and neither ever equals $-\infty$). Now, $E:=\bigcup_{n} E_{n}$ is a μ-null set (it actually equals E_{1}) and for any $x \in E^{c}$ we have

$$
g_{n}(x)=f_{1}(x)-f_{n}(x) \nearrow f_{1}(x)-f(x) .
$$

Thus the monotone convergence theorem implies

$$
\lim _{n \rightarrow \infty} \int_{E^{c}} f_{1}-f_{n} d \mu=\int_{E^{c}} f_{1}-f(x) d \mu
$$

Thus

$$
\lim _{n \rightarrow \infty} \int_{E^{c}} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{E^{c}} f_{1} d \mu-\int_{E^{c}} f_{1}-f_{n} d \mu=\int_{E^{c}} f_{1} d \mu-\int_{E^{c}} f_{1}-f d \mu=\int_{E^{c}} f d \mu
$$

where we have used that $f_{1}=\left(f_{1}-f_{n}\right)+f_{n}$ and $f_{1}=\left(f_{1}-f\right)+f$ are sums are positive functions on E^{c}. Finally, since $\mu(E)=0$, the above integrals of f_{n} and f over E^{c} equal the integrals over all of X.
3. Since $1_{\emptyset} f=0$, we have $\nu(\emptyset)=\int_{\emptyset} f d \mu=\int_{X} 1_{\emptyset} f d \mu=0$. Now suppose $\left\{E_{n}: n \in \mathbb{N}\right\} \subset \mathcal{M}$ is a disjoint collection. Observe that $\sum 1_{E_{n}}=1 \cup E_{n}$. Then by Theorem 2.15 from lecture we have

$$
\sum_{n=1}^{\infty} \nu\left(E_{n}\right)=\sum_{n=1}^{\infty} \int_{X} 1_{E_{n}} f d \mu=\int_{X} \sum_{n=1}^{\infty} 1_{E_{n}} f d \mu=\int 1 \cup E_{n} f d \mu=\nu\left(\bigcup_{n=1}^{\infty} E_{n}\right)
$$

Hence ν is a measure.
Now, first suppose $g \in L^{+}(X, \mu)$ is simple with standard representation $g=\sum \alpha_{j} 1_{E_{j}}$. Then

$$
\int_{X} g d \nu=\sum_{j=1}^{n} \alpha_{j} \nu\left(E_{j}\right)=\sum_{j=1}^{n} \alpha_{j} \int_{X} 1_{E_{j}} f d \mu=\int_{X} g f d \mu
$$

For general $g \in L^{+}(X, \mu)$, we use Theorem 2.10 to find a sequence of simple functions $\left(\phi_{n}\right)_{n \in \mathbb{N}} \subset$ $L^{+}(X, \mu)$ which increase pointwise to g. Then above computation and the monotone convergence theorem imply

$$
\int_{X} g d \nu=\lim _{n \rightarrow \infty} \int_{X} \phi_{n} d \nu=\lim _{n \rightarrow \infty} \int_{X} \phi_{n} f d \mu=\int_{X} g f d \mu
$$

where in the last equality we have used that $\phi_{n} f$ increases to $g f$.
4. As in the proof of the dominated convergence theorem, by considering real and imaginary parts of these integrals it suffices to assume the f_{n} and f are real-valued. In this case, $\left|f_{n}\right| \leq g_{n}$ implies $g_{n} \pm f_{n} \geq 0$, and similarly $g \pm f \geq 0$. Applying Fatou's Lemma, we have

$$
\int_{X} g d \mu \pm \int_{X} f d \mu=\int_{X} g \pm f d \mu \leq \liminf _{n \rightarrow \infty} \int_{X} g_{n} \pm f_{n} d \mu=\liminf _{n \rightarrow \infty} \int_{X} g_{n} d \mu \pm \int_{X} f_{n} d \mu
$$

Now, the convergence $\int g_{n} d \mu \rightarrow \int g d \mu$ implies the above is either $\int g d \mu+\liminf _{n} \int f_{n} d \mu$ or $\int g d \mu-\lim \sup _{n} \int_{X} f_{n} d \mu$. It follows that

$$
\limsup _{n \rightarrow \infty} \int_{X} f_{n} d \mu \leq \int_{X} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{X} f_{n} d \mu
$$

which implies the claimed convergence.
5. (\Longrightarrow) : Note that $\left|f_{n}(x)\right| \leq|f(x)|+\left|f_{n}(x)-f(x)\right|$ for all $x \in X$ and all $n \in \mathbb{N}$. Thus

$$
\limsup _{n \rightarrow \infty} \int_{X}\left|f_{n}\right| d \mu \leq \int_{X}|f| d \mu+\limsup _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=\int_{X}|f| d \mu
$$

Combining this with the inequality from Fatou's Lemma yields the desired convergence.
(\Longleftarrow) : Define $g_{n}:=\left|f_{n}\right|+|f|$ and $g:=2|f|$. Then by assumption $\int g_{n} \rightarrow \int g$. Since $\left|f_{n}-f\right|$ converges to zero μ-almost everywhere and is dominated by g_{n}, Exercise 4 gives

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=\int_{X} 0 d \mu=0
$$

