Exercises: (Sections 1.5, 2.1)

- 1. Let μ be a Lebesgue–Stieltjes measure with domain \mathcal{M} , and let $E \in \mathcal{M}$ with $\mu(E) < \infty$. Show that for any $\epsilon > 0$ there exists a finite union of open intervals A so that $\mu(E\Delta A) < \epsilon$.
- 2. Let $N \subset [0,1)$ be the non-measurable set constructed in Section 1.1 and denote

$$N_q := \{x + q \colon x \in N \cap [0, 1 - q)\} \cup \{x + q - 1 \colon x \in N \cap [1 - q, 1)\},\$$

for all $q \in \mathbb{Q} \cap [0,1)$. Let $E \subset \mathbb{R}$ be Lebesgue measurable.

- (a) Show that $E \subset N$ implies m(E) = 0.
- (b) Show that m(E) > 0 implies E contains a subset that is not Lebesgue measurable. [Hint: for $E' \subset [0,1)$ one has $E' = \bigcup_q E' \cap N_q$.]
- 3. Let $E \subset \mathbb{R}$ be Lebesgue measurable with m(E) > 0.
 - (a) Show that for any $0 < \alpha < 1$ there exists an interval I satisfying $m(E \cap I) > \alpha m(I)$.
 - (b) Show that the set

$$E - E := \{x - y \colon x, y \in E\}$$

contains an open interval centered at 0.

- 4. Let (X, \mathcal{M}) be a measurable space and $f, g: X \to \overline{\mathbb{R}}$.
 - (a) Show that f is \mathcal{M} -measurable if and only if $f^{-1}(\{\infty\}), f^{-1}(\{-\infty\}), f^{-1}(B) \in \mathcal{M}$ for all Borel sets $B \subset \mathbb{R}$.
 - (b) Show that f is \mathcal{M} -measurable if and only if $f^{-1}((q,\infty]) \in \mathcal{M}$ for all $q \in \mathbb{Q}$.
 - (c) Suppose f, g are \mathcal{M} -measurable. Fix $a \in \overline{\mathbb{R}}$ and define $h: X \to \overline{\mathbb{R}}$ by

$$h(x) = \begin{cases} a & \text{if } f(x) = -g(x) = \pm \infty \\ f(x) + g(x) & \text{otherwise} \end{cases}.$$

Show that h is \mathcal{M} -measurable.

5. Let (X, \mathcal{M}) be a measurable space, and let $f_n \colon X \to \overline{\mathbb{R}}$ be \mathcal{M} -measurable for each $n \in \mathbb{N}$. Show that $\{x \in X \colon \lim_{n \to \infty} f_n(x) \text{ exists}\} \in \mathcal{M}$.

Solutions:

1. By Lemma 1.17, we can find a cover $\{(a_n, b_n): n \in \mathbb{N}\}$ of E so that

$$\sum_{n=1}^{\infty} \mu((a_n, b_n)) \le \mu(A) + \frac{\epsilon}{2}.$$

Since the right side is finite, the sum converges and therefore there exists $N \in \mathbb{N}$ so that

$$\sum_{n=N+1}^{\infty} \mu((a_n, b_n)) < \frac{\epsilon}{2}.$$

Let $A := (a_1, b_1) \cup \cdots \cup (a_N, b_N)$ and $B := \bigcup_n (a_n, b_n)$. Then

$$E\Delta A = (E \setminus A) \cup (A \setminus E) \subset (B \setminus A) \cup (B \setminus E).$$

Since $B \setminus A \subset \bigcup_{n=N+1}^{\infty} (a_n, b_n)$, we have by countable subadditivity

$$m(B \setminus A) \le \sum_{n=N+1}^{\infty} m((a_n, b_n)) < \frac{\epsilon}{2}.$$

Similarly,

$$m(B \setminus E) = \mu(B) - \mu(E) \le \sum_{n=1}^{\infty} m((a_n, b_n)) - m(E) < \frac{\epsilon}{2}.$$

Thus $m(E\Delta A) < m(B \setminus A) + m(B \setminus E) < \epsilon$.

2. (a) For each $q \in \mathbb{Q} \cap [0,1)$, define

$$E_q := \{x+q \colon x \in E \cap [0,1-q)\} \cup \{x+q-1 \colon x \in E \cap [1-q,1)\} \subset [0,1).$$

Note that $E_q = ([E \cap [0, 1-q)] + q) \cup ([E \cap [1-q, 1)] + q - 1)$, and so it is Lebesgue measurable by Theorem 1.21 from lecture with the same measure as E:

$$m(E_q) = m([E \cap [0, 1-q)] + q) + m([E \cap [1-q, 1)] + q - 1) = m(E \cap [0, 1-q)) + m(E \cap [1-q, 1)) = m(E).$$

Additionally, we have $E_q \subset N_q$ since $E \subset N$, and hence the E_q 's are disjoint. Thus

$$1 = m([0,1)) \ge m \left(\bigcup_{q \in \mathbb{Q} \cap [0,1)} E_q \right) = \sum_{q \in \mathbb{Q} \cap [0,1)} m(E_q) = \sum_{q \in \mathbb{Q} \cap [0,1)} m(E).$$

We therefore must have m(E) = 0.

(b) Since

$$m(E) = \sum_{n \in \mathbb{Z}} m(E \cap [n, n+1)),$$

there exists $n \in \mathbb{Z}$ so that $A := E \cap [n, n+1) - n \subset [0,1)$ has positive measure. Observe that

$$A = \bigcup_{q \in \mathbb{Q} \cap [0,1)} A \cap N_q.$$

If $A \cap N_q$ is measurable, then the translation invariance of m we have

$$m(A \cap N_q) = m(A \cap [N \cap [0, 1-q) + q]) + m(A \cap [N \cap [1-q, 1) + q - 1))$$

= $m((A-q) \cap N \cap [0, 1-q)) + m((A-q+1) \cap N \cap [1-q, 1)) = 0$,

where we have used part (a). Thus if $A \cap N_q$ is measurable for all $q \in \mathbb{Q} \cap [0,1)$, we obtain the contradiction

$$0 < m(A) = \sum_{q \in \mathbb{Q} \cap [0,1)} m(A \cap N_q) = 0.$$

Therefore $A \cap N_q$ must be non-measurable for $q \in \mathbb{Q} \cap [0,1)$, and therefore $(A \cap N_q) + n$ is a non-measurable subset of E by Theorem 1.21.

3. (a) Suppose towards a contradiction that there exists $0 < \alpha_0 < 1$ so that $m(E \cap I) \le \alpha_0 m(I)$ for all intervals I. Then for any cover $\{(a_n, b_n) : n \in \mathbb{N}\}$ of A we have

$$m(A) \le \sum_{n=1}^{\infty} m(A \cap (a_n, b_n)) \le \sum_{n=1}^{\infty} \alpha_0 m((a_n, b_n).$$

Using Lemma 1.17, we can find a cover of A satisfying $\sum_n m((a_n, b_n)) \leq m(A) + \epsilon$ for $\epsilon < \left(\frac{1}{\alpha_0} - 1\right) m(A)$. In this case, the above inequality implies

$$m(A) < \alpha_0(m(A) + \epsilon) < \alpha_0 m(A) + (1 - \alpha_0) m(A) = m(A),$$

a contradiction. \Box

(b) Suppose towards a contradiction that E-E does not contain any intervals centered at 0. This means for all $\delta > 0$, there exists $t \in (-\delta, \delta) \setminus (E-E)$. By definition of E-E, $t \notin E-E$ implies $E \cap (E+t) = \emptyset$. In particular, for any interval I, we have $(E \cap I) \cap (E \cap I + t) = \emptyset$. For $\alpha = \frac{2}{3}$, let I be the open interval from part (a) satisfying $m(E \cap I) < \frac{2}{3}m(I)$. If $E \cap I$ and $E \cap I + t$ are disjoint, we have

$$m((E \cap I) \cup (E \cap I + t)) = m(E \cap I) + m(E \cap I + t) = 2m(E \cap I) > \frac{4}{3}m(I).$$

On the other hand, $(E \cap I) \cup (E \cap I + t) \subset I \cup (I + t)$ and for sufficiently small t we have $m(I \cup (I + t)) < \frac{4}{3}m(I)$, a contradiction.

- 4. (a) (\Rightarrow): Suppose f is \mathcal{M} -measurable. Then $\{\infty\}$, $\{-\infty\} \in \mathcal{B}_{\overline{\mathbb{R}}}$ since their intersection with \mathbb{R} is the Borel set \emptyset , similarly for a Borel set $B \subset \mathbb{R}$. Hence their preimages under f belong to \mathcal{M} . (\Leftarrow): Let $E \in \mathcal{B}_{\overline{\mathbb{R}}}$. Then $B := E \cap \mathbb{R}$ is Borel, and E equals one of the following: $B, B \cup \{\infty\}$, $\{-\infty\} \cup B$, or $\{-\infty\} \cup B \cup \{\infty\}$. In each case, the preimage under f is some union of $f^{-1}(B)$, $f^{-1}(\{\infty\})$, and $f^{-1}(\{-\infty\})$, and hence belongs to \mathcal{M} .
 - (b) (\Rightarrow) : Each $(q, \infty] \in \mathcal{B}_{\overline{\mathbb{R}}}$, and so $f^{-1}((q, \infty]) \in \mathcal{M}$ by definition of \mathcal{M} -measurable. (\Leftarrow) : Let $\mathcal{N} := \{E \subset \overline{\mathbb{R}} : f^{-1}(E) \subset \mathcal{M}\}$, which we note is a σ -algebra since \mathcal{M} is. By assumption \mathcal{N} contains all rays of the form $(q, \infty]$ for $q \in \mathbb{Q}$. It follows that is also contains $[-\infty, q]$ for all $q \in \mathbb{Q}$ and therefore contains

$$\{\infty\} = \bigcap_{n=1}^{\infty} (n, \infty]$$
 and $\{-\infty\} = \bigcap_{n=1}^{\infty} [-\infty, -n].$

Now, $(q, \infty) = (q, \infty] \setminus \{-\infty\} \in \mathcal{N}$ for all $q \in \mathbb{Q}$. Also, for any $a \in \mathbb{R}$, we can find a sequence of rational $(q_n)_{n \in \mathbb{N}}$ descending to a, and thus

$$(a,\infty) = \bigcup_{n=1}^{\infty} (q_n,\infty) \in \mathcal{N}.$$

Since these rays generate $\mathcal{B}_{\mathbb{R}}$ by Proposition 1.2, we have $\mathcal{B}_{\mathbb{R}} \subset \mathcal{N}$ by Lemma 1.1. Appealing to part (a) we see that f is \mathcal{M} -measurable.

(c) Observe that

$$h^{-1}(\{\infty\}) = \begin{cases} \left[f^{-1}(\{\infty\}) \setminus g^{-1}(\{-\infty\}) \right] \cup \left[g^{-1}(\{\infty\}) \setminus f^{-1}(\{-\infty\}) \right] & \text{if } a \neq \infty \\ f^{-1}(\{\infty\}) \cup g^{-1}(\{\infty\}) & \text{if } a = \infty \end{cases} \in \mathcal{M}.$$

Similarly, $h^{-1}(\{-\infty\}) \in \mathcal{M}$. Define $\phi \colon \mathbb{R}^2 \to \mathbb{R}$ by $\phi(x,y) = x + y$. Then ϕ is continuous and hence Borel measurable by Corollary 2.2, and so $\phi^{-1}(B) \in \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$ for all Borel $B \subset \mathbb{R}$. Since H(x) := (f(x), g(x)) is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}})$ -measurable by Proposition 2.4, it follows that $(\phi \circ H)^{-1}(B) = H^{-1}(\phi^{-1}(B)) \in \mathcal{M}$ for all $B \subset \mathbb{R}$. Since

$$h^{-1}(B) = \begin{cases} (\phi \circ H)^{-1}(B) & \text{if } a \notin B \\ (\phi \circ H)^{-1}(B) \cup [f^{-1}(\{\infty\}) \cap g^{-1}(\{-\infty\})] \cup [f^{-1}(\{-\infty\}) \cap g^{-1}(\{\infty\})] & \text{if } a \in B \end{cases},$$

we see that $h^{-1}(B) \in \mathcal{M}$. Thus h is \mathcal{M} -measurable by part (a).

5. Define

$$g(x) := \liminf_{n \to \infty} f_n(x)$$
 and $h(x) := \limsup_{n \to \infty} f_n(x)$.

Then g and h are \mathcal{M} -measurable by Proposition 2.7 and $g(x) \leq h(x)$ for all $x \in X$ with equality if and only if the limit exists. Now, -g(x) is \mathcal{M} -measurable since $t \mapsto -t$ is continuous and hence Borel measurable, and consequently

$$k(x) = \begin{cases} 0 & \text{if } h(x) = g(x) = \pm \infty \\ h(x) + (-g(x)) & \text{otherwise} \end{cases}$$

is \mathcal{M} -measurable by Exercise 4.(c). Thus $k^{-1}(\{0\}) \in \mathcal{M}$, and this set is precisely where g(x) = h(x), and hence the set of points where the limit exists.

©Brent Nelson 2023

4