Exercises: (Sections 1.5, 2.1)

1. Let μ be a Lebesgue-Stieltjes measure with domain \mathcal{M}, and let $E \in \mathcal{M}$ with $\mu(E)<\infty$. Show that for any $\epsilon>0$ there exists a finite union of open intervals A so that $\mu(E \Delta A)<\epsilon$.
2. Let $N \subset[0,1)$ be the non-measurable set constructed in Section 1.1 and denote

$$
N_{q}:=\{x+q: x \in N \cap[0,1-q)\} \cup\{x+q-1: x \in N \cap[1-q, 1)\},
$$

for all $q \in \mathbb{Q} \cap[0,1)$. Let $E \subset \mathbb{R}$ be Lebesgue measurable.
(a) Show that $E \subset N$ implies $m(E)=0$.
(b) Show that $m(E)>0$ implies E contains a subset that is not Lebesgue measurable. [Hint: for $E^{\prime} \subset[0,1)$ one has $\left.E^{\prime}=\bigcup_{q} E^{\prime} \cap N_{q}.\right]$
3. Let $E \subset \mathbb{R}$ be Lebesgue measurable with $m(E)>0$.
(a) Show that for any $0<\alpha<1$ there exists an interval I satisfying $m(E \cap I)>\alpha m(I)$.
(b) Show that the set

$$
E-E:=\{x-y: x, y \in E\}
$$

contains an open interval centered at 0 .
4. Let (X, \mathcal{M}) be a measurable space and $f, g: X \rightarrow \overline{\mathbb{R}}$.
(a) Show that f is \mathcal{M}-measurable if and only if $f^{-1}(\{\infty\}), f^{-1}(\{-\infty\}), f^{-1}(B) \in \mathcal{M}$ for all Borel sets $B \subset \mathbb{R}$.
(b) Show that f is \mathcal{M}-measurable if and only if $f^{-1}((q, \infty]) \in \mathcal{M}$ for all $q \in \mathbb{Q}$.
(c) Suppose f, g are \mathcal{M}-measurable. Fix $a \in \overline{\mathbb{R}}$ and define $h: X \rightarrow \overline{\mathbb{R}}$ by

$$
h(x)=\left\{\begin{array}{ll}
a & \text { if } f(x)=-g(x)= \pm \infty \\
f(x)+g(x) & \text { otherwise }
\end{array} .\right.
$$

Show that h is \mathcal{M}-measurable.
5. Let (X, \mathcal{M}) be a measurable space, and let $f_{n}: X \rightarrow \overline{\mathbb{R}}$ be \mathcal{M}-measurable for each $n \in \mathbb{N}$. Show that $\left\{x \in X: \lim _{n \rightarrow \infty} f_{n}(x)\right.$ exists $\} \in \mathcal{M}$.

Solutions:

1. By Lemma 1.17, we can find a cover $\left\{\left(a_{n}, b_{n}\right): n \in \mathbb{N}\right\}$ of E so that

$$
\sum_{n=1}^{\infty} \mu\left(\left(a_{n}, b_{n}\right)\right) \leq \mu(A)+\frac{\epsilon}{2}
$$

Since the right side is finite, the sum converges and therefore there exists $N \in \mathbb{N}$ so that

$$
\sum_{n=N+1}^{\infty} \mu\left(\left(a_{n}, b_{n}\right)\right)<\frac{\epsilon}{2} .
$$

Let $A:=\left(a_{1}, b_{1}\right) \cup \cdots \cup\left(a_{N}, b_{N}\right)$ and $B:=\bigcup_{n}\left(a_{n}, b_{n}\right)$. Then

$$
E \Delta A=(E \backslash A) \cup(A \backslash E) \subset(B \backslash A) \cup(B \backslash E)
$$

Since $B \backslash A \subset \bigcup_{n=N+1}^{\infty}\left(a_{n}, b_{n}\right)$, we have by countable subadditivity

$$
m(B \backslash A) \leq \sum_{n=N+1}^{\infty} m\left(\left(a_{n}, b_{n}\right)\right)<\frac{\epsilon}{2}
$$

Similarly,

$$
m(B \backslash E)=\mu(B)-\mu(E) \leq \sum_{n=1}^{\infty} m\left(\left(a_{n}, b_{n}\right)\right)-m(E)<\frac{\epsilon}{2}
$$

Thus $m(E \Delta A)<m(B \backslash A)+m(B \backslash E)<\epsilon$.
2. (a) For each $q \in \mathbb{Q} \cap[0,1)$, define

$$
E_{q}:=\{x+q: x \in E \cap[0,1-q)\} \cup\{x+q-1: x \in E \cap[1-q, 1)\} \subset[0,1) .
$$

Note that $E_{q}=([E \cap[0,1-q)]+q) \cup([E \cap[1-q, 1)]+q-1)$, and so it is Lebesgue measurable by Theorem 1.21 from lecture with the same measure as E :
$m\left(E_{q}\right)=m([E \cap[0,1-q)]+q)+m([E \cap[1-q, 1)]+q-1)=m(E \cap[0,1-q))+m(E \cap[1-q, 1))=m(E)$.
Additionally, we have $E_{q} \subset N_{q}$ since $E \subset N$, and hence the E_{q} 's are disjoint. Thus

$$
1=m([0,1)) \geq m\left(\bigcup_{q \in \mathbb{Q} \cap[0,1)} E_{q}\right)=\sum_{q \in \mathbb{Q} \cap[0,1)} m\left(E_{q}\right)=\sum_{q \in \mathbb{Q} \cap[0,1)} m(E) .
$$

We therefore must have $m(E)=0$.
(b) Since

$$
m(E)=\sum_{n \in \mathbb{Z}} m(E \cap[n, n+1))
$$

there exists $n \in \mathbb{Z}$ so that $A:=E \cap[n, n+1)-n \subset[0,1)$ has positive measure. Observe that

$$
A=\bigcup_{q \in \mathbb{Q} \cap[0,1)} A \cap N_{q} .
$$

If $A \cap N_{q}$ is measurable, then the translation invariance of m we have

$$
\begin{aligned}
m\left(A \cap N_{q}\right) & =m(A \cap[N \cap[0,1-q)+q])+m(A \cap[N \cap[1-q, 1)+q-1)) \\
& =m((A-q) \cap N \cap[0,1-q))+m((A-q+1) \cap N \cap[1-q, 1))=0
\end{aligned}
$$

where we have used part (a). Thus if $A \cap N_{q}$ is measurable for all $q \in \mathbb{Q} \cap[0,1)$, we obtain the contradiction

$$
0<m(A)=\sum_{q \in \mathbb{Q} \cap[0,1)} m\left(A \cap N_{q}\right)=0 .
$$

Therefore $A \cap N_{q}$ must be non-measurable for $q \in \mathbb{Q} \cap[0,1)$, and therefore $\left(A \cap N_{q}\right)+n$ is a non-measurable subset of E by Theorem 1.21.
3. (a) Suppose towards a contradiction that there exists $0<\alpha_{0}<1$ so that $m(E \cap I) \leq \alpha_{0} m(I)$ for all intervals I. Then for any cover $\left\{\left(a_{n}, b_{n}\right): n \in \mathbb{N}\right\}$ of A we have

$$
m(A) \leq \sum_{n=1}^{\infty} m\left(A \cap\left(a_{n}, b_{n}\right)\right) \leq \sum_{n=1}^{\infty} \alpha_{0} m\left(\left(a_{n}, b_{n}\right)\right.
$$

Using Lemma 1.17, we can find a cover of A satisfying $\sum_{n} m\left(\left(a_{n}, b_{n}\right)\right) \leq m(A)+\epsilon$ for $\epsilon<$ $\left(\frac{1}{\alpha_{0}}-1\right) m(A)$. In this case, the above inequality implies

$$
m(A) \leq \alpha_{0}(m(A)+\epsilon)<\alpha_{0} m(A)+\left(1-\alpha_{0}\right) m(A)=m(A)
$$

a contradiction.
(b) Suppose towards a contradiction that $E-E$ does not contain any intervals centered at 0 . This means for all $\delta>0$, there exists $t \in(-\delta, \delta) \backslash(E-E)$. By definition of $E-E, t \notin E-E$ implies $E \cap(E+t)=\emptyset$. In particular, for any interval I, we have $(E \cap I) \cap(E \cap I+t)=\emptyset$
For $\alpha=\frac{2}{3}$, let I be the open interval from part (a) satisfying $m(E \cap I)<\frac{2}{3} m(I)$. If $E \cap I$ and $E \cap I+t$ are disjoint, we have

$$
m((E \cap I) \cup(E \cap I+t))=m(E \cap I)+m(E \cap I+t)=2 m(E \cap I)>\frac{4}{3} m(I)
$$

On the other hand, $(E \cap I) \cup(E \cap I+t) \subset I \cup(I+t)$ and for sufficiently small t we have $m(I \cup(I+t))<\frac{4}{3} m(I)$, a contradiction.
4. (a) (\Rightarrow) : Suppose f is \mathcal{M}-measurable. Then $\{\infty\},\{-\infty\} \in \mathcal{B}_{\overline{\mathbb{R}}}$ since their intersection with \mathbb{R} is the Borel set \emptyset, similarly for a Borel set $B \subset \mathbb{R}$. Hence their preimages under f belong to \mathcal{M}.
$(\Leftarrow):$ Let $E \in \mathcal{B}_{\overline{\mathbb{R}}}$. Then $B:=E \cap \mathbb{R}$ is Borel, and E equals one of the following: $B, B \cup\{\infty\}$, $\{-\infty\} \cup B$, or $\{-\infty\} \cup B \cup\{\infty\}$. In each case, the preimage under f is some union of $f^{-1}(B)$, $f^{-1}(\{\infty\})$, and $f^{-1}(\{-\infty\})$, and hence belongs to \mathcal{M}.
(b) (\Rightarrow) : Each $(q, \infty] \in \mathcal{B}_{\overline{\mathbb{R}}}$, and so $f^{-1}((q, \infty]) \in \mathcal{M}$ by definition of \mathcal{M}-measurable.
$(\Leftarrow):$ Let $\mathcal{N}:=\left\{E \subset \overline{\mathbb{R}}: f^{-1}(E) \subset \mathcal{M}\right\}$, which we note is a σ-algebra since \mathcal{M} is. By assumption \mathcal{N} contains all rays of the form $(q, \infty]$ for $q \in \mathbb{Q}$. It follows that is also contains $[-\infty, q]$ for all $q \in \mathbb{Q}$ and therefore contains

$$
\{\infty\}=\bigcap_{n=1}^{\infty}(n, \infty] \quad \text { and } \quad\{-\infty\}=\bigcap_{n=1}^{\infty}[-\infty,-n]
$$

Now, $(q, \infty)=(q, \infty] \backslash\{-\infty\} \in \mathcal{N}$ for all $q \in \mathbb{Q}$. Also, for any $a \in \mathbb{R}$, we can find a sequence of rational $\left(q_{n}\right)_{n \in \mathbb{N}}$ descending to a, and thus

$$
(a, \infty)=\bigcup_{n=1}^{\infty}\left(q_{n}, \infty\right) \in \mathcal{N}
$$

Since these rays generate $\mathcal{B}_{\mathbb{R}}$ by Proposition 1.2, we have $\mathcal{B}_{\mathbb{R}} \subset \mathcal{N}$ by Lemma 1.1. Appealing to part (a) we see that f is \mathcal{M}-measurable.
(c) Observe that

$$
h^{-1}(\{\infty\})=\left\{\begin{array}{lc}
{\left[f^{-1}(\{\infty\}) \backslash g^{-1}(\{-\infty\})\right] \cup\left[g^{-1}(\{\infty\}) \backslash f^{-1}(\{-\infty\})\right]} & \text { if } a \neq \infty \\
f^{-1}(\{\infty\}) \cup g^{-1}(\{\infty\}) & \text { if } a=\infty
\end{array} \in \mathcal{M} .\right.
$$

Similarly, $h^{-1}(\{-\infty\}) \in \mathcal{M}$. Define $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\phi(x, y)=x+y$. Then ϕ is continuous and hence Borel measurable by Corollary 2.2 , and so $\phi^{-1}(B) \in \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$ for all Borel $B \subset \mathbb{R}$. Since $H(x):=(f(x), g(x))$ is $\left(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}} \otimes \mathcal{B}_{\overline{\mathbb{R}}}\right)$-measurable by Proposition 2.4, it follows that $(\phi \circ H)^{-1}(B)=$ $H^{-1}\left(\phi^{-1}(B)\right) \in \mathcal{M}$ for all $B \subset \mathbb{R}$. Since

$$
h^{-1}(B)=\left\{\begin{array}{ll}
(\phi \circ H)^{-1}(B) & \text { if } a \notin B \\
(\phi \circ H)^{-1}(B) \cup\left[f^{-1}(\{\infty\}) \cap g^{-1}(\{-\infty\})\right] \cup\left[f^{-1}(\{-\infty\}) \cap g^{-1}(\{\infty\})\right] & \text { if } a \in B
\end{array},\right.
$$

we see that $h^{-1}(B) \in \mathcal{M}$. Thus h is \mathcal{M}-measurable by part (a).
5. Define

$$
g(x):=\liminf _{n \rightarrow \infty} f_{n}(x) \quad \text { and } \quad h(x):=\limsup _{n \rightarrow \infty} f_{n}(x)
$$

Then g and h are \mathcal{M}-measurable by Proposition 2.7 and $g(x) \leq h(x)$ for all $x \in X$ with equality if and only if the limit exists. Now, $-g(x)$ is \mathcal{M}-measurable since $t \mapsto-t$ is continuous and hence Borel measurable, and consequently

$$
k(x)= \begin{cases}0 & \text { if } h(x)=g(x)= \pm \infty \\ h(x)+(-g(x)) & \text { otherwise }\end{cases}
$$

is \mathcal{M}-measurable by Exercise 4.(c). Thus $k^{-1}(\{0\}) \in \mathcal{M}$, and this set is precisely where $g(x)=h(x)$, and hence the set of points where the limit exists.

