Exercises: (Sections 1.4-5)

1. Let \mathcal{A} be an algebra on X, let μ_{0} be a premeasure on (X, \mathcal{A}), and let μ^{*} be the outer measure defined by

$$
\mu^{*}(E):=\inf \left\{\sum_{n=1}^{\infty} \mu_{0}\left(A_{n}\right): A_{n} \in \mathcal{A} \text { for each } n \in \mathbb{N} \text { and } E \subset \bigcup_{n=1}^{\infty} A_{n}\right\}
$$

We will call μ^{*} the outer measure induced by μ_{0}.
(a) Let A_{σ} denote the collection of all countable unions of sets in \mathcal{A}. For $E \subset X$ and $\epsilon>0$ show that there exists $A \in \mathcal{A}_{\sigma}$ satisfying $E \subset A$ and $\mu^{*}(A) \leq \mu^{*}(E)+\epsilon$.
(b) Let $A_{\sigma \delta}$ denote the collection of all countable intersections of sets in \mathcal{A}_{σ}. For $E \subset X$ with $\mu^{*}(E)<\infty$, show that E is μ^{*}-measurable if and only if there exists $B \in \mathcal{A}_{\sigma \delta}$ satisfying $E \subset B$ and $\mu^{*}(B \backslash E)=0$.
(c) Suppose μ_{0} is σ-finite. Show that E is μ^{*}-measurable if and only if there exists $B \in A_{\sigma \delta}$ satisfying $E \subset B$ and $\mu^{*}(B \backslash E)=0$.
2. Let \mathcal{A} be an algebra on X, let μ_{0} be a finite premeasure on (X, \mathcal{A}), and let μ^{*} be the outer measure induced by μ_{0}. The inner measure induced by μ_{0} is the map defined by $\mu_{*}(E):=\mu_{0}(X)-\mu^{*}\left(E^{c}\right)$ for $E \subset X$. Show that $A \subset X$ is μ^{*}-measurable if and only if $\mu^{*}(A)=\mu_{*}(A)$.
[Hint: use Exercise 1.(b).]
3. Let (X, \mathcal{M}, μ) be a σ-finite measure space and let μ^{*} be the outer measure induced by μ.
(a) Show that the σ-algebra \mathcal{M}^{*} of μ^{*}-measurable sets equals $\overline{\mathcal{M}}$, the completion of \mathcal{M}.
[Hint: use Exercise 1.(c).]
(b) Show that $\left.\mu^{*}\right|_{\mathcal{M}^{*}}=\bar{\mu}$, the completion of μ.
4. Let \mathcal{A} be the collection of finite disjoint unions of sets of the form $(a, b] \cap \mathbb{Q}$ with $-\infty \leq a<b \leq \infty$.
(a) Show \mathcal{A} is an algebra on \mathbb{Q} by showing $\mathcal{E}:=\{\emptyset\} \cup\{(a, b] \cap \mathbb{Q}:-\infty \leq a<b \leq b\}$ is an elementary family.
(b) Show that $\mathcal{M}(\mathcal{A})=\mathcal{P}(\mathbb{Q})$.
(c) Define μ_{0} on \mathcal{A} by $\mu_{0}(\emptyset)=0$ and $\mu_{0}(A)=\infty$ for all nonempty $A \in \mathcal{A}$. Show that μ_{0} is a premeasure.
(d) Show that there exists more than one measure on $(\mathbb{Q}, \mathcal{P}(\mathbb{Q}))$ extending μ_{0}.
5. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be increasing and right-continuous, and let μ_{F} be the associated Borel measure on \mathbb{R}. For $-\infty<a<b<\infty$, prove the following equalities:

$$
\begin{aligned}
\mu_{F}(\{a\}) & =F(a)-\lim _{x \nearrow a} F(x) \\
\mu_{F}([a, b]) & =F(b)-\lim _{x \nearrow a} F(x) \\
\mu_{F}((a, b)) & =\lim _{x \nearrow b} F(x)-F(a) \\
\mu_{F}([a, b)) & =\lim _{x \nearrow b} F(x)-\lim _{y \nearrow a} F(y) .
\end{aligned}
$$

Solutions:

1. (a) By definition of μ^{*} there exists $\left\{A_{n}: n \in \mathbb{N}\right\} \subset \mathcal{A}$ which covers E and satisfies

$$
\sum_{n=1}^{\infty} \mu_{0}\left(A_{n}\right) \leq \mu^{*}(E)+\epsilon
$$

Recall from Proposition 1.13 in lecture that $\left.\mu^{*}\right|_{\mathcal{A}}=\mu_{0}$ and so $\mu_{0}\left(A_{n}\right)=\mu^{*}\left(A_{n}\right)$ for each $n \in \mathbb{N}$. Define $A:=\bigcup A_{n}$, which contains E and lies in \mathcal{A}_{σ}. By countable subadditivity we have

$$
\mu^{*}(A) \leq \sum_{n=1}^{\infty} \mu^{*}\left(A_{n}\right)=\sum_{n=1}^{\infty} \mu_{0}\left(A_{n}\right) \leq \mu^{*}(E)+\epsilon .
$$

(b) (\Rightarrow) : Suppose E is μ^{*}-measurable. Then for any superset $F \supset E$ we have

$$
\mu^{*}(F)=\mu^{*}(F \cap E)+\mu^{*}\left(F \cap E^{c}\right)=\mu^{*}(E)+\mu^{*}(F \backslash E),
$$

and so $\mu^{*}(F \backslash E)=\mu^{*}(F)-\mu^{*}(E)$. (Note that we have used $\mu^{*}(E)<\infty$ to make sense of the preceding expression.) Now, for each $n \in \mathbb{N}$ let $A_{n} \in \mathcal{A}_{\sigma}$ be such that $E \subset A_{n}$ and $\mu^{*}\left(A_{n}\right) \leq$ $\mu^{*}(E)+\frac{1}{n}$, which exists by part (a). Then $B:=\bigcap A_{n}$ contains in E and lies in $\mathcal{A}_{\sigma \delta}$. Moreover, monotonicity implies

$$
\mu^{*}(E) \leq \mu^{*}(B) \leq \mu^{*}\left(A_{n}\right) \leq \mu^{*}(E)+\frac{1}{n}
$$

for all $n \in \mathbb{N}$, and hence $\mu^{*}(B)=\mu^{*}(E)$. Therefore $\mu^{*}(B \backslash E)=\mu^{*}(B)-\mu^{*}(E)=0$ by the above discussion.
$(\Leftarrow):$ Let $F \subset X$. We must show $\mu^{*}(F) \geq \mu^{*}(F \cap E)+\mu^{*}\left(F \cap E^{c}\right)$. Let $B \in \mathcal{A}_{\sigma \delta}$ with $E \subset B$ and $\mu^{*}(B \backslash E)=0$. Note that $\mathcal{A}_{\sigma \delta} \subset \mathcal{M}(\mathcal{A})$ and this latter set is contained in the collection of all μ^{*}-measurable sets. Thus B is μ^{*}-measurable and so

$$
\mu^{*}(F)=\mu^{*}(F \cap B)+\mu^{*}\left(F \cap B^{c}\right) .
$$

Now $\mu^{*}(F \cap B) \geq \mu^{*}(F \cap E)$ by monotonicity. We also claim $\mu^{*}\left(F \cap B^{c}\right)=\mu^{*}\left(F \cap E^{c}\right)$, which will complete the proof. Indeed, observe that $E^{c}=B^{c} \cup(B \backslash E)$ and so by subadditivity and monotonicity we have

$$
\mu^{*}\left(F \cap E^{c}\right) \leq \mu^{*}\left(F \cap B^{c}\right)+\mu^{*}(F \cap(B \backslash E)) \leq \mu^{*}\left(F \cap B^{c}\right)+0 \leq \mu^{*}\left(F \cap E^{c}\right)
$$

Thus $\mu^{*}\left(F \cap B^{c}\right)=\mu^{*}\left(F \cap E^{c}\right)$.
(c) Assume μ_{0} is σ-finite: $X=\bigcup_{n=1}^{\infty} A_{n}$ with $A_{n} \in \mathcal{A}$ and $\mu_{0}\left(A_{n}\right)<\infty$. By replacing A_{n} with $A_{n} \backslash\left(A_{1} \cup \cdots \cup A_{n-1}\right)$ we may assume the A_{n} 's are disjoint.
Suppose E is μ^{*}-measurable. Since \mathcal{A} is contained in the μ^{*}-measurable sets-a σ-algebra-it follows that $E \cap A_{n}$ is μ^{*}-measurable for each $n \in \mathbb{N}$. Additionally, $\mu^{*}\left(E \cap A_{n}\right) \leq \mu^{*}\left(A_{n}\right)=$ $\mu_{0}\left(A_{n}\right)<\infty$ so by part (b) we can find $B_{n} \in \mathcal{A}_{\sigma \delta}$ containing $E \cap A_{n}$ with $\mu^{*}\left(B_{n} \backslash\left(E \cap A_{n}\right)\right)=0$. Note that $B_{n} \cap A_{n} \in \mathcal{A}_{\sigma \delta}$ since this collection is closed under (countable) intersections and contains \mathcal{A}. Since this intersection also contains $E \cap A_{n}$ and satisfies $\mu^{*}\left(\left(B_{n} \cap A_{n}\right) \backslash\left(E \cap A_{n}\right)\right)=0$ by monotonicity, we may assume $B_{n} \subset A_{n}$ by replacing it with $B_{n} \cap A_{n}$ if necessary. Now, consider $B:=\bigcup_{n} B_{n}$. This contains E and by countable subadditivity we have

$$
\mu^{*}(B \backslash E) \leq \sum_{n=1}^{\infty} \mu^{*}\left(B_{n} \backslash E\right)=\sum_{n=1}^{\infty} \mu^{*}\left(B_{n} \backslash\left(E \cap A_{n}\right)\right)=0 .
$$

Thus if $B \in \mathcal{A}_{\sigma \delta}$, then it is our desired set. Each $B_{n}=\bigcap_{k} C_{k}^{(n)}$ for $C_{k}^{(n)} \in \mathcal{A}_{\sigma}$. We claim

$$
B=\bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} C_{k}^{(n)},
$$

Indeed, a point x in the set in the right belongs to A_{n} for exactly one $n \in \mathbb{N}$, say n_{0}. So $x \in \bigcup_{n} C_{k}^{(n)}$ necessarily implies $x \in C_{k}^{\left(n_{0}\right)}$ for all $k \in \mathbb{N}$, hence $x \in B_{k} \subset B$. The reverse inclusion is immediate. Thus $B \in \mathcal{A}_{\sigma \delta}$ since $\bigcup_{n} C_{k}^{(n)} \in \mathcal{A}_{\sigma}$ for each $k \in \mathbb{N}$.
The other implication follows by the same proof as in part (b), since this never used the hypothesis $\mu^{*}(E)<\infty$.
2. Recall from Proposition 1.13 in lecture that $\left.\mu^{*}\right|_{\mathcal{A}}=\mu_{0}$, and hence $\mu_{0}(X)=\mu^{*}(X)$. Now, suppose A is μ^{*}-measurable. Then

$$
\mu^{*}(X)=\mu^{*}(X \cap A)+\mu^{*}\left(X \cap A^{c}\right)=\mu^{*}(A)+\mu^{*}\left(A^{c}\right)
$$

and hence $\mu_{*}(A)=\mu_{0}(X)-\mu^{*}\left(A^{c}\right)=\mu^{*}(X)-\mu^{*}\left(A^{c}\right)=\mu^{*}(A)$.
Conversely, suppose $\mu^{*}(A)=\mu_{*}(A)$. Let $B=\bigcap A_{n} \in \mathcal{A}_{\sigma \delta}$ where $A_{n} \in \mathcal{A}_{\sigma}$ contains A and satisfies $\mu^{*}\left(A_{n}\right) \leq \mu^{*}(A)+\frac{1}{k}$. It follows that $A \subset B$ and $\mu^{*}(B)=\mu^{*}(A)$. Now, since $\mathcal{A}_{\sigma \delta} \subset \mathcal{M}(\mathcal{A})$ we know B is μ^{*}-measurable by Proposition 1.13 and hence $\mu^{*}(B)+\mu^{*}\left(B^{c}\right)=\mu^{*}(X)$. On the other hand, $\mu^{*}(A)=\mu_{*}(A)$ implies

$$
\mu^{*}(X)=\mu^{*}(A)+\mu^{*}\left(A^{c}\right)=\mu^{*}(B)+\mu^{*}\left(A^{c}\right)
$$

Thus $\mu^{*}\left(B^{c}\right)=\mu^{*}\left(A^{c}\right)$ and using the μ^{*}-measurability of B yields

$$
\mu^{*}\left(B^{c}\right)=\mu^{*}\left(A^{c} \cap B\right)+\mu^{*}\left(A^{c} \cap B^{c}\right)=\mu^{*}(B \backslash A)+\mu^{*}\left(B^{c}\right)
$$

Consequently $\mu^{*}(B \backslash A)=0$, and therefore A is μ^{*}-measurable by Exercise 1.(b).
3. (a) Let $G \in \mathcal{M}$ with $\mu(G)=0$. Then by Proposition $1.13, G \in \mathcal{M}^{*}$ and $\mu^{*}(G)=0$. Since $\left.\mu^{*}\right|_{\mathcal{M}^{*}}$ is a complete measure by Carathéodory's Theorem, it follows that $\mathcal{P}(G) \subset \mathcal{M}^{*}$. Thus

$$
\overline{\mathcal{M}}=\{E \cup F: E \in \mathcal{M}, F \subset G \text { where } \mu(G)=0\} \subset \mathcal{M}^{*} .
$$

Conversely, let $E \in \mathcal{M}^{*}$. By Exercise 1.(c) there exists $B \in \mathcal{M}_{\sigma \delta}$ containing E with $\mu^{*}(B \backslash E)=0$. Denote $F:=B \backslash E$ so that $E=B \backslash F$. To see that $E \in \overline{\mathcal{M}}$ it suffices to show $B, F \subset \overline{\mathcal{M}}$ since it is a σ-algebra. Since \mathcal{M} is a σ-algebra, we have $B \subset \mathcal{M}_{\sigma \delta} \subset \mathcal{M} \subset \overline{\mathcal{M}}$. Next, applying Exercise 1.(c) to F we obtain a $B_{0} \in \mathcal{M}_{\sigma \delta} \subset \mathcal{M}$ containing F so that $\mu^{*}\left(B_{0} \backslash F\right)=0$. But then

$$
\mu\left(B_{0}\right)=\mu^{*}\left(B_{0}\right) \leq \mu^{*}(F)+\mu^{*}(B \backslash F)=0
$$

That is, B_{0} is μ-null set. Since $\overline{\mathcal{M}}$ contains all subsets of μ-null sets, it contains $F \subset B_{0}$.
(b) By part (a), a set in \mathcal{M}^{*} can be written as $E \cup F$ where $E \in \mathcal{M}$ and F is a subset of μ-null set G. Since $\left.\mu^{*}\right|_{\mathcal{M}}=\mu$ by Proposition 1.13 , we know $\mu^{*}(G)=0$ and so $\mu^{*}(F)=0$ by monotonicity. Using this we see that

$$
\mu^{*}(E \cup F) \leq \mu^{*}(E)+\mu^{*}(F)=\mu(E)+0 \leq \mu^{*}(E \cup F)
$$

Thus $\mu^{*}(E \cup F)=\mu(E)=\bar{\mu}(E \cup F)$.
4. (a) We have $\emptyset \in \mathcal{E}$ by assumption. From

$$
(a, b] \cap(c, d]= \begin{cases}(\max \{a, c\}, d] & \text { if } a<d \leq b \\ (c, \min \{b, d\}] & \text { if } a \leq c<b \\ \emptyset & \text { otherwise }\end{cases}
$$

it follows that \mathcal{E} is closed under (finite) intersections. From

$$
(a, b]^{c}= \begin{cases}(-\infty, a] \cup(b, \infty) & \text { if }-\infty<a, b<\infty \\ (b, \infty) & \text { if } a=-\infty, b<\infty \\ (-\infty, a] & \text { if }-\infty<a, b=\infty \\ \emptyset & \text { otherwise }\end{cases}
$$

it follows that the complement of a set in \mathcal{E} is a finite union of sets in \mathcal{E}. Hence \mathcal{E} is an elementary family and Proposition 1.12 from lecture implies \mathcal{A} is an algebra on \mathbb{Q}.
(b) For each $x \in \mathbb{Q}$,

$$
\{x\}=\bigcap_{n=1}^{\infty}\left(x-\frac{1}{n}, x\right] \cap \mathbb{Q} \in \mathcal{M}(\mathcal{A}) .
$$

Thus $\mathcal{M}(\mathcal{A})$ contains all singleton subsets of \mathbb{Q}. This implies $\mathcal{M}(\mathcal{A})=\mathcal{P}(\mathbb{Q})$, since every subset of \mathbb{Q} is the countable union of the singleton sets of its elements.
(c) Let $E_{1}, E_{2}, \ldots \in \mathcal{A}$ be disjoint sets with $\bigcup_{n} E_{n} \in \mathcal{A}$. If $E_{n}=\emptyset$ for all $n \in \mathbb{N}$, we have $\mu_{0}\left(\bigcup_{n} E_{n}\right)=$ $0=\sum_{n} \mu_{0}\left(E_{n}\right)$. Otherwise at least one E_{n} is nonempty, which in turn makes the union nonempty. Consequently $\mu_{0}\left(\cup E_{n}\right)=\infty=\sum_{n} \mu_{0}\left(E_{n}\right)$. Thus μ_{0} is countably additive and therefore a premeasure.
(d) One such measure is the induced outer measure $\left.\mu^{*}\right|_{\mathcal{M}(\mathcal{A})}=\mu^{*}$. Observe that $\mu^{*}(E)=\infty$ unless $E=\emptyset$. Indeed, if E is non-empty, then any countable cover by elements from \mathcal{A} will include a nonempty set, in which case the sum of the measures of the cover will be infinite. In particular, μ^{*} does not equal the counting measure on \mathbb{Q}, which we claim also extends μ_{0}. Indeed, the density of the rationals implies $(a, b] \cap \mathbb{Q}$ will always be infinite and so the counting measure gives infinite mass to any nonempty set in \mathcal{A}, which is precisely how μ_{0} was defined.
5. Note that

$$
\{a\}=\bigcap_{n=1}^{\infty}\left(a-\frac{1}{n}, a\right],
$$

and so by continuity from above we have

$$
\mu_{F}(\{a\})=\lim _{n \rightarrow \infty} \mu_{F}\left(\left(a-\frac{1}{n}, a\right]\right)=\lim _{n \rightarrow \infty}\left[F(a)-F\left(a-\frac{1}{n}\right)\right]=F(a)-\lim _{x \nmid a} F(x) .
$$

Using this we next have

$$
\mu_{F}([a, b])=\mu_{F}(\{a\})+\mu_{F}((a, b])=\left(F(a)-\lim _{x \not a a} F(x)\right)+F(b)-F(a)=F(b)-\lim _{x \not a a} F(x),
$$

and

$$
\mu_{F}((a, b))=\mu_{F}((a, b])-\mu_{F}(\{b\})=F(b)-F(a)-\left(F(b)-\lim _{x \nmid b} F(x)\right)=\lim _{x \nmid b} F(x)-F(a) .
$$

Finally, combining the above equalities we have

$$
\mu_{F}([a, b))=\mu_{F}(\{a\})+\mu_{F}((a, b))=F(a)-\lim _{y \nmid a} F(y)+\lim _{x \not \subset b} F(x)-F(a)=\lim _{x \nearrow b} F(x)-\lim _{y \not a a} F(y) .
$$

