Exercises: (Chapter 1.2-3)

1. Fix $n \in \mathbb{N}$ and denote the Borel σ-algebra on \mathbb{R}^{n} by \mathcal{B}.
(a) Show that \mathcal{B} is generated by the collection of open boxes

$$
\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right)
$$

for $a_{1}, b_{1}, \ldots, a_{n}, b_{n} \in \mathbb{R}$ with $a_{1}<b_{1}, \ldots a_{n}<b_{n}$.
(b) Fix $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$. For a Borel set $E \subset \mathbb{R}^{n}$, show that

$$
E+\mathbf{t}:=\left\{\left(x_{1}+t_{1}, \ldots, x_{n}+t_{n}\right):\left(x_{1}, \ldots, x_{n}\right) \in E\right\}
$$

is also a Borel set. We say \mathcal{B} is translation invariant.
[Hint: Consider the collection $\{E \in \mathcal{B}: E+\mathbf{t} \in \mathcal{B}\}$.]
(c) Fix $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right) \in(\mathbb{R} \backslash\{0\})^{n}$. For a Borel set $E \subset \mathbb{R}^{n}$, show that

$$
E \cdot \mathbf{t}:=\left\{\left(x_{1} t_{1}, \ldots, x_{n} t_{n}\right):\left(x_{1}, \ldots, x_{n}\right) \in E\right\}
$$

is also a Borel set. We say \mathcal{B} is dilation invariant.
2. Let (X, \mathcal{M}, μ) be a measure space with $E_{n} \in \mathcal{M}$ for each $n \in \mathbb{N}$.
(a) Show that

$$
\mu\left(\lim \inf E_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

(b) Suppose $\mu\left(\bigcup_{n} E_{n}\right)<\infty$. Show that

$$
\mu\left(\lim \sup E_{n}\right) \geq \limsup _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

3. Let μ be a finitely additive measure on a measurable space (X, \mathcal{M}).
(a) Show that μ is a measure if and only if it satisfies continuity from below.
(b) If $\mu(X)<\infty$, show that μ is a measure if and only if it satisfies continuity from above.
4. Let (X, \mathcal{M}, μ) be a measure space.
(a) Suppose μ is σ-finite. Show that μ is semifinite.
(b) Suppose μ is semifinite. Show that for $E \in \mathcal{M}$ with $\mu(E)=\infty$ and any $C>0$, there exists $F \subset E$ with $C<\mu(F)<\infty$.
5. Let (X, \mathcal{M}, μ) be a measure space and for $E \in \mathcal{M}$ define

$$
\mu_{0}(E):=\sup \{\mu(F): F \subset E \text { with } \mu(F)<\infty\}
$$

We call μ_{0} the seminfinite part of μ.
(a) Show that μ_{0} is a semifinite measure.
(b) Show that if μ is itself semifinite, then $\mu=\mu_{0}$.
(c) ${ }^{1}$ We say $E \in \mathcal{M}$ is μ-semifinite if for any $F \subset E$ with $\mu(F)=\infty$ there exists $G \subset F$ with $0<\mu(G)<\infty$. Show that

$$
\nu(E):= \begin{cases}0 & \text { if } E \text { is } \mu \text {-semifinite } \\ \infty & \text { otherwise }\end{cases}
$$

defines a measure on (X, \mathcal{M}) satisfying $\mu=\mu_{0}+\nu$.

[^0]
Solutions:

1. (a) Let \mathcal{E} denote the collection of open intervals in \mathbb{R}, then the collection of open boxes in \mathbb{R}^{n} is precisely

$$
\left\{\prod_{j=1}^{n} E_{j}: E_{j} \in \mathcal{E}\right\}
$$

Also denote $\tilde{\mathcal{E}}:=\mathcal{E} \cup\{\mathbb{R}\}$. Then $\mathcal{E} \subset \tilde{\mathcal{E}}$ and

$$
\mathbb{R}=\bigcup_{k=1}^{\infty}(-k, k)
$$

imply $\mathcal{M}(\mathcal{E})=\mathcal{M}(\tilde{\mathcal{E}})$ and

$$
\mathcal{M}\left(\left\{\prod_{j=1}^{n} E_{j}: E_{j} \in \mathcal{E}\right\}\right)=\mathcal{M}\left(\left\{\prod_{j=1}^{n} E_{j}: E_{j} \in \tilde{\mathcal{E}}\right\}\right)
$$

by Lemma 1.1 from lecture. Since $\mathbb{R} \in \tilde{\mathcal{E}}$, we can apply the second part of Proposition 1.4 to get that the above σ-algebra equals $\bigotimes_{j=1}^{n} \mathcal{M}(\tilde{\mathcal{E}})=\bigotimes_{j=1}^{n} \mathcal{M}(\mathcal{E})$. Since $\mathcal{M}(\mathcal{E})=\mathcal{B}_{\mathbb{R}}$ by Exercise 5 from Homework 1, we thus have

$$
\mathcal{M}\left(\left\{\prod_{j=1}^{n} E_{j}: E_{j} \in \mathcal{E}\right\}\right)=\bigotimes_{j=1}^{n} \mathcal{M}(\mathcal{E})=\bigotimes_{j=1}^{n} \mathcal{B}_{\mathbb{R}}
$$

Finally, by Corollary 1.6 from lecture the above σ-algebra is exactly \mathcal{B}.
(b) Denote $\mathcal{B}^{\prime}:=\{E \in \mathcal{B}: E+\mathbf{t} \in \mathcal{B}\}$ as in the hint. Then clearly \mathcal{B}^{\prime} contains all the open boxes, and it is a σ-algebra since the map $E \mapsto E+\mathbf{t}$ being invertible implies it commutes with taking complements and unions. Lemma 1.1 therefore tells us that \mathcal{B}^{\prime} contains the σ-algebra generated by open boxes, which is \mathcal{B} by part (a). On the other hand, $\mathcal{B}^{\prime} \subset \mathcal{B}$ by definition. Hence $\mathcal{B}^{\prime}=\mathcal{B}$, and so the translation of any Borel set is a Borel set.
(c) Let $\mathcal{B}^{\prime \prime}:=\{E \in \mathcal{B}: E \cdot \mathbf{t} \in \mathcal{B}\}$. Once again $\mathcal{B}^{\prime \prime}$ is a σ-algebra containing the open boxes, and so arguing exactly as in the previous part we see that $\mathcal{B}^{\prime \prime}=\mathcal{B}$. Hence the dilation of any Borel set is a Borel set.
2. (a) Denote

$$
F_{n}:=\bigcap_{n=k}^{\infty} E_{k}
$$

Then $\lim \inf E_{n}=\bigcup_{n} F_{n}$, and $F_{n} \subset F_{n+1}$. Thus continuity from below implies

$$
\mu\left(\liminf E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(F_{n}\right)
$$

Also, since $F_{n} \subset E_{k}$ for all $k \geq n$, monotonicity gives us $\mu\left(F_{n}\right) \leq \mu\left(E_{k}\right)$. Thus

$$
\mu\left(\liminf E_{n}\right) \leq \lim _{n \rightarrow \infty} \inf _{k \geq n} \mu\left(E_{k}\right)=\liminf _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

(b) Denote

$$
G_{n}:=\bigcup_{k=n}^{\infty} E_{k}
$$

Then $\lim \sup E_{n}=\bigcap_{n} G_{n}$, and $G_{n} \supset G_{n+1}$. Since

$$
\mu\left(G_{1}\right)=\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)<\infty
$$

by assumption, continuity from above implies

$$
\mu\left(\lim \sup E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(G_{n}\right)
$$

Now, $\mu\left(G_{n}\right) \geq \mu\left(E_{k}\right)$ for all $k \geq n$ by monotonicity, and thus

$$
\mu\left(\lim \sup E_{N}\right) \geq \lim _{n \rightarrow \infty} \sup _{k \geq n} \mu\left(E_{k}\right)=\limsup _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

3. Note that the forward directions of both parts follow from Theorem 1.8 in lecture, so it suffices to prove only the backward directions. Additionally, by definition of a finitely additive measure, it suffices in each part to show that μ is countably additive.
(a) Suppose μ satisfies continuity from below and let $\left\{E_{n}: n \in \mathbb{N}\right\} \subset \mathcal{M}$ be a disjoint collection. Letting $F_{n}:=E_{1} \cup \cdots \cup E_{n}$ for each $n \in \mathbb{N}$, we see that

$$
\mu\left(F_{n}\right)=\mu\left(E_{1}\right)+\cdots+\mu\left(E_{n}\right)
$$

and $F_{1} \subset F_{2} \subset \cdots$. Thus by continuity from below we have

$$
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(F_{n}\right)=\lim _{n \rightarrow \infty}\left(\mu\left(E_{1}\right)+\cdots+\mu\left(E_{n}\right)\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)
$$

Hence μ is a measure.
(b) Suppose μ satisfies continuity from above, $\mu(X)<\infty$, and let $\left\{E_{n}: n \in \mathbb{N}\right\} \subset \mathcal{M}$ be a disjoint collection. Note that by finite additivity

$$
\begin{equation*}
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\mu\left(E_{1}\right)+\cdots+\mu\left(E_{k-1}\right)+\mu\left(\bigcup_{n=k}^{\infty} E_{n}\right) \tag{1}
\end{equation*}
$$

for each $k \in \mathbb{N}$. Define $G_{k}:=\bigcup_{n=k}^{\infty} E_{n}$ for each $k \in \mathbb{N}$ so that $G_{1} \supset G_{2} \supset \cdots$. Also note that

$$
\bigcap_{k=1}^{\infty} G_{k}=\lim \sup E_{n}=\emptyset
$$

since the E_{n} are disjoint and therefore no x belongs to infinitely many E_{n}. We also have $\mu\left(G_{1}\right) \leq$ $\mu\left(G_{1}\right)+\mu\left(G_{1}^{c}\right)=\mu(X)<\infty$, so by continuity from above:

$$
\lim _{k \rightarrow \infty} \mu\left(G_{k}\right)=\mu\left(\bigcap_{k=1}^{\infty} G_{k}\right)=\mu(\emptyset)=0
$$

Letting $k \rightarrow \infty$ in (1) then gives

$$
\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{k \rightarrow \infty} \mu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{k \rightarrow \infty} \mu\left(E_{1}\right)+\cdots+\mu\left(E_{k-1}\right)+\mu\left(G_{k}\right)=\sum_{n=1}^{\infty} \mu\left(E_{n}\right)
$$

Hence μ is a measure.
4. (a) Let (X, \mathcal{M}, μ) be a σ-finite measure space, and let $E \in \mathcal{M}$ with $\mu(E)=\infty$. By σ-finiteness, there exists $\left\{G_{n}\right\}_{n \in \mathbb{N}} \subset \mathcal{M}$ satisfying $\bigcup_{n} G_{n}=X$ and $\mu\left(G_{n}\right)<\infty$ for all $n \in \mathbb{N}$. We claim $0<\mu\left(E \cap G_{n}\right)$ for some $n \in \mathbb{N}$. Indeed, if not then by subadditivity we have

$$
\mu(E)=\mu\left(\bigcup_{n=1}^{\infty} E \cap G_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(E \cap G_{n}\right)=0
$$

contradicting $\mu(E)=\infty$. Thus $0<\mu\left(E \cap G_{n}\right)$ for some $n \in \mathbb{N}$, and by monotonicity we also have $\mu\left(E \cap G_{n}\right)<\infty$. Thus μ is semifinite.
(b) Note that by semifiniteness,

$$
\mathcal{F}:=\{F \in \mathcal{M}: F \subset E, 0<\mu(F)<\infty\}
$$

is non-empty, and therefore $\alpha:=\sup _{F \in \mathcal{F}} \mu(F)>0$. Suppose, towards a contradiction, that $\alpha<\infty$. Let $\left(F_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{F}$ be a sequence satisfying $\mu\left(F_{n}\right) \rightarrow \alpha$. Note that $F_{1} \cup \cdots \cup F_{n} \in \mathcal{F}$ for each $n \in \mathbb{N}$ by subadditivity, and hence $\mu\left(F_{1} \cup \cdots \cup F_{n}\right) \leq \alpha$. By continuity from below, we therefore have

$$
\mu\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(F_{1} \cup \cdots \cup F_{n}\right) \leq \alpha
$$

On the other hand, $\mu\left(F_{1} \cup \cup F_{n}\right) \geq \mu\left(F_{n}\right)$ by monotonicity. It follows that $G:=\bigcup_{n} F_{n} \in \mathcal{F}$ with $\mu(G)=\alpha$. Now,

$$
\mu(E)=\mu(E \backslash G)+\mu(G)
$$

implies $\mu(E \backslash G)=\infty$. As μ is semifinite, there exists $F \subset E \backslash G$ with $0<\mu(F)<\infty$. But then $\mu(F \cup G)=\mu(F)+\mu(G) \in(\alpha, \infty)$ so that $F \cup G \in \mathcal{F}$ with $\mu(F \cup G)>\alpha$, contradicting the definition of α.
Thus $\alpha=\infty$ and hence for any $C>0$ one can find $F \in \mathcal{F}$ with $\mu(F)>C$.
5. (a) We first show that μ_{0} is a measure. For $E=\emptyset$, any subset is necessarily the empty set and hence

$$
\mu_{0}(\emptyset)=\sup \{\mu(\emptyset)\}=0
$$

If $\left\{E_{n}: n \in \mathbb{N}\right\} \subset \mathcal{M}$ is a disjoint collection, then for any $F \subset \bigcup_{n=1}^{\infty} E_{n}$ with $\mu(F)<\infty$ one has that $\mu\left(F \cap E_{n}\right)<\infty$ for all $n \in \mathbb{N}$ by monotonicity. Thus

$$
\mu(F)=\sum_{n=1}^{\infty} \mu\left(F \cap E_{n}\right) \leq \sum_{n=1}^{\infty} \mu_{0}\left(E_{n}\right)
$$

and taking the supremum over all finite measure subsets $F \subset \bigcup E_{n}$ one obtains

$$
\mu_{0}\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} \mu_{0}\left(E_{n}\right)
$$

Conversely, if $\mu_{0}\left(E_{n}\right)=\infty$ for any $n \in \mathbb{N}$, then there exists $F_{R} \subset E_{n}$ with $\mu\left(F_{R}\right) \geq R$ for all $R>0$. Since $F_{R} \subset \bigcup E_{n}$, this implies $\mu_{0}\left(\bigcup E_{n}\right)=\infty$. Now suppose $\mu\left(E_{n}\right)<\infty$ for all $n \in \mathbb{N}$. Let $\epsilon>0$ and for each $n \in \mathbb{N}$ let $F_{n} \subset E_{n}$ be such that $\mu\left(F_{n}\right)<\infty$ and $\mu_{0}\left(E_{n}\right)-\frac{\epsilon}{2^{n}}<\mu\left(F_{n}\right)$. Then for each $N \in \mathbb{N}$ we have

$$
\bigcup_{n=1}^{N} F_{n} \subset \bigcup_{n=1}^{\infty} E_{n}
$$

and is of finite measure. Thus

$$
\sum_{n=1}^{N} \mu_{0}\left(E_{n}\right) \leq \sum_{n=1}^{N} \mu\left(F_{n}\right)+\frac{\epsilon}{2^{n}}=\mu\left(\bigcup_{n=1}^{N} F_{n}\right)+\epsilon\left(1-(1 / 2)^{N}\right)<\mu_{0}\left(\bigcup_{n=1}^{\infty} E_{n}\right)+\epsilon
$$

Letting $N \rightarrow \infty$ and $\epsilon \rightarrow 0$ yields the inequality needed to show μ_{0} is countably additive.
Next, we must show μ_{0} is semifinite. Suppose $E \in \mathcal{M}$ satisfies $\mu_{0}(E)=\infty$. The definition of μ_{0} implies there exists $F \subset E$ with $0<\mu(F)<\infty$. Then for any $G \subset F$ one has $\mu(G) \leq \mu(F)$ and hence $\mu_{0}(F)=\mu(F) \in(0, \infty)$. Thus μ_{0} is semifinite.
(b) Suppose μ is semifinite and let $E \in \mathcal{M}$. If $\mu(E)<\infty$, then the argument at the end of part (a) shows $\mu_{0}(E)=\mu(E)$. If $\mu(E)=\infty$, then by Exercise 4.(a) for any $C>0$ there exists $F \subset E$ with $C<\mu(F)<\mu(E)$. Hence $\mu_{0}(E)>C$ for all $C>0$, and therefore $\mu_{0}(E)=\infty=\mu(E)$.
(c) We will first show $\mu=\mu_{0}+\nu$. First claim that if E is μ-semifinite, then $\mu(E)=\mu_{0}(E)$. Indeed, if $\mu(E)<\infty$ then this follows from the argument at the end of part (a). Otherwise, arguing as in Exercise 4.(b) we see that

$$
\{\mu(F): F \subset E, 0<\mu(F)<\infty\}
$$

is unbounded, and hence $\mu_{0}(E)=\infty$ as the supremum of the above set. This proves the claim and consequently, $\mu(E)=\mu_{0}(E)=\mu_{0}(E)+\nu(E)$ for any μ-semifinite E. If E is not μ-semifinite, then necessarily $\mu(E)=\infty=\nu(E)=\mu_{0}(E)+\nu(E)$.
Now we show ν is a measure. Since $\mu(\emptyset)=0<\infty$, we see that \emptyset is μ-semifinite and therefore $\nu(\emptyset)=0$. Next, let $\left\{E_{n}: n \in \mathbb{N}\right\} \subset \mathcal{M}$ be a disjoint collection. If E_{k} is not μ-semifinite for some $k \in \mathbb{N}$, then there exists $F \subset E_{k}$ with $\mu(F)=\infty$ but $\mu(G) \in\{0, \infty\}$ for all $G \subset F$. This same F is a subset for $\bigcup E_{n}$, and so we see that $\bigcup E_{n}$ is also not μ-semifinite in this case and hence

$$
\sum_{n=1}^{\infty} \nu\left(E_{n}\right)=\infty=\nu\left(\bigcup_{n=1}^{\infty} E_{n}\right)
$$

Otherwise, E_{n} is μ-semifinite for all $n \in \mathbb{N}$ and therefore

$$
\sum_{n=1}^{\infty} \nu\left(E_{n}\right)=\sum_{n=1}^{\infty} 0=0
$$

So we must show that in this case, $\bigcup E_{n}$ is also μ-semifinite. Let $F \subset \bigcup E_{n}$ with $\mu(F)=\infty$. Note that

$$
\infty=\mu(F)=\mu\left(\bigcup_{n=1}^{\infty} E_{n} \cap F\right)=\sum_{n=1}^{\infty} \mu\left(E_{n} \cap F\right)
$$

and so $\mu\left(E_{k} \cap F\right)>0$ for at least one $k \in \mathbb{N}$. If $\mu\left(E_{k} \cap F\right)<\infty$, we take $G:=E_{k} \cap F$. Otherwise, $\mu\left(E_{k} \cap F\right)=\infty$, and then invoking the μ-semifiniteness of E_{k} we can find $G \subset E_{k} \cap F$ with $0<\mu(G)<\infty$. This G is of course also a subset of F, and so $\bigcup E_{n}$ is μ-semifinite.

[^0]: ${ }^{1}$ not collected

