
Math 828 Homework 2 Solutions 9/13/2023

Exercises: (Chapter 1.2-3)

1. Fix n ∈ N and denote the Borel σ-algebra on Rn by B.

(a) Show that B is generated by the collection of open boxes

(a1, b1)× · · · × (an, bn)

for a1, b1, . . . , an, bn ∈ R with a1 < b1, . . . an < bn.

(b) Fix t = (t1, . . . , tn) ∈ Rn. For a Borel set E ⊂ Rn, show that

E + t := {(x1 + t1, . . . , xn + tn) : (x1, . . . , xn) ∈ E}

is also a Borel set. We say B is translation invariant.

[Hint: Consider the collection {E ∈ B : E + t ∈ B}.]
(c) Fix t = (t1, . . . , tn) ∈ (R \ {0})n. For a Borel set E ⊂ Rn, show that

E · t := {(x1t1, . . . , xntn) : (x1, . . . , xn) ∈ E}

is also a Borel set. We say B is dilation invariant.

2. Let (X,M, µ) be a measure space with En ∈ M for each n ∈ N.

(a) Show that
µ(lim inf En) ≤ lim inf

n→∞
µ(En).

(b) Suppose µ(
⋃

n En) < ∞. Show that

µ(lim supEn) ≥ lim sup
n→∞

µ(En).

3. Let µ be a finitely additive measure on a measurable space (X,M).

(a) Show that µ is a measure if and only if it satisfies continuity from below.

(b) If µ(X) < ∞, show that µ is a measure if and only if it satisfies continuity from above.

4. Let (X,M, µ) be a measure space.

(a) Suppose µ is σ-finite. Show that µ is semifinite.

(b) Suppose µ is semifinite. Show that for E ∈ M with µ(E) = ∞ and any C > 0, there exists F ⊂ E
with C < µ(F ) < ∞.

5. Let (X,M, µ) be a measure space and for E ∈ M define

µ0(E) := sup{µ(F ) : F ⊂ E with µ(F ) < ∞}.

We call µ0 the seminfinite part of µ.

(a) Show that µ0 is a semifinite measure.

(b) Show that if µ is itself semifinite, then µ = µ0.

(c) 1 We say E ∈ M is µ-semifinite if for any F ⊂ E with µ(F ) = ∞ there exists G ⊂ F with
0 < µ(G) < ∞. Show that

ν(E) :=

{
0 if E is µ-semifinite

∞ otherwise

defines a measure on (X,M) satisfying µ = µ0 + ν.

1not collected
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Solutions:

1. (a) Let E denote the collection of open intervals in R, then the collection of open boxes in Rn is
precisely

{
n∏

j=1

Ej : Ej ∈ E}.

Also denote Ẽ := E ∪ {R}. Then E ⊂ Ẽ and

R =

∞⋃
k=1

(−k, k)

imply M(E) = M(Ẽ) and

M({
n∏

j=1

Ej : Ej ∈ E}) = M({
n∏

j=1

Ej : Ej ∈ Ẽ})

by Lemma 1.1 from lecture. Since R ∈ Ẽ , we can apply the second part of Proposition 1.4 to
get that the above σ-algebra equals

⊗n
j=1 M(Ẽ) =

⊗n
j=1 M(E). Since M(E) = BR by Exercise 5

from Homework 1, we thus have

M({
n∏

j=1

Ej : Ej ∈ E}) =
n⊗

j=1

M(E) =
n⊗

j=1

BR.

Finally, by Corollary 1.6 from lecture the above σ-algebra is exactly B. □

(b) Denote B′ := {E ∈ B : E + t ∈ B} as in the hint. Then clearly B′ contains all the open boxes,
and it is a σ-algebra since the map E 7→ E + t being invertible implies it commutes with taking
complements and unions. Lemma 1.1 therefore tells us that B′ contains the σ-algebra generated
by open boxes, which is B by part (a). On the other hand, B′ ⊂ B by definition. Hence B′ = B,
and so the translation of any Borel set is a Borel set. □

(c) Let B′′ := {E ∈ B : E · t ∈ B}. Once again B′′ is a σ-algebra containing the open boxes, and so
arguing exactly as in the previous part we see that B′′ = B. Hence the dilation of any Borel set
is a Borel set. □

2. (a) Denote

Fn :=

∞⋂
n=k

Ek.

Then lim inf En =
⋃

n Fn, and Fn ⊂ Fn+1. Thus continuity from below implies

µ(lim inf En) = lim
n→∞

µ(Fn).

Also, since Fn ⊂ Ek for all k ≥ n, monotonicity gives us µ(Fn) ≤ µ(Ek). Thus

µ(lim inf En) ≤ lim
n→∞

inf
k≥n

µ(Ek) = lim inf
n→∞

µ(En).

□

(b) Denote

Gn :=

∞⋃
k=n

Ek.
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Then lim supEn =
⋂

n Gn, and Gn ⊃ Gn+1. Since

µ(G1) = µ(

∞⋃
n=1

En) < ∞

by assumption, continuity from above implies

µ(lim supEn) = lim
n→∞

µ(Gn).

Now, µ(Gn) ≥ µ(Ek) for all k ≥ n by monotonicity, and thus

µ(lim supEN ) ≥ lim
n→∞

sup
k≥n

µ(Ek) = lim sup
n→∞

µ(En).

□

3. Note that the forward directions of both parts follow from Theorem 1.8 in lecture, so it suffices to prove
only the backward directions. Additionally, by definition of a finitely additive measure, it suffices in
each part to show that µ is countably additive.

(a) Suppose µ satisfies continuity from below and let {En : n ∈ N} ⊂ M be a disjoint collection.
Letting Fn := E1 ∪ · · · ∪ En for each n ∈ N, we see that

µ(Fn) = µ(E1) + · · ·+ µ(En),

and F1 ⊂ F2 ⊂ · · · . Thus by continuity from below we have

µ

( ∞⋃
n=1

En

)
= µ

( ∞⋃
n=1

Fn

)
= lim

n→∞
µ(Fn) = lim

n→∞
(µ(E1) + · · ·+ µ(En)) =

∞∑
n=1

µ(En).

Hence µ is a measure. □

(b) Suppose µ satisfies continuity from above, µ(X) < ∞, and let {En : n ∈ N} ⊂ M be a disjoint
collection. Note that by finite additivity

µ

( ∞⋃
n=1

En

)
= µ(E1) + · · ·+ µ(Ek−1) + µ

( ∞⋃
n=k

En

)
(1)

for each k ∈ N. Define Gk :=
⋃∞

n=k En for each k ∈ N so that G1 ⊃ G2 ⊃ · · · . Also note that

∞⋂
k=1

Gk = lim supEn = ∅,

since the En are disjoint and therefore no x belongs to infinitely many En. We also have µ(G1) ≤
µ(G1) + µ(Gc

1) = µ(X) < ∞, so by continuity from above:

lim
k→∞

µ(Gk) = µ(

∞⋂
k=1

Gk) = µ(∅) = 0.

Letting k → ∞ in (1) then gives

µ

( ∞⋃
n=1

En

)
= lim

k→∞
µ

( ∞⋃
n=1

En

)
= lim

k→∞
µ(E1) + · · ·+ µ(Ek−1) + µ(Gk) =

∞∑
n=1

µ(En).

Hence µ is a measure. □
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4. (a) Let (X,M, µ) be a σ-finite measure space, and let E ∈ M with µ(E) = ∞. By σ-finiteness,
there exists {Gn}n∈N ⊂ M satisfying

⋃
n Gn = X and µ(Gn) < ∞ for all n ∈ N. We claim

0 < µ(E ∩Gn) for some n ∈ N. Indeed, if not then by subadditivity we have

µ(E) = µ(

∞⋃
n=1

E ∩Gn) ≤
∞∑

n=1

µ(E ∩Gn) = 0,

contradicting µ(E) = ∞. Thus 0 < µ(E ∩Gn) for some n ∈ N, and by monotonicity we also have
µ(E ∩Gn) < ∞. Thus µ is semifinite. □

(b) Note that by semifiniteness,

F := {F ∈ M : F ⊂ E, 0 < µ(F ) < ∞}

is non-empty, and therefore α := supF∈F µ(F ) > 0. Suppose, towards a contradiction, that
α < ∞. Let (Fn)n∈N ⊂ F be a sequence satisfying µ(Fn) → α. Note that F1 ∪ · · · ∪ Fn ∈ F
for each n ∈ N by subadditivity, and hence µ(F1 ∪ · · · ∪ Fn) ≤ α. By continuity from below, we
therefore have

µ(

∞⋃
n=1

Fn) = lim
n→∞

µ(F1 ∪ · · · ∪ Fn) ≤ α.

On the other hand, µ(F1 ∪ ·∪Fn) ≥ µ(Fn) by monotonicity. It follows that G :=
⋃

n Fn ∈ F with
µ(G) = α. Now,

µ(E) = µ(E \G) + µ(G)

implies µ(E \ G) = ∞. As µ is semifinite, there exists F ⊂ E \ G with 0 < µ(F ) < ∞. But
then µ(F ∪G) = µ(F ) + µ(G) ∈ (α,∞) so that F ∪G ∈ F with µ(F ∪G) > α, contradicting the
definition of α.

Thus α = ∞ and hence for any C > 0 one can find F ∈ F with µ(F ) > C. □

5. (a) We first show that µ0 is a measure. For E = ∅, any subset is necessarily the empty set and hence

µ0(∅) = sup{µ(∅)} = 0.

If {En : n ∈ N} ⊂ M is a disjoint collection, then for any F ⊂
⋃∞

n=1 En with µ(F ) < ∞ one has
that µ(F ∩ En) < ∞ for all n ∈ N by monotonicity. Thus

µ(F ) =

∞∑
n=1

µ(F ∩ En) ≤
∞∑

n=1

µ0(En),

and taking the supremum over all finite measure subsets F ⊂
⋃
En one obtains

µ0

( ∞⋃
n=1

En

)
≤

∞∑
n=1

µ0(En).

Conversely, if µ0(En) = ∞ for any n ∈ N, then there exists FR ⊂ En with µ(FR) ≥ R for all
R > 0. Since FR ⊂

⋃
En, this implies µ0(

⋃
En) = ∞. Now suppose µ(En) < ∞ for all n ∈ N.

Let ϵ > 0 and for each n ∈ N let Fn ⊂ En be such that µ(Fn) < ∞ and µ0(En) − ϵ
2n < µ(Fn).

Then for each N ∈ N we have
N⋃

n=1

Fn ⊂
∞⋃

n=1

En

and is of finite measure. Thus

N∑
n=1

µ0(En) ≤
N∑

n=1

µ(Fn) +
ϵ

2n
= µ

(
N⋃

n=1

Fn

)
+ ϵ(1− (1/2)N ) < µ0

( ∞⋃
n=1

En

)
+ ϵ.

Letting N → ∞ and ϵ → 0 yields the inequality needed to show µ0 is countably additive.

Next, we must show µ0 is semifinite. Suppose E ∈ M satisfies µ0(E) = ∞. The definition of µ0

implies there exists F ⊂ E with 0 < µ(F ) < ∞. Then for any G ⊂ F one has µ(G) ≤ µ(F ) and
hence µ0(F ) = µ(F ) ∈ (0,∞). Thus µ0 is semifinite. □
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(b) Suppose µ is semifinite and let E ∈ M. If µ(E) < ∞, then the argument at the end of part (a)
shows µ0(E) = µ(E). If µ(E) = ∞, then by Exercise 4.(a) for any C > 0 there exists F ⊂ E with
C < µ(F ) < µ(E). Hence µ0(E) > C for all C > 0, and therefore µ0(E) = ∞ = µ(E). □

(c) We will first show µ = µ0 + ν. First claim that if E is µ-semifinite, then µ(E) = µ0(E). Indeed,
if µ(E) < ∞ then this follows from the argument at the end of part (a). Otherwise, arguing as in
Exercise 4.(b) we see that

{µ(F ) : F ⊂ E, 0 < µ(F ) < ∞}

is unbounded, and hence µ0(E) = ∞ as the supremum of the above set. This proves the claim
and consequently, µ(E) = µ0(E) = µ0(E) + ν(E) for any µ-semifinite E. If E is not µ-semifinite,
then necessarily µ(E) = ∞ = ν(E) = µ0(E) + ν(E).

Now we show ν is a measure. Since µ(∅) = 0 < ∞, we see that ∅ is µ-semifinite and therefore
ν(∅) = 0. Next, let {En : n ∈ N} ⊂ M be a disjoint collection. If Ek is not µ-semifinite for some
k ∈ N, then there exists F ⊂ Ek with µ(F ) = ∞ but µ(G) ∈ {0,∞} for all G ⊂ F . This same F
is a subset for

⋃
En, and so we see that

⋃
En is also not µ-semifinite in this case and hence

∞∑
n=1

ν(En) = ∞ = ν

( ∞⋃
n=1

En

)
.

Otherwise, En is µ-semifinite for all n ∈ N and therefore

∞∑
n=1

ν(En) =

∞∑
n=1

0 = 0.

So we must show that in this case,
⋃
En is also µ-semifinite. Let F ⊂

⋃
En with µ(F ) = ∞.

Note that

∞ = µ(F ) = µ

( ∞⋃
n=1

En ∩ F

)
=

∞∑
n=1

µ(En ∩ F ),

and so µ(Ek ∩F ) > 0 for at least one k ∈ N. If µ(Ek ∩F ) < ∞, we take G := Ek ∩F . Otherwise,
µ(Ek ∩ F ) = ∞, and then invoking the µ-semifiniteness of Ek we can find G ⊂ Ek ∩ F with
0 < µ(G) < ∞. This G is of course also a subset of F , and so

⋃
En is µ-semifinite. □
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