Exercises: (Chapter 1.1-2)

1. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(t)= \begin{cases}\frac{1}{n} & \text { if } t=\frac{m}{n} \text { with } m \in \mathbb{Z}, n \in \mathbb{N} \text { sharing no common factors } \\ 0 & \text { if } t \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

(a) Show that f is discontinuous at every $t \in \mathbb{Q}$.
(b) Show that f is continuous at every $t \in \mathbb{R} \backslash \mathbb{Q}$.
(c) Show that $1_{\mathbb{Q}}$ is discontinuous at every $t \in \mathbb{R}$.
2. Show that if $E \subset \mathbb{R}$ is countable then E is a null set.
3. Let X be a set and let $\left(E_{n}\right)_{n \in \mathbb{N}}$ be a sequence of subsets. Recall that the limit inferior and limit superior of this sequence of sets are defined as

$$
\liminf E_{n}:=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_{k} \quad \text { and } \quad \lim \sup E_{n}:=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_{k},
$$

respectively. Show that for all $x \in X$,

$$
1_{\liminf E_{n}}(x)=\liminf _{n \rightarrow \infty} 1_{E_{n}}(x) \quad \text { and } \quad 1_{\limsup E_{n}}(x)=\limsup _{n \rightarrow \infty} 1_{E_{n}}(x) .
$$

4. Let X be an uncountable set. Show that

$$
\mathcal{C}:=\left\{E \subset X: E \text { or } E^{c} \text { is countable }\right\}
$$

is a σ-algebra on X.
5. Let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ-algebra on \mathbb{R}, and consider the following collections of subsets of \mathbb{R} :

$$
\begin{aligned}
& \mathcal{E}_{1}:=\{(a, b): a, b \in \mathbb{R}, a<b\} \\
& \mathcal{E}_{2}:=\{[a, \infty): a \in \mathbb{R}\}
\end{aligned}
$$

Show that $\mathcal{M}\left(\mathcal{E}_{1}\right)=\mathcal{M}\left(\mathcal{E}_{2}\right)=\mathcal{B}_{\mathbb{R}}$.

Solutions:

1. (a) Fix $t=\frac{m}{n} \in \mathbb{Q}$ and let $\epsilon:=\frac{1}{n}$. For any $\delta>0$, the density of the irrationals implies there exists $s \in(t-\delta, t+\delta) \backslash \mathbb{Q}$. Hence $|t-s|<\delta$, but

$$
|f(t)-f(s)|=\frac{1}{n}=\epsilon
$$

Hence f is discontinuous at t.
(b) Fix $t \in \mathbb{R} \backslash \mathbb{Q}$ and let $\epsilon>0$. Let $M \in \mathbb{N}$ satisfy $M \geq \frac{1}{\epsilon}$. Note that for each $m \in\{1, \ldots, M\}$, there are only finitely many $n \in \mathbb{Z}$ satisfying $\frac{n}{m} \in[t-1, t+1]$ (since this requires $m(t-1) \leq n \leq m(t+1)$). Thus the following is a finite set:

$$
F:=\left\{\left.\frac{n}{m} \in[t-1, t+1] \right\rvert\, 1 \leq m \leq M, n \in \mathbb{Z}\right\}
$$

Since $F \subset \mathbb{Q}$, we know $t \notin F$ and therefore

$$
\delta:=\min _{s \in F}|t-s|>0
$$

Note that $\delta<1$ since there exists $n \in \mathbb{Z} \cap F$ with $n \leq t<n+1$.
Now, we claim that if $s \in \mathbb{R}$ satisfies $|t-s|<\delta$, then $|f(t)-f(s)|<\epsilon$. Since $f(t)=0$, if $s \in \mathbb{R} \backslash \mathbb{Q}$ then $|f(t)-f(s)|=|0-0|=0<\epsilon$. So now assume $s \in \mathbb{Q}$, and say $s=\frac{n}{m}$ for $n \in \mathbb{Z}$ and $m \in \mathbb{N}$ with no common factors. If $m>M$, then we have

$$
|f(t)-f(s)|=\left|0-\frac{1}{m}\right|=\frac{1}{m}<\frac{1}{M} \leq \epsilon
$$

as needed. If $m \leq M$, then since $\delta<1$ we have $s \in[t-1, t+1]$ and hence $s \in F$. But then $|t-s|<\delta \leq|t-s|$ is a contradiction. Thus we cannot have $m \leq M$ and so in all cases we have have shown $|f(t)-f(s)|<\epsilon$.
(c) Fix $t \in \mathbb{R}$ and let $\epsilon=1$. Since both \mathbb{Q} and $\mathbb{R} \backslash \mathbb{Q}$ are dense in \mathbb{R}, for any $\delta>0$ we can find $s \in(t-\delta, t+\delta)$ that is either rational if t is irrational or irrational if t is rational. In either case we have $|t-s|<\delta$ while

$$
|f(t)-f(s)|=1=\epsilon
$$

Hence f is discontinuous at t.
2. Let $\epsilon>0$ and let $E=\left\{t_{n}: n \in \mathbb{N}\right\}$ be an enumeration of E. For each $n \in \mathbb{N}$, define

$$
a_{n}:=t_{n}-\frac{\epsilon}{2^{n+1}} \quad b_{n}:=t_{n}+\frac{\epsilon}{2^{n+1}}
$$

so that $t_{n} \in\left(a_{n}, b_{n}\right)$ and $b_{n}-a_{n}=\frac{2 \epsilon}{2^{n+1}}=\frac{\epsilon}{2^{n}}$. Then

$$
E \subset \bigcup_{n \in \mathbb{N}}\left(a_{n}, b_{n}\right)
$$

and

$$
\sum_{n=1}^{\infty} b_{n}-a_{n}=\sum_{n=1}^{\infty} \frac{\epsilon}{2^{n}}=\epsilon \sum_{n=1}^{\infty} 2^{-n}=\epsilon
$$

Thus E is a null set.
3. First suppose $x \in \lim \inf E_{n}$. By definition, this means there exists $n_{0} \geq 1$ so that $x \in \bigcap_{k=n_{0}}^{\infty} E_{k}$. Consequently, $1_{E_{k}}(x)=1$ for all $k \geq n_{0}$. Hence

$$
\liminf _{n \rightarrow \infty} 1_{E_{n}}(x)=\sup _{n \in \mathbb{N}} \inf _{k \geq n} 1_{E_{k}}(x) \geq \inf _{k \geq n_{0}} 1_{E_{k}}(x)=1
$$

Since $1_{E_{n}}(x) \leq 1$ for all n, it follows that $\liminf 1_{E_{n}}(x)=1=1_{\lim \inf E_{n}}(x)$. Next, suppose $x \notin$ $\lim \inf E_{n}$. Again by definition we have for all $n \geq 1$ that $x \notin \bigcap_{k=n}^{\infty} E_{k}$; that is, for all $n \geq 1$ there exists $k(n) \geq n$ so that $x \notin E_{k(n)}$. Thus

$$
\liminf _{n \rightarrow \infty} 1_{E_{n}}(x)=\sup _{n \in \mathbb{N}} \inf _{k \geq n} 1_{E_{k}}(x) \leq \sup _{n \in \mathbb{N}} 1_{E_{k(n)}}(x)=0
$$

Since $1_{E_{n}}(x) \geq 0$ for all n, it follows that $\liminf 1_{E_{n}}(x)=0=1_{\lim \inf E_{n}}(x)$. This establishes the first equality.
To prove the second equality, one can proceed among more or less the same lines as above. Alternatively, observe that

$$
\left(\limsup E_{n}\right)^{c}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_{k}^{c}=\liminf E_{n}^{c}
$$

and so

$$
1-1_{\lim \sup E_{n}}(x)=1_{\left(\limsup E_{n}\right)^{c}}(x)=1_{\liminf E_{n}^{c}}(x)=\liminf _{n \rightarrow \infty} 1_{E_{n}^{c}}(x)
$$

by the first part of the proof. Hence

$$
1_{\lim \sup E_{n}}(x)=1-\liminf _{n \rightarrow \infty} 1_{E_{n}^{c}}(x)=\limsup _{n \rightarrow \infty}\left(1-1_{E_{n}^{c}}(x)=\limsup _{n \rightarrow \infty} 1_{E_{n}}(x)\right.
$$

4. First observe that \mathcal{C} is nonempty since $X^{c}=\emptyset$ implies $X \in \mathcal{C}$. Since the definition of \mathcal{C} is symmetric with respect to E and E^{c}, it follows that \mathcal{C} is closed under taking complements. Finally, suppose $E_{1}, E_{2}, \ldots \in \mathcal{C}$. If each E_{n} is countable, then so is their union and hence

$$
\bigcup_{n=1}^{\infty} E_{n} \in \mathcal{C}
$$

Otherwise, at least one E_{n} is not countable and therefore E_{n}^{c} must be countable. But then

$$
\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{c}=\bigcap_{n=1}^{\infty} E_{n}^{c} \subset E_{n}^{c}
$$

and so the complement of the union is countable. Hence the union belongs to \mathcal{C}, which is therefore a σ-algebra.
5. We will use Lemma 1.1 to show the inclusions

$$
\mathcal{M}\left(\mathcal{E}_{1}\right) \subset \mathcal{M}\left(\mathcal{E}_{2}\right) \subset \mathcal{B}_{\mathbb{R}} \subset \mathcal{M}\left(\mathcal{E}_{1}\right)
$$

Since σ-algebras are closed under complements, we have $(-\infty, a) \subset \mathcal{M}\left(\mathcal{E}_{2}\right)$ for all $a \in \mathbb{R}$. Since σ-algebras are also closed under countable intersections, we have

$$
[a, b)=[a, \infty) \cap(-\infty, b) \in \mathcal{M}\left(\mathcal{E}_{2}\right)
$$

for all $a<b$. Observe that

$$
(a, b)=\bigcup_{n=1}^{\infty}\left[a+\frac{1}{n}, b\right)
$$

Indeed, the union is clearly contained in the interval, and if $a<x<b$ then there exists a sufficiently large $n \in \mathbb{N}$ so that $a+\frac{1}{n} \leq x$. Thus we have $\mathcal{E}_{1} \subset \mathcal{M}\left(\mathcal{E}_{2}\right)$ since σ-algebras are closed under countable unions. Lemma 1.1 then gives the first of our claimed inclusions.
Next, we note that $\mathcal{B}_{\mathbb{R}}$ contains all closed subsets of \mathbb{R} since it contains all open subsets and is closed under taking complements. Consequently, $\mathcal{E}_{2} \subset \mathcal{B}_{\mathbb{R}}$ and Lemma 1.1 yields the second of our claimed inclusions.

Finally, we claim every open subset $U \subset \mathbb{R}$ is a countable union of open intervals, in which case $U \in \mathcal{M}\left(\mathcal{E}_{1}\right)$. Since $\mathcal{B}_{\mathbb{R}}$ is the σ-algebra generated by the open subsets of \mathbb{R}, Lemma 1.1 will give us the last of our claimed inclusions. Indeed, for every $x \in U$ there exists an open interval satisfying $x \in\left(a_{x}, b_{x}\right) \subset U$. Enumerate $\mathbb{Q} \cap U=\left\{q_{n}: n \in \mathbb{N}\right\}$. The density of the rationals implies each $\left(a_{x}, b_{x}\right)$ contains at least one rational number (in fact they will all contain an infinite number of them), and so

$$
U=\bigcup_{x \in U}\left(a_{x}, b_{x}\right)=\bigcup_{n=1}^{\infty} \bigcup_{x:\left(a_{x}, b_{x}\right) \ni q_{n}}\left(a_{x}, b_{x}\right)
$$

For each $n \in \mathbb{N}$, denote

$$
U_{n}:=\bigcup_{x:\left(a_{x}, b_{x}\right) \ni q_{n}}\left(a_{x}, b_{x}\right) .
$$

Then U_{n} is open as a union of open sets, and is connected as the union of connected sets with a common point (namely q_{n}). Therefore $U_{n}=\left(a_{n}, b_{n}\right)$ is an interval, and U is a countable union of intervals.

