
Math 828 Homework 10 Solutions 12/6/2023

Exercises: (Section 3.5)

1. Define

F (x) :=

{
x2 sin( 1

x ) if x 6= 0

0 otherwise
and G(x) :=

{
x2 sin( 1

x2 ) if x 6= 0

0 otherwise
.

(a) Compute F ′ and G′.

(b) Show that F ∈ BV ([−1, 1]) but G 6∈ BV ([−1, 1]).

2. Suppose (Fn)n∈N ⊂ BV converges pointwise to a function F ∈ BV . Show that TF ≤ lim inf
n→∞

TFn
.

3. For F ∈ BV define
‖F‖BV := |F (0)|+ TF (∞).

(a) Show that ‖ · ‖BV defines a norm on BV .

(b) Show that BV is complete with respect to the metric ‖F −G‖BV .

(c) Show that for any x0 ∈ R one has

1

2
‖F‖BV ≤ |F (x0)|+ TF (∞) ≤ 2‖F‖BV

for all F ∈ BV .

4. Suppose F,G : [a, b]→ C are absolutely continuous functions and that G(x) 6= 0 for all x ∈ [a, b]. Show
that the quotient F

G is absolutely continuous.

5. Let G : [a, b]→ [c, d] be a continuous increasing surjection.

(a) For a Borel set E ⊂ [c, d], show that m(E) = µG(G−1(E)).

[Hint: first consider when E is an open then closed.]

(b) For f ∈ L1([c, d],B[c,d],m), show that∫
[c,d]

f dm =

∫
[a,b]

f ◦G dµG.

(c) Suppose G is absolutely continuous. Show that the above integrals also equal
∫
[a,b]

(f ◦G)G′ dm.

6. 1 For (a, b) ⊂ R (possibly equal), we say a function F : (a, b)→ R is convex if

F (λs+ (1− λ)t) ≤ λF (s) + (1− λ)F (t)

for all s, t ∈ (a, b) and λ ∈ (0, 1).

(a) Show that F is convex if and only if for all s, s′, t, t′ ∈ (a, b) satisfying s ≤ s′ < t′ and s < t ≤ t′

one has
F (t)− F (s)

t− s
≤ F (t′)− F (s′)

t′ − s′
.

(b) Show that F is convex if and only if F is absolutely continuous on every compact subinterval of
(a, b) and F ′ is increasing on the set where it is defined.

(c) For convex F and t0 ∈ (a, b), show that there exists β ∈ R satisfying F (t)− F (t0) ≥ β(t− t0) for
all t ∈ (a, b).

1Not collected
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(d) (Jensen’s Inequality) Let (X,M, µ) be a measure space with µ(X) = 1. Suppose g ∈ L1(X,µ)
is valued in (a, b) and F is convex on this interval. Show that

F

(∫
X

g dµ

)
≤
∫
X

F ◦ g dµ.

[Hint: use part (c) with t0 =
∫
g dµ and t = g(x).]

———————————————————————————————————————————–

Solutions:

1. (a) For x 6= 0, we have the following from calculus:

F ′(x) = 2x sin(
1

x
)− cos(

1

x
)

G′(x) = 2x sin(
1

x2
)− 1

x
cos(

1

x2
).

For x = 0, the we have

lim
h→0

∣∣∣∣F (h)− F (0)

h

∣∣∣∣ = lim
h→0

∣∣∣∣h2 sin( 1
h )− 0

h

∣∣∣∣ ≤ lim
h→0
|h| = 0

lim
h→0

∣∣∣∣G(h)−G(0)

h

∣∣∣∣ = lim
h→0

∣∣∣∣h2 sin( 1
h2 )− 0

h

∣∣∣∣ ≤ lim
h→0
|h| = 0

Hence F ′(0) = G′(0) = 0. �

(b) Since F ′ is bounded on [−1, 1], F ∈ BV ([−1, 1]) by an example from lecture. To see that
G 6∈ BV ([−1, 1]), for each integer j ≥ 0 let xj ∈ [0, 1] be such that

1

x2j
=

(2j + 1)π

2
.

Then 1 ≥ x0 > x1 > x2 > · · · , and sin( 1
x2
j
) = ±1 if j is odd or even, respectively. Consequently,

the total variation of G on [−1, 1] is bounded below by

N∑
j=0

|G(xj)−G(xj−1)| =
N∑
j=0

1

x2j
− 1

x2j−1
=

1

x2N
− 1

x20
=

(2N + 1)π

2
− π

2
,

for each N ∈ N. �

2. For x ∈ R and ε > 0, let −∞ < x0 < x1 < · · · < xm = x such that

TF (x) ≤
m∑
j=1

|F (xj)− F (xj−1)|+ ε.

Using the pointwise convergence, we can find N ∈ N so that

|[F (xj)− F (xj−1)]− [Fn(xj)− Fn(xj−1)]| ≤ |F (xj)− Fn(xj)|+ |F (xj−1)− Fn(xj−1)| < ε

n

for each j = 1, . . . ,m and all n ≥ N . We therefore have

TF (x) ≤
m∑
j=1

|Fn(xj)− Fn(xj−1)|+ 2ε ≤ TFn
(x) + 2ε

for all n ≥ N . Hence TF (x) ≤ lim infn→∞ TFn(x) + 2ε. Since x ∈ R and ε > 0 were arbitrary, the
claimed inequality holds. �
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3. (a) For F,G ∈ BV , recall from lecture that TF+G ≤ TF + TG. Using this and the triangle inequality
for C one has

‖F +G‖BV = |F (0) +G(0)|+TF+G(∞) ≤ |F (0)|+ |G(0)|+TF (∞) +TG(∞) ≤ ‖F‖BV + ‖G‖BV .

Next for α ∈ C we observe that for any −∞ < x0 < x1 < · · · < xn one has

n∑
j=1

|αF (xj)− αF (xj−1)| = |α|
n∑
j=1

|F (xj)− F (xj−1)|.

It follows that TαF = |α|TF and hence

‖αF‖BV = |αF (0)|+ TαF (∞) = |α|(|F (0)|+ TF (∞)) = |α|‖F‖BV .

Finally, if F = 0 then ‖F‖BV = 0 is clear, and on the other hand ‖F‖BV = 0 implies F (0) = 0
and TF (∞) = 0. Since TF is increasing it must be that TF ≡ 0 and therefore F is constant. But
then F (0) = 0 yields F ≡ 0. Thus ‖ · ‖BV is norm on BV . �

(b) Suppose (Fn)n∈N ⊂ BV is Cauchy with respect to this norm. For any x ∈ R, one has

|(Fn − Fm)(x)| ≤ |(Fn − Fm)(0)|+ |(Fn − Fm)(x)− (Fn − Fm)(0)|
≤ |(Fn − Fm)(0)|+ TFn−Fm

(∞) = ‖Fn − Fm‖BV .

Consequently, (Fn(x))n∈N ⊂ C is a Cauchy sequence so that we may define

F (x) := lim
n→∞

Fn(x)

for each x ∈ R. Let ε > 0 and let N ∈ N be large enough so that ‖Fn − Fm‖BV < ε for all
n,m ≥ N . We claim that ‖F − Fn‖BV ≤ 2ε for all n ∈ N, which we also note implies F ∈ BV
since TF (∞) ≤ ‖F‖BV ≤ ‖F − Fn‖BV + ‖Fn‖BV <∞. For −∞ < x0 < x1 < · · · < xd <∞, the
definition of F allows us to find m ∈ N large enough so that

|(F − Fm)(xj)− (F − Fm)(xj−1)| ≤ |F (xj)− Fm(xj)|+ |F (xj−1)− Fm(xj−1)| < ε

d+ 1
.

Increasing m if necessary, we can also ensure |(F − Fm)(0)| < ε
d+1 and m ≥ N . For n ≥ N , one

then has

|(F − Fn)(0)|+
d∑
j=1

|(F − Fn)(xj)− (F − Fn)(xj−1)|

≤|(F − Fm)(0)|+
d∑
j=1

|(F − Fm)(xj)− (F − Fm)(xj−1)|

+ |(Fm − Fn)(0)|+
d∑
j=1

|(Fm − Fn)(xj)− (Fm − Fn)(xj−1)|

≤ ε

d+ 1
+

d∑
j=1

ε

d+ 1
+ ‖Fm − Fn‖BV < 2ε.

Taking the supremum over all −∞ < x0 < x1 < · · · < xd <∞ then yields ‖F − Fn‖BV ≤ 2ε. �

(c) This follows from |F (0)− F (x0)| ≤ TF (max{0, x0}) ≤ TF (∞). Indeed, one then has

|F (x0)|+ TF (∞) ≤ |F (0)|+ |F (x0)− F (0)|+ TF (∞) ≤ |F (0)|+ 2TF (∞) ≤ 2‖F‖BV .

The other inequality is similar. �
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4. Since F and G are in particular continuous on the compact set [a, b], we have

R := sup
a≤t≤b

|F (t)| <∞ and r := inf
a≤t≤b

|G(t)| = min
a≤t≤b

|G(t)| > 0.

Given ε > 0 let δF > 0 be as in the definition of absolute continuity for F corresponding to rε
2 , and let

δG > 0 be as in the definition of absolute continuity for G corresponding to r2ε
2R . Set δ := min{δF , δG}.

Then if (a1, b1), . . . , (an, bn) ⊂ R are disjoint intervals satisfying

n∑
j=1

(bj − aj) < δ,

then one has

n∑
j=1

∣∣∣∣F (bj)

G(bj)
− F (aj)

G(aj)

∣∣∣∣ ≤ n∑
j=1

∣∣∣∣F (bj)− F (aj)

G(bj)

∣∣∣∣+

∣∣∣∣F (aj)
G(aj)−G(bj)

G(bj)G(aj)

∣∣∣∣
≤ 1

r

n∑
j=1

|F (bj)− F (aj)|+
R

r2

n∑
j=1

|G(bj)−G(aj)| <
1

r

rε

2
+
R

r2
r2ε

2R
= ε.

Hence F
G is absolutely continuous. �

5. (a) First suppose E = (x, y) is an interval. Then G−1(x, y) is open by the continuity of G and
connected since G is increasing. Hence G−1(x, y) = (s, t) for some s, t ∈ [a, b]. These properties
of G also imply

G(s) = inf
r>s

G(r) ≥ x

G(t) = sup
r<t

G(t) ≤ y.

If these inequalities were strict then G((s, t)) would be a strict subinterval of (x, y), contradicting
the surjectivity of G. Hence G(s) = x and G(t) = y, and therefore

µG(G−1(x, y)) = µG((s, t)) = G(t)−G(s) = y − x = m((x, y)).

It follows that m(U) = µG(G−1(U)) for any open U ⊂ [c, d], since we can write U as a disjoint
union of countably many open intervals. Next, if V ⊂ [c, d] is closed, then U := [c, d] \ V is open
and

[a, b] \G−1(U) = G−1(V ).

Thus

m(V ) = d− c−m(U) = G(b)−G(a)− µG(G−1(U)) = µG([a, b] \G−1(U)) = µG(G−1(V )).

Now, for a Borel set E ⊂ [c, d] and ε > 0 the regularity of m allows us to find K ⊂ E compact
and U ⊃ E open so that mu(U) − ε ≤ m(E) ≤ m(K) + ε. Since G−1(K) ⊂ G−1(E) ⊂ G−1(U)
and K is in particular closed, we have

µG(G−1(E)) ≤ µG(G−1(U)) = m(U) ≤ m(E) + ε

and
µG(G−1(E)) ≥ µG(G−1(K)) = m(K) ≥ m(E)− ε.

Letting ε→ 0 yields µG(G−1(E)) = m(E). �

(b) First suppose f is a simple function with standard representation
∑n
j=1 αn1Ej

. Then by part (a)
we have ∫

[c,d]

f dm =

n∑
j=1

αjm(Ej) =

n∑
j=1

αjµG(G−1(Ej)) =

∫
[c,d]

n∑
j=1

αj1G−1(Ej) dµG.
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Note that 1Ej ◦G(x) = 1 iff G(x) ∈ Ej iff x ∈ G−1(Ej) iff 1G−1(Ej)(x) = 1. Hence the integrand
in the above integral is actually f ◦G. For general f , we can approximate it pointwise by simple
functions dominated by |f | and use the dominated convergence theorem. �

(c) Absolute continuity of G implies µG � m, and we have seen in lecture that in this case dµG

dm = G′

m-almost everywhere. Hence we have∫
[a,b]

(f ◦G)G′ dm =

∫
[a,b]

(f ◦G)
dµG
dm

dm =

∫
[a,b]

f ◦G dµG.

�

6. (a) (=⇒) : Suppose F is convex. We first consider the case when t′ = t and s ≤ s′ < t. Then

λ := t−s′
t−s ∈ (0, 1) and

λs+ (1− λ)t = λ(s− t) + t = s′ − t+ t = s′.

Thus by convexity we have

F (t)− F (s′)

t− s′
=
F (t)− F (λs+ (1− λ)t)

λ(t− s)
≥ F (t)− λF (s)− (1− λ)F (t)

λ(t− s)
=
F (t)− F (s)

t− s
.

Next we consider the case when s = s′ and s′ < t ≤ t′. Then λ := t−s′
t′−s′ ∈ (0, 1) and

λt′ + (1− λ)s′ = λ(t′ − s′) + s′ = t− s′ + s′ = t.

Thus by convexity we have

F (t)− F (s′)

t− s′
=
F (λt′ + (1− λ)s′)− F (s′)

λ(t′ − s′)
≤ λF (t′) + (1− λ)F (s′)− F (s′)

λ(t′ − s′)
=
F (t′)− F (s′)

t′ − s′
.

For the general case we combine these two special cases to get:

F (t)− F (s)

t− s
≤ F (t′)− F (s)

t′ − s
≤ F (t′)− F (s′)

t′ − s′
.

(⇐=) : Given λ ∈ (0, 1) let s′ := λs+ (1− λ)t. Then s < s′ < t and

t− s′

t− s
=
t− λs− (1− λ)t

t− s
= λ.

The assumed property therefore implies

F (λs+ (1− λ)t) = −[F (t)− F (s′)] + F (t) = −(t− s′)F (t)− F (s′)

t− s′
+ F (t)

≤ −(t− s′)F (t)− F (s)

t− s
+ F (t) = −λ(F (t)− F (s)) + F (t) = λF (s) + (1− λ)F (t).

Hence F is convex. �

(b) (=⇒) : Suppose F is convex. Fix a compact subinterval [c, d] ⊂ (a, b) (i.e. just a bounded closed
interval), and let ρ > 0 be such that [c− ρ, d+ ρ] ⊂ (a, b). For c ≤ s < t ≤ d, part (a) implies

F (c)− F (c− ρ)

ρ
≤ F (t)− F (s)

t− s
≤ F (d+ ρ)− F (d)

ρ
.

Thus for
M := ρ−1 max{|F (c)− F (c− ρ)|, |F (d+ ρ)− F (d)},
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we have |F (t) − F (s)| ≤ M |t − s| and so F is absolutely continuous by letting δ := ε
M for any

ε > 0. Moreover, if F ′(s) and F ′(t) exist then for ε > 0 let s′ < t and t′ > s be such that∣∣∣∣F (s)− F (s′)

s− s′
− F ′(s)

∣∣∣∣ < ε∣∣∣∣F (t)− F (t′)

t− t′
− F ′(t)

∣∣∣∣ < ε.

Then using part (a) again we have

F ′(s) <
F (s)− F (s′)

s− s′
+ ε ≤ F (t)− F (t′)

t− t′
+ ε < F ′(t) + 2ε.

Hence F ′(s) ≤ F ′(t) and F ′ is increasing.

(⇐=) : Let s, s′, t, t′ ∈ (a, b) satisfy s ≤ s′ < t and s′ < t ≤ t′. By assumption F is absolutely
continuous on the compact subinterval [s, t′] ⊂ (a, b), and hence F ′ ∈ L1([s, t′], dm) by the
fundamental theorem of calculus for Lebesgue integrals (Theorem 3.35 from lecture). Consider
G : [s, t]→ [s′, t′] defined by

G(x) =
t′ − s′

t− s
(x− s) + s′,

which is continuous, increasing (since t′−s′
t−s > 0), and a surjection. In fact, G is absolutely

continuous on [s, t] (since |G′(x)| = t′−s′
t−s is uniformly bounded) and so by Exercise 5.(c) we have∫

[s′,t′]

F ′ dm =

∫
[s,t]

(F ′ ◦G)G′ dm =

∫
[s,t]

F ′
(
t′ − s′

t− s
(x− s) + s′

)
t′ − s′

t− s
dm(x).

Using this and the formula from Theorem 3.35 we have

F (t′)− F (s′)

t′ − s′
=

1

t′ − s′

∫
[s′,t′]

F ′ dm =
1

t− s

∫
[s,t]

F ′
(
t′ − s′

t− s
(x− s) + s′

)
dm(x).

Now, we claim that t′−s′
t−s (x − s) + s′ ≥ x holds on [s, t]. Indeed, at x = s it reduces to s′ ≥ s

and at x = t it reduces to t′ ≥ t. Thus the inequality holds on [s, t] since both sides are linear.
Therefore we can continue the above computation using the fact that F ′ is increasing:

F (t′)− F (s′)

t′ − s′
≥ 1

t− s

∫
[s,t]

F ′(x) dm(x) =
F (t)− F (s)

t− s
,

where the last equality follows from Theorem 3.35 again. So by part (a), we have that F is
convex. �

(c) By part (b), F ′ exists almost everywhere on (a, b) and is increasing where it is defined, so we can
choose β ∈ R satisfying

sup{F ′(s) : s ≤ t0} ≤ β ≤ inf{F ′(t) : t ≥ t0}.

Now, for t = t0 the inequality is immediate. For t > t0, using Theorem 3.35 we have

F (t)− F (t0) =

∫
[t0,t]

F ′dm ≥
∫
[t0,t]

β dm = β(t− t0).

For t < t0 we have

F (t0)− F (t) =

∫
[t,t0]

F ′ dm ≤
∫
[t,t0]

β dm = β(t0 − t0),

and multiplying by negative one yields F (t)− F (t0) ≥ β(t− t0). �
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(d) Following the hint we set t0 :=
∫
g dµ and let β be as in part (c). Then for t = g(x) we have

F ◦ g(x)− F
(∫

X

g dµ

)
≥ β

(
g(x)−

∫
X

gdµ

)
.

Integrating with respect to x (and using µ(X) = 1 so that
∫
X
c dµ = c for a constant c ∈ C) yields∫

X

F ◦ g dµ− F
(∫

X

g dµ

)
≥ β

(∫
X

g dµ−
∫
X

g dµ

)
= 0.

�

7 c©Brent Nelson 2023


