Exercises: (Section 3.5)

1. Define

$$
F(x):=\left\{\begin{array}{ll}
x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad G(x):=\left\{\begin{array}{ll}
x^{2} \sin \left(\frac{1}{x^{2}}\right) & \text { if } x \neq 0 \\
0 & \text { otherwise }
\end{array} .\right.\right.
$$

(a) Compute F^{\prime} and G^{\prime}.
(b) Show that $F \in B V([-1,1])$ but $G \notin B V([-1,1])$.
2. Suppose $\left(F_{n}\right)_{n \in \mathbb{N}} \subset B V$ converges pointwise to a function $F \in B V$. Show that $T_{F} \leq \liminf _{n \rightarrow \infty} T_{F_{n}}$.
3. For $F \in B V$ define

$$
\|F\|_{B V}:=|F(0)|+T_{F}(\infty) .
$$

(a) Show that $\|\cdot\|_{B V}$ defines a norm on $B V$.
(b) Show that $B V$ is complete with respect to the metric $\|F-G\|_{B V}$.
(c) Show that for any $x_{0} \in \mathbb{R}$ one has

$$
\frac{1}{2}\|F\|_{B V} \leq\left|F\left(x_{0}\right)\right|+T_{F}(\infty) \leq 2\|F\|_{B V}
$$

for all $F \in B V$.
4. Suppose $F, G:[a, b] \rightarrow \mathbb{C}$ are absolutely continuous functions and that $G(x) \neq 0$ for all $x \in[a, b]$. Show that the quotient $\frac{F}{G}$ is absolutely continuous.
5. Let $G:[a, b] \rightarrow[c, d]$ be a continuous increasing surjection.
(a) For a Borel set $E \subset[c, d]$, show that $m(E)=\mu_{G}\left(G^{-1}(E)\right)$.
[Hint: first consider when E is an open then closed.]
(b) For $f \in L^{1}\left([c, d], \mathcal{B}_{[c, d]}, m\right)$, show that

$$
\int_{[c, d]} f d m=\int_{[a, b]} f \circ G d \mu_{G} .
$$

(c) Suppose G is absolutely continuous. Show that the above integrals also equal $\int_{[a, b]}(f \circ G) G^{\prime} d m$.
6. ${ }^{1}$ For $(a, b) \subset \mathbb{R}$ (possibly equal), we say a function $F:(a, b) \rightarrow \mathbb{R}$ is convex if

$$
F(\lambda s+(1-\lambda) t) \leq \lambda F(s)+(1-\lambda) F(t)
$$

for all $s, t \in(a, b)$ and $\lambda \in(0,1)$.
(a) Show that F is convex if and only if for all $s, s^{\prime}, t, t^{\prime} \in(a, b)$ satisfying $s \leq s^{\prime}<t^{\prime}$ and $s<t \leq t^{\prime}$ one has

$$
\frac{F(t)-F(s)}{t-s} \leq \frac{F\left(t^{\prime}\right)-F\left(s^{\prime}\right)}{t^{\prime}-s^{\prime}} .
$$

(b) Show that F is convex if and only if F is absolutely continuous on every compact subinterval of (a, b) and F^{\prime} is increasing on the set where it is defined.
(c) For convex F and $t_{0} \in(a, b)$, show that there exists $\beta \in \mathbb{R}$ satisfying $F(t)-F\left(t_{0}\right) \geq \beta\left(t-t_{0}\right)$ for all $t \in(a, b)$.

[^0](d) (Jensen's Inequality) Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)=1$. Suppose $g \in L^{1}(X, \mu)$ is valued in (a, b) and F is convex on this interval. Show that
$$
F\left(\int_{X} g d \mu\right) \leq \int_{X} F \circ g d \mu
$$
[Hint: use part (c) with $t_{0}=\int g d \mu$ and $t=g(x)$.]

Solutions:

1. (a) For $x \neq 0$, we have the following from calculus:

$$
\begin{aligned}
F^{\prime}(x) & =2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) \\
G^{\prime}(x) & =2 x \sin \left(\frac{1}{x^{2}}\right)-\frac{1}{x} \cos \left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

For $x=0$, the we have

$$
\begin{aligned}
& \lim _{h \rightarrow 0}\left|\frac{F(h)-F(0)}{h}\right|=\lim _{h \rightarrow 0}\left|\frac{h^{2} \sin \left(\frac{1}{h}\right)-0}{h}\right| \leq \lim _{h \rightarrow 0}|h|=0 \\
& \lim _{h \rightarrow 0}\left|\frac{G(h)-G(0)}{h}\right|=\lim _{h \rightarrow 0}\left|\frac{h^{2} \sin \left(\frac{1}{h^{2}}\right)-0}{h}\right| \leq \lim _{h \rightarrow 0}|h|=0
\end{aligned}
$$

Hence $F^{\prime}(0)=G^{\prime}(0)=0$.
(b) Since F^{\prime} is bounded on $[-1,1], F \in B V([-1,1])$ by an example from lecture. To see that $G \notin B V([-1,1])$, for each integer $j \geq 0$ let $x_{j} \in[0,1]$ be such that

$$
\frac{1}{x_{j}^{2}}=\frac{(2 j+1) \pi}{2}
$$

Then $1 \geq x_{0}>x_{1}>x_{2}>\cdots$, and $\sin \left(\frac{1}{x_{j}^{2}}\right)= \pm 1$ if j is odd or even, respectively. Consequently, the total variation of G on $[-1,1]$ is bounded below by

$$
\sum_{j=0}^{N}\left|G\left(x_{j}\right)-G\left(x_{j-1}\right)\right|=\sum_{j=0}^{N} \frac{1}{x_{j}^{2}}-\frac{1}{x_{j-1}^{2}}=\frac{1}{x_{N}^{2}}-\frac{1}{x_{0}^{2}}=\frac{(2 N+1) \pi}{2}-\frac{\pi}{2}
$$

for each $N \in \mathbb{N}$.
2. For $x \in \mathbb{R}$ and $\epsilon>0$, let $-\infty<x_{0}<x_{1}<\cdots<x_{m}=x$ such that

$$
T_{F}(x) \leq \sum_{j=1}^{m}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right|+\epsilon
$$

Using the pointwise convergence, we can find $N \in \mathbb{N}$ so that

$$
\left|\left[F\left(x_{j}\right)-F\left(x_{j-1}\right)\right]-\left[F_{n}\left(x_{j}\right)-F_{n}\left(x_{j-1}\right)\right]\right| \leq\left|F\left(x_{j}\right)-F_{n}\left(x_{j}\right)\right|+\left|F\left(x_{j-1}\right)-F_{n}\left(x_{j-1}\right)\right|<\frac{\epsilon}{n}
$$

for each $j=1, \ldots, m$ and all $n \geq N$. We therefore have

$$
T_{F}(x) \leq \sum_{j=1}^{m}\left|F_{n}\left(x_{j}\right)-F_{n}\left(x_{j-1}\right)\right|+2 \epsilon \leq T_{F_{n}}(x)+2 \epsilon
$$

for all $n \geq N$. Hence $T_{F}(x) \leq \liminf _{n \rightarrow \infty} T_{F_{n}}(x)+2 \epsilon$. Since $x \in \mathbb{R}$ and $\epsilon>0$ were arbitrary, the claimed inequality holds.
3. (a) For $F, G \in B V$, recall from lecture that $T_{F+G} \leq T_{F}+T_{G}$. Using this and the triangle inequality for \mathbb{C} one has

$$
\|F+G\|_{B V}=|F(0)+G(0)|+T_{F+G}(\infty) \leq|F(0)|+|G(0)|+T_{F}(\infty)+T_{G}(\infty) \leq\|F\|_{B V}+\|G\|_{B V}
$$

Next for $\alpha \in \mathbb{C}$ we observe that for any $-\infty<x_{0}<x_{1}<\cdots<x_{n}$ one has

$$
\sum_{j=1}^{n}\left|\alpha F\left(x_{j}\right)-\alpha F\left(x_{j-1}\right)\right|=|\alpha| \sum_{j=1}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right|
$$

It follows that $T_{\alpha F}=|\alpha| T_{F}$ and hence

$$
\|\alpha F\|_{B V}=|\alpha F(0)|+T_{\alpha F}(\infty)=|\alpha|\left(|F(0)|+T_{F}(\infty)\right)=|\alpha|\|F\|_{B V}
$$

Finally, if $F=0$ then $\|F\|_{B V}=0$ is clear, and on the other hand $\|F\|_{B V}=0$ implies $F(0)=0$ and $T_{F}(\infty)=0$. Since T_{F} is increasing it must be that $T_{F} \equiv 0$ and therefore F is constant. But then $F(0)=0$ yields $F \equiv 0$. Thus $\|\cdot\|_{B V}$ is norm on $B V$.
(b) Suppose $\left(F_{n}\right)_{n \in \mathbb{N}} \subset B V$ is Cauchy with respect to this norm. For any $x \in \mathbb{R}$, one has

$$
\begin{aligned}
\left|\left(F_{n}-F_{m}\right)(x)\right| & \leq\left|\left(F_{n}-F_{m}\right)(0)\right|+\left|\left(F_{n}-F_{m}\right)(x)-\left(F_{n}-F_{m}\right)(0)\right| \\
& \leq\left|\left(F_{n}-F_{m}\right)(0)\right|+T_{F_{n}-F_{m}}(\infty)=\left\|F_{n}-F_{m}\right\|_{B V}
\end{aligned}
$$

Consequently, $\left(F_{n}(x)\right)_{n \in \mathbb{N}} \subset \mathbb{C}$ is a Cauchy sequence so that we may define

$$
F(x):=\lim _{n \rightarrow \infty} F_{n}(x)
$$

for each $x \in \mathbb{R}$. Let $\epsilon>0$ and let $N \in \mathbb{N}$ be large enough so that $\left\|F_{n}-F_{m}\right\|_{B V}<\epsilon$ for all $n, m \geq N$. We claim that $\left\|F-F_{n}\right\|_{B V} \leq 2 \epsilon$ for all $n \in \mathbb{N}$, which we also note implies $F \in B V$ since $T_{F}(\infty) \leq\|F\|_{B V} \leq\left\|F-F_{n}\right\|_{B V}+\left\|F_{n}\right\|_{B V}<\infty$. For $-\infty<x_{0}<x_{1}<\cdots<x_{d}<\infty$, the definition of F allows us to find $m \in \mathbb{N}$ large enough so that

$$
\left|\left(F-F_{m}\right)\left(x_{j}\right)-\left(F-F_{m}\right)\left(x_{j-1}\right)\right| \leq\left|F\left(x_{j}\right)-F_{m}\left(x_{j}\right)\right|+\left|F\left(x_{j-1}\right)-F_{m}\left(x_{j-1}\right)\right|<\frac{\epsilon}{d+1}
$$

Increasing m if necessary, we can also ensure $\left|\left(F-F_{m}\right)(0)\right|<\frac{\epsilon}{d+1}$ and $m \geq N$. For $n \geq N$, one then has

$$
\begin{aligned}
\left|\left(F-F_{n}\right)(0)\right|+ & \sum_{j=1}^{d}\left|\left(F-F_{n}\right)\left(x_{j}\right)-\left(F-F_{n}\right)\left(x_{j-1}\right)\right| \\
\leq & \left|\left(F-F_{m}\right)(0)\right|+\sum_{j=1}^{d}\left|\left(F-F_{m}\right)\left(x_{j}\right)-\left(F-F_{m}\right)\left(x_{j-1}\right)\right| \\
& +\left|\left(F_{m}-F_{n}\right)(0)\right|+\sum_{j=1}^{d}\left|\left(F_{m}-F_{n}\right)\left(x_{j}\right)-\left(F_{m}-F_{n}\right)\left(x_{j-1}\right)\right| \\
\leq & \frac{\epsilon}{d+1}+\sum_{j=1}^{d} \frac{\epsilon}{d+1}+\left\|F_{m}-F_{n}\right\|_{B V}<2 \epsilon
\end{aligned}
$$

Taking the supremum over all $-\infty<x_{0}<x_{1}<\cdots<x_{d}<\infty$ then yields $\left\|F-F_{n}\right\|_{B V} \leq 2 \epsilon$.
(c) This follows from $\left|F(0)-F\left(x_{0}\right)\right| \leq T_{F}\left(\max \left\{0, x_{0}\right\}\right) \leq T_{F}(\infty)$. Indeed, one then has

$$
\left|F\left(x_{0}\right)\right|+T_{F}(\infty) \leq|F(0)|+\left|F\left(x_{0}\right)-F(0)\right|+T_{F}(\infty) \leq|F(0)|+2 T_{F}(\infty) \leq 2\|F\|_{B V}
$$

The other inequality is similar.
4. Since F and G are in particular continuous on the compact set $[a, b]$, we have

$$
R:=\sup _{a \leq t \leq b}|F(t)|<\infty \quad \text { and } \quad r:=\inf _{a \leq t \leq b}|G(t)|=\min _{a \leq t \leq b}|G(t)|>0
$$

Given $\epsilon>0$ let $\delta_{F}>0$ be as in the definition of absolute continuity for F corresponding to $\frac{r \epsilon}{2}$, and let $\delta_{G}>0$ be as in the definition of absolute continuity for G corresponding to $\frac{r^{2} \epsilon}{2 R}$. Set $\delta:=\min \left\{\delta_{F}, \delta_{G}\right\}$. Then if $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \subset \mathbb{R}$ are disjoint intervals satisfying

$$
\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)<\delta
$$

then one has

$$
\begin{aligned}
\sum_{j=1}^{n}\left|\frac{F\left(b_{j}\right)}{G\left(b_{j}\right)}-\frac{F\left(a_{j}\right)}{G\left(a_{j}\right)}\right| & \leq \sum_{j=1}^{n}\left|\frac{F\left(b_{j}\right)-F\left(a_{j}\right)}{G\left(b_{j}\right)}\right|+\left|F\left(a_{j}\right) \frac{G\left(a_{j}\right)-G\left(b_{j}\right)}{G\left(b_{j}\right) G\left(a_{j}\right)}\right| \\
& \leq \frac{1}{r} \sum_{j=1}^{n}\left|F\left(b_{j}\right)-F\left(a_{j}\right)\right|+\frac{R}{r^{2}} \sum_{j=1}^{n}\left|G\left(b_{j}\right)-G\left(a_{j}\right)\right|<\frac{1}{r} \frac{r \epsilon}{2}+\frac{R}{r^{2}} \frac{r^{2} \epsilon}{2 R}=\epsilon
\end{aligned}
$$

Hence $\frac{F}{G}$ is absolutely continuous.
5. (a) First suppose $E=(x, y)$ is an interval. Then $G^{-1}(x, y)$ is open by the continuity of G and connected since G is increasing. Hence $G^{-1}(x, y)=(s, t)$ for some $s, t \in[a, b]$. These properties of G also imply

$$
\begin{aligned}
& G(s)=\inf _{r>s} G(r) \geq x \\
& G(t)=\sup _{r<t} G(t) \leq y
\end{aligned}
$$

If these inequalities were strict then $G((s, t))$ would be a strict subinterval of (x, y), contradicting the surjectivity of G. Hence $G(s)=x$ and $G(t)=y$, and therefore

$$
\mu_{G}\left(G^{-1}(x, y)\right)=\mu_{G}((s, t))=G(t)-G(s)=y-x=m((x, y))
$$

It follows that $m(U)=\mu_{G}\left(G^{-1}(U)\right)$ for any open $U \subset[c, d]$, since we can write U as a disjoint union of countably many open intervals. Next, if $V \subset[c, d]$ is closed, then $U:=[c, d] \backslash V$ is open and

$$
[a, b] \backslash G^{-1}(U)=G^{-1}(V)
$$

Thus

$$
m(V)=d-c-m(U)=G(b)-G(a)-\mu_{G}\left(G^{-1}(U)\right)=\mu_{G}\left([a, b] \backslash G^{-1}(U)\right)=\mu_{G}\left(G^{-1}(V)\right)
$$

Now, for a Borel set $E \subset[c, d]$ and $\epsilon>0$ the regularity of m allows us to find $K \subset E$ compact and $U \supset E$ open so that $m u(U)-\epsilon \leq m(E) \leq m(K)+\epsilon$. Since $G^{-1}(K) \subset G^{-1}(E) \subset G^{-1}(U)$ and K is in particular closed, we have

$$
\mu_{G}\left(G^{-1}(E)\right) \leq \mu_{G}\left(G^{-1}(U)\right)=m(U) \leq m(E)+\epsilon
$$

and

$$
\mu_{G}\left(G^{-1}(E)\right) \geq \mu_{G}\left(G^{-1}(K)\right)=m(K) \geq m(E)-\epsilon
$$

Letting $\epsilon \rightarrow 0$ yields $\mu_{G}\left(G^{-1}(E)\right)=m(E)$.
(b) First suppose f is a simple function with standard representation $\sum_{j=1}^{n} \alpha_{n} 1_{E_{j}}$. Then by part (a) we have

$$
\int_{[c, d]} f d m=\sum_{j=1}^{n} \alpha_{j} m\left(E_{j}\right)=\sum_{j=1}^{n} \alpha_{j} \mu_{G}\left(G^{-1}\left(E_{j}\right)\right)=\int_{[c, d]} \sum_{j=1}^{n} \alpha_{j} 1_{G^{-1}\left(E_{j}\right)} d \mu_{G}
$$

Note that $1_{E_{j}} \circ G(x)=1$ iff $G(x) \in E_{j}$ iff $x \in G^{-1}\left(E_{j}\right)$ iff $1_{G^{-1}\left(E_{j}\right)}(x)=1$. Hence the integrand in the above integral is actually $f \circ G$. For general f, we can approximate it pointwise by simple functions dominated by $|f|$ and use the dominated convergence theorem.
(c) Absolute continuity of G implies $\mu_{G} \ll m$, and we have seen in lecture that in this case $\frac{d \mu_{G}}{d m}=G^{\prime}$ m-almost everywhere. Hence we have

$$
\int_{[a, b]}(f \circ G) G^{\prime} d m=\int_{[a, b]}(f \circ G) \frac{d \mu_{G}}{d m} d m=\int_{[a, b]} f \circ G d \mu_{G}
$$

6. (a) (\Longrightarrow) : Suppose F is convex. We first consider the case when $t^{\prime}=t$ and $s \leq s^{\prime}<t$. Then $\lambda:=\frac{t-s^{\prime}}{t-s} \in(0,1)$ and

$$
\lambda s+(1-\lambda) t=\lambda(s-t)+t=s^{\prime}-t+t=s^{\prime}
$$

Thus by convexity we have

$$
\frac{F(t)-F\left(s^{\prime}\right)}{t-s^{\prime}}=\frac{F(t)-F(\lambda s+(1-\lambda) t)}{\lambda(t-s)} \geq \frac{F(t)-\lambda F(s)-(1-\lambda) F(t)}{\lambda(t-s)}=\frac{F(t)-F(s)}{t-s}
$$

Next we consider the case when $s=s^{\prime}$ and $s^{\prime}<t \leq t^{\prime}$. Then $\lambda:=\frac{t-s^{\prime}}{t^{\prime}-s^{\prime}} \in(0,1)$ and

$$
\lambda t^{\prime}+(1-\lambda) s^{\prime}=\lambda\left(t^{\prime}-s^{\prime}\right)+s^{\prime}=t-s^{\prime}+s^{\prime}=t
$$

Thus by convexity we have

$$
\frac{F(t)-F\left(s^{\prime}\right)}{t-s^{\prime}}=\frac{F\left(\lambda t^{\prime}+(1-\lambda) s^{\prime}\right)-F\left(s^{\prime}\right)}{\lambda\left(t^{\prime}-s^{\prime}\right)} \leq \frac{\lambda F\left(t^{\prime}\right)+(1-\lambda) F\left(s^{\prime}\right)-F\left(s^{\prime}\right)}{\lambda\left(t^{\prime}-s^{\prime}\right)}=\frac{F\left(t^{\prime}\right)-F\left(s^{\prime}\right)}{t^{\prime}-s^{\prime}}
$$

For the general case we combine these two special cases to get:

$$
\frac{F(t)-F(s)}{t-s} \leq \frac{F\left(t^{\prime}\right)-F(s)}{t^{\prime}-s} \leq \frac{F\left(t^{\prime}\right)-F\left(s^{\prime}\right)}{t^{\prime}-s^{\prime}}
$$

(\Longleftarrow) : Given $\lambda \in(0,1)$ let $s^{\prime}:=\lambda s+(1-\lambda) t$. Then $s<s^{\prime}<t$ and

$$
\frac{t-s^{\prime}}{t-s}=\frac{t-\lambda s-(1-\lambda) t}{t-s}=\lambda
$$

The assumed property therefore implies

$$
\begin{aligned}
F(\lambda s+(1-\lambda) t) & =-\left[F(t)-F\left(s^{\prime}\right)\right]+F(t)=-\left(t-s^{\prime}\right) \frac{F(t)-F\left(s^{\prime}\right)}{t-s^{\prime}}+F(t) \\
& \leq-\left(t-s^{\prime}\right) \frac{F(t)-F(s)}{t-s}+F(t)=-\lambda(F(t)-F(s))+F(t)=\lambda F(s)+(1-\lambda) F(t)
\end{aligned}
$$

Hence F is convex.
(b) (\Longrightarrow) : Suppose F is convex. Fix a compact subinterval $[c, d] \subset(a, b)$ (i.e. just a bounded closed interval), and let $\rho>0$ be such that $[c-\rho, d+\rho] \subset(a, b)$. For $c \leq s<t \leq d$, part (a) implies

$$
\frac{F(c)-F(c-\rho)}{\rho} \leq \frac{F(t)-F(s)}{t-s} \leq \frac{F(d+\rho)-F(d)}{\rho}
$$

Thus for

$$
M:=\rho^{-1} \max \{|F(c)-F(c-\rho)|, \mid F(d+\rho)-F(d)\}
$$

we have $|F(t)-F(s)| \leq M|t-s|$ and so F is absolutely continuous by letting $\delta:=\frac{\epsilon}{M}$ for any $\epsilon>0$. Moreover, if $F^{\prime}(s)$ and $F^{\prime}(t)$ exist then for $\epsilon>0$ let $s^{\prime}<t$ and $t^{\prime}>s$ be such that

$$
\begin{aligned}
& \left|\frac{F(s)-F\left(s^{\prime}\right)}{s-s^{\prime}}-F^{\prime}(s)\right|<\epsilon \\
& \left|\frac{F(t)-F\left(t^{\prime}\right)}{t-t^{\prime}}-F^{\prime}(t)\right|<\epsilon
\end{aligned}
$$

Then using part (a) again we have

$$
F^{\prime}(s)<\frac{F(s)-F\left(s^{\prime}\right)}{s-s^{\prime}}+\epsilon \leq \frac{F(t)-F\left(t^{\prime}\right)}{t-t^{\prime}}+\epsilon<F^{\prime}(t)+2 \epsilon
$$

Hence $F^{\prime}(s) \leq F^{\prime}(t)$ and F^{\prime} is increasing.
(\Longleftarrow) : Let $s, s^{\prime}, t, t^{\prime} \in(a, b)$ satisfy $s \leq s^{\prime}<t$ and $s^{\prime}<t \leq t^{\prime}$. By assumption F is absolutely continuous on the compact subinterval $\left[s, t^{\prime}\right] \subset(a, b)$, and hence $F^{\prime} \in L^{1}\left(\left[s, t^{\prime}\right], d m\right)$ by the fundamental theorem of calculus for Lebesgue integrals (Theorem 3.35 from lecture). Consider $G:[s, t] \rightarrow\left[s^{\prime}, t^{\prime}\right]$ defined by

$$
G(x)=\frac{t^{\prime}-s^{\prime}}{t-s}(x-s)+s^{\prime}
$$

which is continuous, increasing (since $\frac{t^{\prime}-s^{\prime}}{t-s}>0$), and a surjection. In fact, G is absolutely continuous on $[s, t]$ (since $\left|G^{\prime}(x)\right|=\frac{t^{\prime}-s^{\prime}}{t-s}$ is uniformly bounded) and so by Exercise 5 .(c) we have

$$
\int_{\left[s^{\prime}, t^{\prime}\right]} F^{\prime} d m=\int_{[s, t]}\left(F^{\prime} \circ G\right) G^{\prime} d m=\int_{[s, t]} F^{\prime}\left(\frac{t^{\prime}-s^{\prime}}{t-s}(x-s)+s^{\prime}\right) \frac{t^{\prime}-s^{\prime}}{t-s} d m(x)
$$

Using this and the formula from Theorem 3.35 we have

$$
\frac{F\left(t^{\prime}\right)-F\left(s^{\prime}\right)}{t^{\prime}-s^{\prime}}=\frac{1}{t^{\prime}-s^{\prime}} \int_{\left[s^{\prime}, t^{\prime}\right]} F^{\prime} d m=\frac{1}{t-s} \int_{[s, t]} F^{\prime}\left(\frac{t^{\prime}-s^{\prime}}{t-s}(x-s)+s^{\prime}\right) d m(x)
$$

Now, we claim that $\frac{t^{\prime}-s^{\prime}}{t-s}(x-s)+s^{\prime} \geq x$ holds on $[s, t]$. Indeed, at $x=s$ it reduces to $s^{\prime} \geq s$ and at $x=t$ it reduces to $t^{\prime} \geq t$. Thus the inequality holds on $[s, t]$ since both sides are linear. Therefore we can continue the above computation using the fact that F^{\prime} is increasing:

$$
\frac{F\left(t^{\prime}\right)-F\left(s^{\prime}\right)}{t^{\prime}-s^{\prime}} \geq \frac{1}{t-s} \int_{[s, t]} F^{\prime}(x) d m(x)=\frac{F(t)-F(s)}{t-s}
$$

where the last equality follows from Theorem 3.35 again. So by part (a), we have that F is convex.
(c) By part (b), F^{\prime} exists almost everywhere on (a, b) and is increasing where it is defined, so we can choose $\beta \in \mathbb{R}$ satisfying

$$
\sup \left\{F^{\prime}(s): s \leq t_{0}\right\} \leq \beta \leq \inf \left\{F^{\prime}(t): t \geq t_{0}\right\}
$$

Now, for $t=t_{0}$ the inequality is immediate. For $t>t_{0}$, using Theorem 3.35 we have

$$
F(t)-F\left(t_{0}\right)=\int_{\left[t_{0}, t\right]} F^{\prime} d m \geq \int_{\left[t_{0}, t\right]} \beta d m=\beta\left(t-t_{0}\right)
$$

For $t<t_{0}$ we have

$$
F\left(t_{0}\right)-F(t)=\int_{\left[t, t_{0}\right]} F^{\prime} d m \leq \int_{\left[t, t_{0}\right]} \beta d m=\beta\left(t_{0}-t_{0}\right)
$$

and multiplying by negative one yields $F(t)-F\left(t_{0}\right) \geq \beta\left(t-t_{0}\right)$.
(d) Following the hint we set $t_{0}:=\int g d \mu$ and let β be as in part (c). Then for $t=g(x)$ we have

$$
F \circ g(x)-F\left(\int_{X} g d \mu\right) \geq \beta\left(g(x)-\int_{X} g d \mu\right)
$$

Integrating with respect to x (and using $\mu(X)=1$ so that $\int_{X} c d \mu=c$ for a constant $c \in \mathbb{C}$) yields

$$
\int_{X} F \circ g d \mu-F\left(\int_{X} g d \mu\right) \geq \beta\left(\int_{X} g d \mu-\int_{X} g d \mu\right)=0
$$

[^0]: ${ }^{1}$ Not collected

