Exercises:

§19, 20

1. Let $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{\in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ with $a_{n}>0$ for all $n \in \mathbb{N}$. Define a map $h: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ by

$$
h\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\left(a_{n} x_{n}+b_{n}\right)_{n \in \mathbb{N}} .
$$

(a) Show that h is a bijection.
(b) Show that if $\mathbb{R}^{\mathbb{N}}$ is given the product topology, then h is a homeomorphism.
(c) Prove whether or not h is a homeomorphism when $\mathbb{R}^{\mathbb{N}}$ is given the box topology.
2. For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, define

$$
d_{1}(\mathbf{x}, \mathbf{y}):=\sum_{j=1}^{n}\left|x_{j}-y_{j}\right| .
$$

(a) Show that d_{1} is a metric on \mathbb{R}^{n}.
(b) Show that the topology induced by d_{1} equals the product topology on \mathbb{R}^{n}.
(c) For $n=2$ and $\mathbf{0}=(0,0) \in \mathbb{R}^{2}$, draw a picture of $B_{d_{1}}(\mathbf{0}, 1)$.
3. Let X be a metric space with metric d. For $x \in X$ and $\epsilon>0$, show that $\{y \in X \mid d(x, y) \leq \epsilon\}$ is a closed set.
4. Let X be a metric space with metric d. Show that $d: X \times X \rightarrow \mathbb{R}$ is continuous.
5. For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$ define

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & :=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right), \\
c \mathbf{x} & :=\left(c x_{1}, \ldots, c x_{n}\right) \\
\mathbf{x} \cdot \mathbf{y} & :=x_{1} y_{1}+\cdots+x_{n} y_{n}, \\
\|\mathbf{x}\| & :=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} .
\end{aligned}
$$

(a) For $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$ and $a, b \in \mathbb{R}$, prove the following formulas

$$
\begin{aligned}
\|\mathbf{x}\|^{2} & =\mathbf{x} \cdot \mathbf{x} \\
(a \mathbf{x}) \cdot(b \mathbf{y}) & =(a b)(\mathbf{x} \cdot \mathbf{y}) \\
\mathbf{x} \cdot \mathbf{y} & =\mathbf{y} \cdot \mathbf{x} \\
\mathbf{x} \cdot(\mathbf{y}+\mathbf{z}) & =\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{z}
\end{aligned}
$$

(b) Show that $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$. [Hint: for $\mathbf{x}, \mathbf{y} \neq 0$ let $a=\frac{1}{\|\mathbf{x}\|}$ and $b=\frac{1}{\|\mathbf{y}\|}$ and use the fact that $\|a \mathbf{x} \pm b \mathbf{y}\|^{2} \geq 0$.]
(c) Show that $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.
(d) Prove that the euclidean metric $d(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\|$ is indeed a metric.
6^{*}. For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $1 \leq p<\infty$, define

$$
\|\mathbf{x}\|_{p}:=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p},
$$

and for $p=\infty$ define

$$
\|\mathbf{x}\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\} .
$$

In this exercise you will show $d_{p}(\mathbf{x}, \mathbf{y}):=\|\mathbf{x}-\mathbf{y}\|_{p}$ defines a metric for each $1 \leq p \leq \infty$. Observe that $p=1,2, \infty$ yield the metric from Exercise 2, the euclidean metric, and the square metric, respectively.
(a) For $1<p<\infty$, show that if $q>0$ satisfies $\frac{1}{p}+\frac{1}{q}=1$ then $1<q<\infty$. We call q the conjugate exponent to p.
(b) For $a, b \geq 0$ and $0<\lambda<1$, show that $a^{\lambda} b^{1-\lambda} \leq \lambda a+(1-\lambda) b$.
(c) Prove Hölder's Inequality: for $1<p<\infty$ with conjugate exponent q and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ show that

$$
\left|x_{1} y_{1}\right|+\cdots+\left|x_{n} y_{n}\right| \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q} .
$$

(d) Prove Minkowski's Inequality: for $1<p<\infty$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ show that

$$
\|\mathbf{x}+\mathbf{y}\|_{p} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}
$$

[Hint: use $\left.\left|x_{j}+y_{j}\right|^{p} \leq\left(\left|x_{j}\right|+\left|y_{j}\right|\right)\left|x_{j}+y_{j}\right|^{p-1}.\right]$
(e) Show that d_{p} is a metric for $1<p<\infty$.
(f) Show that the topology induced by d_{p} equals the product topology on \mathbb{R}^{n} for $1<p<\infty$, where \mathbb{R} has the standard topology. [Hint: show that $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{p} \leq\|\mathbf{x}\|_{1}$.]

Solutions:

1. (a) Define $g: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ by

$$
g\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\left(\frac{1}{a_{n}} x_{n}-\frac{b_{n}}{a_{n}}\right)_{n \in N}
$$

which is well-defined since $a_{n}>0$. Observe that

$$
a_{n}\left(\frac{1}{a_{n}} x_{n}-\frac{b_{n}}{a_{n}}\right)+b_{n}=x_{n}-b_{n}+b_{n}=x_{n}
$$

and

$$
\frac{1}{a_{n}}\left(a_{n} x_{n}+b_{n}\right)-\frac{b_{n}}{a_{n}}=x_{n}+\frac{b_{n}}{a_{n}}-\frac{b_{n}}{a_{n}}=x_{n}
$$

Thus $g \circ h\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=h \circ g\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$. Thus $g=h^{-1}$ and in particular h is a bijection.
(b) Let $\prod_{n \in \mathbb{N}} U_{n}$ be a basis set for the product topology: $U_{n} \subset \mathbb{R}$ is open for all $n \in \mathbb{N}$ and $U_{n}=\mathbb{R}$ for all but finitely many $n \in \mathbb{N}$. Then

$$
g^{-1}\left(\prod_{n \in \mathbb{N}} U_{n}\right)=h\left(\prod_{n \in \mathbb{N}} U_{n}\right)=\prod_{n \in \mathbb{N}} V_{n}
$$

where

$$
V_{n}:=\left\{a_{n} x+b_{n} \mid x \in U_{n}\right\}
$$

We claim that V_{n} is open in \mathbb{R}. Indeed, given for $y=a_{n} x+b_{n} \in V_{n}$, there exists $\epsilon>0$ so that $(x-\epsilon, x+\epsilon) \subset U_{n}$ since U_{n} is open. We claim that

$$
\left(y-a_{n} \epsilon, y+a_{n} \epsilon\right) \subset V_{n}
$$

which implies V_{n} is open. Indeed, for z in the above interval we have

$$
\left|\left(\frac{1}{a_{n}} z-\frac{b_{n}}{a_{n}}\right)-x\right|=\left|\left(\frac{1}{a_{n}} z-\frac{b_{n}}{a_{n}}\right)-\left(\frac{1}{a_{n}} y-\frac{b_{n}}{a_{n}}\right)\right|=\frac{1}{a_{n}}|z-y|<\frac{1}{a_{n}} a_{n} \epsilon=\epsilon .
$$

Thus $\frac{1}{a_{n}} z-\frac{b_{n}}{a_{n}} \in U_{n}$ and therefore $V_{n} \ni a_{n}\left(\frac{1}{a_{n}} z-\frac{b_{n}}{a_{n}}\right)+b_{n}=z$. We also note that if $U_{n}=\mathbb{R}$, then $V_{n}=\mathbb{R}$ since for any $y \in \mathbb{R}$ we have $y=a_{n}\left(\frac{1}{a_{n}} y-\frac{b_{n}}{a_{n}}\right)+b_{n}$. Thus $\prod_{n \in \mathbb{N}} V_{n}$ is open in the product topology and therefore g is continuous. The same argument where a_{n} and b_{n} are swapped with $\frac{1}{a_{n}}$ and $-\frac{b_{n}}{a_{n}}$ shows that h is continuous. Thus h is a homeomorphism.
(c) When $\mathbb{R}^{\mathbb{N}}$ has the box topology h is still a homeomorphism. The exact same proof as in the previous part works with U_{n} no longer required to be equal to \mathbb{R} for all but finitely many $n \in \mathbb{N}$.
2. (a) Clearly $d_{1}(\mathbf{x}, \mathbf{y}) \geq 0$, and if we have equality then since each $\left|x_{j}-y_{j}\right|$ is non-negative this must mean we have $\left|x_{j}-y_{j}\right|=0$ for each $j=1, \ldots, n$ and therefore $x_{j}=y_{j}$. Hence $\mathbf{x}=\mathbf{y}$. The symmetry $d_{1}(\mathbf{x}, \mathbf{y})=d_{1}(\mathbf{y}, \mathbf{x})$ follows from $\left|x_{j}-y_{j}\right|=\left|-\left(x_{j}-y_{j}\right)\right|=\left|-x_{j}+y_{j}\right|=\left|y_{j}-x_{j}\right|$. Finally, for the triangle inequality we have

$$
d_{1}(\mathbf{x}, \mathbf{z})=\sum_{j=1}^{n}\left|x_{j}-z_{j}\right|=\sum_{j=1}^{n}\left|x_{j}-y_{j}+y_{j}-z_{j}\right| \leq \sum_{j=1}^{n}\left|x_{j}-y_{j}\right|+\left|y_{j}-z_{j}\right|=d_{1}(\mathbf{x}, \mathbf{y})+d_{1}(\mathbf{y}, \mathbf{z})
$$

Thus d_{1} is a metric on \mathbb{R}^{n}.
(b) Let $U:=\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right)$ be a product of open intervals, which is a basis set for the product topology. For $\mathbf{x} \in U$, define

$$
\epsilon:=\min \left\{x_{1}-a_{1}, b_{1}-x_{1}, \ldots, x_{n}-a_{n}, b_{n}-x_{n}\right\}>0
$$

Observe that

$$
V:=\left(x_{1}-\epsilon, x_{1}+\epsilon\right) \times \cdots\left(x_{n}-\epsilon, x_{n}+\epsilon\right) \subset U .
$$

We claim that $B_{d_{1}}(\mathbf{x}, \epsilon) \subset \subset U$. Indeed, for $y \in B_{d_{1}}(\mathbf{x}, \epsilon)$ we have for each $j=1, \ldots, n$ that

$$
\left|x_{j}-y_{j}\right| \leq \sum_{j=1}^{n}\left|x_{j}-y_{j}\right|<\epsilon
$$

Thus $y_{j} \in\left(x_{j}-\epsilon, x_{j}+\epsilon\right)$, so that $\mathbf{y} \in V \subset U$. Since these ϵ-balls form a basis for the topology induced by d_{1}, we see by a lemma from $\S 13$ that this topology is finer than the product topology. Conversely, given $\epsilon>0$ and $\mathbf{x} \in \mathbb{R}^{n}$ we have

$$
\left(x_{1}-\frac{\epsilon}{n}, x_{1}+\frac{\epsilon}{n}\right) \times \cdots\left(x_{n}-\frac{\epsilon}{n}, x_{n}+\frac{\epsilon}{n}\right) \subset B_{d_{1}}(\mathbf{x}, \epsilon) .
$$

Indeed, for \mathbf{y} in the former set we have

$$
d_{1}(\mathbf{x}, \mathbf{y})=\sum_{j=1}^{n}\left|x_{j}-y_{j}\right|<\sum_{j=1}^{n} \frac{\epsilon}{n}=\epsilon
$$

Thus $\mathbf{y} \in B_{d_{1}}(\mathbf{x}, \epsilon)$. By the same lemma in $\S 13$, we see that the product topology is finer than the topology induced by d_{1}, and so these topologies are in fact equal.
(c) $B_{d_{1}}(\mathbf{0}, 1)$:

3. Denote $C:=\{y \in X \mid d(x, y) \leq \epsilon\}$. If $y \notin C$, then necessarily $d(x, y)>\epsilon$. Set $\delta:=d(x, y)-\epsilon>0$. We claim that $B_{d}(y, \delta) \subset X \backslash C$. Indeed, suppose, towards a contradiction, that $z \in B_{d}(y, \delta) \cap C$. Then using the triangle inequality we have

$$
d(x, y) \leq d(x, z)+d(z, y)<\epsilon+\delta=\epsilon+d(x, y)-\epsilon=d(x, y)
$$

a contradiction. Thus $B_{d}(y, \delta) \cap C=\emptyset$ and therefore $B_{d}(y, \delta) \subset X \backslash C$. Since $y \in X \backslash C$ was arbitrary, we see that $X \backslash C$ is open and therefore C is closed.
4. Let $(a, b) \subset \mathbb{R}$ be an open interval. Then

$$
d^{-1}((a, b))=\{(x, y) \in X \times X \mid a<d(x, y)<b\}
$$

Fix $\left(x_{0}, y_{0}\right) \in d^{-1}((a, b))$, and set $\epsilon:=\min \left\{d\left(x_{0}, y_{0}\right)-a, b-d\left(x_{0}, y_{0}\right)\right\}>0$. Note that $U:=B_{d}\left(x_{0}, \frac{\epsilon}{2}\right) \times$ $B_{d}\left(y_{0}, \frac{\epsilon}{2}\right)$ is a neighborhood of $\left(x_{0}, y_{0}\right)$ in the product topology, and we further claim that it is contained in $d^{-1}((a, b))$. Indeed, if $(x, y) \in U$ then we have $d\left(x, x_{0}\right)<\frac{\epsilon}{2}$ and $d\left(y, y_{0}\right)<\frac{\epsilon}{2}$ and consequently by applying the triangle inequality twice we have

$$
\begin{aligned}
d(x, y) & \leq d\left(x, x_{0}\right)+d\left(x_{0}, y_{0}\right)+d\left(y_{0}, y\right)<\frac{\epsilon}{2}+d\left(x_{0}, y_{0}\right)+\frac{\epsilon}{2} \\
& =\epsilon+d\left(x_{0}, y_{0}\right) \leq\left(b-d\left(x_{0}, y_{0}\right)\right)+d\left(x_{0}, y_{0}\right)=b
\end{aligned}
$$

Thus $d(x, y)<b$. Next, note that $d\left(x_{0}, y\right) \leq d\left(x_{0}, x\right)+d(x, y)$ implies $d(x, y) \geq d\left(x_{0}, y\right)-d\left(x_{0}, x\right)$, and $d\left(x_{0}, y_{0}\right) \leq d\left(x_{0}, y\right)+d\left(y, y_{0}\right)$ implies $d\left(x_{0}, y\right) \geq d\left(x_{0}, y_{0}\right)-d\left(y_{0}, y\right)$. Thus we have

$$
\begin{aligned}
d(x, y) & \geq d\left(x_{0}, y\right)-d\left(x_{0}, x\right) \geq d\left(x_{0}, y_{0}\right)-d\left(y_{0}, y\right)-d\left(x_{0}, x\right) \\
& >d\left(x_{0}, y_{0}\right)-\frac{\epsilon}{2}-\frac{\epsilon}{2}=d\left(x_{0}, y_{0}\right)-\epsilon \geq d\left(x_{0}, y_{0}\right)-\left(d\left(x_{0}, y_{0}\right)-a\right)=a .
\end{aligned}
$$

So $d(x, y)>a$ and therefore $(x, y) \in d^{-1}((a, b))$. Since $(x, y) \in U$ was arbitrary, we see that $U \subset$ $d^{-1}((a, b))$. We have shown that a point $\left(x_{0}, y_{0}\right) \in d^{-1}((a, b))$ admits a neighborhood contained inside this preimage, and hence the preimage is open as the union of these neighborhoods. Since the open intervals form a basis for the standard topology on \mathbb{R}, we obtain that d is continuous.
5. (a) We have

$$
\|\mathbf{x}\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}=x_{1} x_{1}+\cdots+x_{n} x_{n}=\mathbf{x} \cdot \mathbf{x}
$$

Also

$$
(a \mathbf{x}) \cdot(b \mathbf{y})=\left(a x_{1}\right)\left(b y_{1}\right)+\cdots+\left(a x_{n}\right)\left(b y_{n}\right)=(a b)\left(x_{1} y_{1}+\cdots+x_{n} y_{n}\right)=(a b)(\mathbf{x} \cdot \mathbf{y})
$$

(b) We compute

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+\cdots+x_{n} y_{n}=y_{1} x_{1}+\cdots+y_{n} x_{n}=\mathbf{y} \cdot \mathbf{x}
$$

Also
$\mathbf{x} \cdot(\mathbf{y}+\mathbf{z})=x_{1}\left(y_{1}+z_{1}\right)+\cdots+x_{n}\left(y_{n}+z_{n}\right)=\left(x_{1} y_{1}+\cdots x_{n} y_{n}\right)+\left(x_{1} z_{1}+\cdots x_{n} z_{n}\right)=\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{z}$.
(c) If either $\|\mathbf{x}\|=0$ or $\|\mathbf{y}\|=0$, then all entries of this n-tuple are zero and thus the inequality reduces to $0 \leq 0$. So we may assume both $\|\mathbf{x}\|$ and $\|\mathbf{y}\|$ are non-zero and let $a=\frac{1}{\|\mathbf{x}\|}$ and $b=\frac{1}{\|\mathbf{y}\|}$. Then expanding and using the previous parts yields

$$
\begin{aligned}
0 & \leq\|a \mathbf{x} \pm b \mathbf{y}\|^{2}=(a \mathbf{x} \pm b \mathbf{y}) \cdot(a \mathbf{x} \pm b \mathbf{y})=(a \mathbf{x}) \cdot(a \mathbf{x}) \pm(a \mathbf{x}) \cdot(b \mathbf{y}) \pm(b \mathbf{y}) \cdot(a \mathbf{x})+(b \mathbf{y}) \cdot(b \mathbf{y}) \\
& =a^{2}\|\mathbf{x}\|^{2} \pm(a b)(\mathbf{x} \cdot \mathbf{y}) \pm(b a)(\mathbf{y} \cdot \mathbf{x})+b^{2}\|\mathbf{y}\|^{2}=1 \pm 2(a b)(\mathbf{x} \cdot \mathbf{y})+1=2 \pm 2(a b)(\mathbf{x} \cdot \mathbf{y})
\end{aligned}
$$

This is equivalent to $\pm a b(\mathbf{x} \cdot \mathbf{y}) \leq 1$. Multiplying both sides by $\|\mathbf{x}\|\|\mathbf{y}\|$ shows this is further equivalent to $\pm \mathbf{x} \cdot \mathbf{y} \leq\|\mathbf{x}\|\|\mathbf{y}\|$. Hence $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
(d) Using the previous parts we compute

$$
\begin{aligned}
\|\mathbf{x}+\mathbf{y}\|^{2} & =(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathbf{y})=\mathbf{x} \cdot \mathbf{x}+\mathbf{x} \cdot \mathbf{y}+\mathbf{y} \cdot \mathbf{x}+\mathbf{y} \cdot \mathbf{y} \\
& \leq\|\mathbf{x}\|^{2}+\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|\|\mathbf{x}\|+\|\mathbf{y}\|^{2}=(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}
\end{aligned}
$$

Taking square roots yields the desired inequality.
(e) We clearly have $d(\mathbf{x}, \mathbf{y}) \geq 0$, and equality implies

$$
0=d(\mathbf{x}, \mathbf{y})^{2}=\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2} .
$$

Since each term $\left(x_{j}-y_{j}\right)^{2}$ is non-negative, their summing to zero implies they are all zero. Hence $x_{j}=y_{j}$ and so $\mathbf{x}=\mathbf{y}$. The symmetry $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$ follows from $\left(x_{j}-y_{j}\right)^{2}=\left(-\left(x_{j}-y_{j}\right)\right)^{2}=$ $\left(-x_{j}+y_{j}\right)^{2}=\left(y_{j}-x_{j}\right)^{2}$. Finally, for the triangle inequality, using the previous part we have

$$
d(\mathbf{x}, \mathbf{z})=\|\mathbf{x}-\mathbf{z}\|=\|\mathbf{x}-\mathbf{y}+\mathbf{y}-\mathbf{x}\| \leq\|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}-\mathbf{z}\|=d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z}) .
$$

Hence d is a metric.
6. (a) Solving $\frac{1}{p}+\frac{1}{q}=1$ for q yields

$$
q=\frac{p}{p-1} .
$$

Since $p>p-1$, we have $q>1$. Since $p>1$, we have $q<\infty$.
(b) Note that $a=0$ or $b=0$ makes the inequality trivially true, so we assume $a, b>0$. Thus the desired inequality is equivalent to the one obtained by dividing both sides by b :

$$
a^{\lambda} b^{-\lambda} \leq \lambda a b^{-1}+1-\lambda .
$$

Denoting $t:=\frac{a}{b}$, this is equivalent to $t^{\lambda} \leq \lambda t+1-\lambda$. Note that $t>0$, and so it suffices to show $t^{\lambda}-\lambda t \leq 1-\lambda$ for all $t>0$. Set $f(t):=t^{\lambda}-\lambda t$ and observe that $f^{\prime}(t)=\lambda t^{\lambda-1}-\lambda$. Thus we have $f^{\prime}(t)=0$ if and only if $t=1$. Noting that $f^{\prime \prime}(t)=\lambda(\lambda-1) t^{\lambda-2}$ is negative for all $t>0$ (since $\lambda-1<0$), we see from the second derivative test that f achieves its maximum value at $t=1$ and that maximum value is $f(1)=1-\lambda$. Thus $f(t) \leq 1-\lambda$ for all $t>0$ as desired.
(c) Let $q=\frac{p}{p-1}$ be the conjugate exponent to p. Fix $1 \leq i \leq n$, and consider $a:=\frac{\left|x_{i}\right|^{p}}{\|\mathbf{x}\|_{p}^{p}}, b:=\frac{\left|y_{i}\right|^{q}}{\|\mathbf{y}\|_{q}^{q}}$, and $\lambda:=\frac{1}{p}$. Observe that

$$
1-\lambda=\frac{p-1}{p}=\frac{1}{q} .
$$

So using part (b) we have

$$
\begin{aligned}
\left|x_{i} y_{i}\right| & =\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}\left(\frac{\left|x_{i}\right|^{p}}{\|\mathbf{x}\|_{p}^{p}}\right)^{1 / p}\left(\frac{\left|y_{i}\right|^{q}}{\|\mathbf{y}\|_{q}^{q}}\right)^{1 / q}=\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q} a^{\lambda} b^{1-\lambda} \\
& \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}(\lambda a+(1-\lambda) b)=\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}\left(\frac{1}{p} \frac{\left|x_{i}\right|^{p}}{\|\mathbf{x}\|_{p}^{p}}+\frac{1}{q} \frac{\left|y_{i}\right|^{q}}{\|\mathbf{y}\|_{q}^{q}}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|x_{1} y_{1}\right|+\cdots+\left|x_{n} y_{n}\right| & \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}\left(\frac{1}{p} \frac{\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}}{\|\mathbf{x}\|_{p}^{p}}+\frac{1}{q} \frac{\left|y_{1}\right|^{q}+\cdots+\left|y_{n}\right|^{q}}{\|\mathbf{y}\|_{q}^{q}}\right) \\
& =\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}\left(\frac{1}{p} \frac{\|\mathbf{x}\|_{p}^{q}}{\|\mathbf{x}\|_{p}^{p}}+\frac{1}{q} \frac{\mathbf{y} \|_{q}^{q}}{\|\mathbf{y}\|_{q}^{q}}\right)=\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}\left(\frac{1}{p}+\frac{1}{q}\right)=\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q} .
\end{aligned}
$$

(d) Consider

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p}=\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}=\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|\left|x_{i}+y_{i}\right|^{p-1} \leq \sum_{i=1}^{n}\left|x_{i} \| x_{i}+y_{i}\right|^{p-1}+\sum_{i=1}^{n}\left|y_{i}\right|\left|x_{i}+y_{i}\right|^{p-1} .
$$

We apply part (c) to each sum in the last expression to obtain

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq\|\mathbf{x}\|_{p}\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{q(p-1)}\right)^{1 / q}+\|\mathbf{y}\|_{p}\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{q(p-1)}\right)^{1 / q}
$$

Using $q=\frac{p}{p-1}$, this becomes

$$
\|\mathbf{x}+\mathbf{y}\|_{p}^{p} \leq\left(\|\mathbf{x}\|_{p}+\|y\|_{p}\right)\|\mathbf{x}+\mathbf{y}\|_{p}^{p-1}
$$

Dividing both sides by $\|\mathbf{x}+\mathbf{y}\|_{p}^{p-1}$ (an noting that the inequality is trivially true when this is zero) yields the desired inequality.
(e) The positive, non-degeneracy, and symmetry of d_{p} are all clear, while the triangle inequality follows from the previous part:

$$
d_{p}(\mathbf{x}, \mathbf{z})=\|\mathbf{x}-\mathbf{z}\|_{p}=\|\mathbf{x}-\mathbf{y}+\mathbf{y}-\mathbf{z}\|_{p} \leq\|\mathbf{x}-\mathbf{y}\|_{p}+\|\mathbf{y}-\mathbf{z}\|_{p}=d_{p}(\mathbf{x}, \mathbf{y})+d_{p}(\mathbf{y}, \mathbf{z})
$$

(f) Observe that for each $i=1, \ldots, n$ we have

$$
\left|x_{i}\right|=\left(\left|x_{i}\right|^{p}\right)^{1 / p} \leq\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}=\|\mathbf{x}\|_{p}
$$

Hence

$$
\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \leq\|\mathbf{x}\|_{p}
$$

Thus $d_{\infty}(\mathbf{x}, \mathbf{y}) \leq d_{p}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and it follows that

$$
B_{d_{p}}(\mathbf{x}, \epsilon) \subset B_{d_{\infty}}(x, \epsilon)
$$

This shows the topology induced by d_{p} is finer than the topology induced by d_{∞}. Since d_{∞} is the square metric, we know from lecture that this induces the product topology on \mathbb{R}^{n}.
We next observe that $\|\mathbf{x}\|_{p} \leq \| \mathbf{x} _1$ follows from taking the p th power of each side:

$$
\left\|\mathbf{x}_{p}\right\|^{p}=\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p} \leq\left(\left|x_{1}\right|+\cdots+\left|x_{n}\right|\right)^{p} .
$$

Consequently, by the same argument as above we have that the topology induced by d_{1} is finer than the topology induced by d_{p}. From Exercise 2, we know that the former topology is nothing more than the product topology. Hence the topology induced by d_{p} is the product topology.

