
Math 461 Homework 7 Solutions 10/23/2020

Exercises:
§19, 20

1. Let (an)n∈N, (bn)∈N ∈ RN with an > 0 for all n ∈ N. Define a map h : RN → RN by

h((xn)n∈N) = (anxn + bn)n∈N.

(a) Show that h is a bijection.

(b) Show that if RN is given the product topology, then h is a homeomorphism.

(c) Prove whether or not h is a homeomorphism when RN is given the box topology.

2. For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Rn, define

d1(x,y) :=

n∑
j=1

|xj − yj |.

(a) Show that d1 is a metric on Rn.

(b) Show that the topology induced by d1 equals the product topology on Rn.

(c) For n = 2 and 0 = (0, 0) ∈ R2, draw a picture of Bd1(0, 1).

3. Let X be a metric space with metric d. For x ∈ X and ε > 0, show that {y ∈ X | d(x, y) ≤ ε} is a
closed set.

4. Let X be a metric space with metric d. Show that d : X ×X → R is continuous.

5. For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Rn and c ∈ R define

x + y := (x1 + y1, . . . , xn + yn),

cx := (cx1, . . . , cxn),

x · y := x1y1 + · · ·+ xnyn,

‖x‖ := (x21 + · · ·+ x2n)1/2.

(a) For x,y, z ∈ Rn and a, b ∈ R, prove the following formulas

‖x‖2 = x · x
(ax) · (by) = (ab)(x · y)

x · y = y · x
x · (y + z) = x · y + x · z

(b) Show that |x · y| ≤ ‖x‖‖y‖. [Hint: for x,y 6= 0 let a = 1
‖x‖ and b = 1

‖y‖ and use the fact that

‖ax± by‖2 ≥ 0.]

(c) Show that ‖x + y‖ ≤ ‖x‖+ ‖y‖.
(d) Prove that the euclidean metric d(x,y) := ‖x− y‖ is indeed a metric.

6*. For x = (x1, . . . , xn) ∈ Rn and 1 ≤ p <∞, define

‖x‖p := (|x1|p + · · ·+ |xn|p)1/p,

and for p =∞ define
‖x‖∞ := max{|x1|, . . . , |xn|}.

In this exercise you will show dp(x,y) := ‖x− y‖p defines a metric for each 1 ≤ p ≤ ∞. Observe that
p = 1, 2,∞ yield the metric from Exercise 2, the euclidean metric, and the square metric, respectively.

1 c©Brent Nelson 2020



Math 461 Homework 7 Solutions 10/23/2020

(a) For 1 < p <∞, show that if q > 0 satisfies 1
p + 1

q = 1 then 1 < q <∞. We call q the conjugate
exponent to p.

(b) For a, b ≥ 0 and 0 < λ < 1, show that aλb1−λ ≤ λa+ (1− λ)b.

(c) Prove Hölder’s Inequality: for 1 < p <∞ with conjugate exponent q and x,y ∈ Rn show that

|x1y1|+ · · ·+ |xnyn| ≤ ‖x‖p‖y‖q.

(d) Prove Minkowski’s Inequality: for 1 < p <∞ and x,y ∈ Rn show that

‖x + y‖p ≤ ‖x‖p + ‖y‖p.

[Hint: use |xj + yj |p ≤ (|xj |+ |yj |)|xj + yj |p−1.]

(e) Show that dp is a metric for 1 < p <∞.

(f) Show that the topology induced by dp equals the product topology on Rn for 1 < p <∞, where
R has the standard topology. [Hint: show that ‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1.]

———————————————————————————————————————————–

Solutions:

1. (a) Define g : RN → RN by

g((xn)n∈N) = (
1

an
xn −

bn
an

)n∈N ,

which is well-defined since an > 0. Observe that

an(
1

an
xn −

bn
an

) + bn = xn − bn + bn = xn

and
1

an
(anxn + bn)− bn

an
= xn +

bn
an
− bn
an

= xn.

Thus g ◦h((xn)n∈N) = h ◦ g((xn)n∈N) = (xn)n∈N. Thus g = h−1 and in particular h is a bijection.
�

(b) Let
∏
n∈N Un be a basis set for the product topology: Un ⊂ R is open for all n ∈ N and Un = R

for all but finitely many n ∈ N. Then

g−1

(∏
n∈N

Un

)
= h

(∏
n∈N

Un

)
=
∏
n∈N

Vn,

where
Vn := {anx+ bn | x ∈ Un}.

We claim that Vn is open in R. Indeed, given for y = anx + bn ∈ Vn, there exists ε > 0 so that
(x− ε, x+ ε) ⊂ Un since Un is open. We claim that

(y − anε, y + anε) ⊂ Vn,

which implies Vn is open. Indeed, for z in the above interval we have

|
(

1

an
z − bn

an

)
− x| = |

(
1

an
z − bn

an

)
−
(

1

an
y − bn

an

)
| = 1

an
|z − y| < 1

an
anε = ε.

Thus 1
an
z− bn

an
∈ Un and therefore Vn 3 an( 1

an
z− bn

an
)+bn = z. We also note that if Un = R, then

Vn = R since for any y ∈ R we have y = an( 1
an
y− bn

an
) + bn. Thus

∏
n∈N Vn is open in the product

topology and therefore g is continuous. The same argument where an and bn are swapped with
1
an

and − bn
an

shows that h is continuous. Thus h is a homeomorphism. �
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(c) When RN has the box topology h is still a homeomorphism. The exact same proof as in the
previous part works with Un no longer required to be equal to R for all but finitely many n ∈ N.�

2. (a) Clearly d1(x,y) ≥ 0, and if we have equality then since each |xj − yj | is non-negative this must
mean we have |xj − yj | = 0 for each j = 1, . . . , n and therefore xj = yj . Hence x = y. The
symmetry d1(x,y) = d1(y,x) follows from |xj − yj | = | − (xj − yj)| = | − xj + yj | = |yj − xj |.
Finally, for the triangle inequality we have

d1(x, z) =

n∑
j=1

|xj − zj | =
n∑
j=1

|xj − yj + yj − zj | ≤
n∑
j=1

|xj − yj |+ |yj − zj | = d1(x,y) + d1(y, z).

Thus d1 is a metric on Rn. �

(b) Let U := (a1, b1)×· · ·×(an, bn) be a product of open intervals, which is a basis set for the product
topology. For x ∈ U , define

ε := min{x1 − a1, b1 − x1, . . . , xn − an, bn − xn} > 0.

Observe that
V := (x1 − ε, x1 + ε)× · · · (xn − ε, xn + ε) ⊂ U.

We claim that Bd1(x, ε) ⊂⊂ U . Indeed, for y ∈ Bd1(x, ε) we have for each j = 1, . . . , n that

|xj − yj | ≤
n∑
j=1

|xj − yj | < ε.

Thus yj ∈ (xj − ε, xj + ε), so that y ∈ V ⊂ U . Since these ε-balls form a basis for the topology
induced by d1, we see by a lemma from §13 that this topology is finer than the product topology.
Conversely, given ε > 0 and x ∈ Rn we have

(x1 −
ε

n
, x1 +

ε

n
)× · · · (xn −

ε

n
, xn +

ε

n
) ⊂ Bd1(x, ε).

Indeed, for y in the former set we have

d1(x,y) =

n∑
j=1

|xj − yj | <
n∑
j=1

ε

n
= ε.

Thus y ∈ Bd1(x, ε). By the same lemma in §13, we see that the product topology is finer than
the topology induced by d1, and so these topologies are in fact equal. �

(c) Bd1(0, 1):

−1 1

−1

1

3. Denote C := {y ∈ X | d(x, y) ≤ ε}. If y 6∈ C, then necessarily d(x, y) > ε. Set δ := d(x, y)− ε > 0. We
claim that Bd(y, δ) ⊂ X \ C. Indeed, suppose, towards a contradiction, that z ∈ Bd(y, δ) ∩ C. Then
using the triangle inequality we have

d(x, y) ≤ d(x, z) + d(z, y) < ε+ δ = ε+ d(x, y)− ε = d(x, y),

a contradiction. Thus Bd(y, δ)∩C = ∅ and therefore Bd(y, δ) ⊂ X \C. Since y ∈ X \C was arbitrary,
we see that X \ C is open and therefore C is closed. �
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4. Let (a, b) ⊂ R be an open interval. Then

d−1((a, b)) = {(x, y) ∈ X ×X | a < d(x, y) < b}.

Fix (x0, y0) ∈ d−1((a, b)), and set ε := min{d(x0, y0)−a, b−d(x0, y0)} > 0. Note that U := Bd(x0,
ε
2 )×

Bd(y0,
ε
2 ) is a neighborhood of (x0, y0) in the product topology, and we further claim that it is contained

in d−1((a, b)). Indeed, if (x, y) ∈ U then we have d(x, x0) < ε
2 and d(y, y0) < ε

2 and consequently by
applying the triangle inequality twice we have

d(x, y) ≤ d(x, x0) + d(x0, y0) + d(y0, y) <
ε

2
+ d(x0, y0) +

ε

2
= ε+ d(x0, y0) ≤ (b− d(x0, y0)) + d(x0, y0) = b.

Thus d(x, y) < b. Next, note that d(x0, y) ≤ d(x0, x) + d(x, y) implies d(x, y) ≥ d(x0, y)− d(x0, x), and
d(x0, y0) ≤ d(x0, y) + d(y, y0) implies d(x0, y) ≥ d(x0, y0)− d(y0, y). Thus we have

d(x, y) ≥ d(x0, y)− d(x0, x) ≥ d(x0, y0)− d(y0, y)− d(x0, x)

> d(x0, y0)− ε

2
− ε

2
= d(x0, y0)− ε ≥ d(x0, y0)− (d(x0, y0)− a) = a.

So d(x, y) > a and therefore (x, y) ∈ d−1((a, b)). Since (x, y) ∈ U was arbitrary, we see that U ⊂
d−1((a, b)). We have shown that a point (x0, y0) ∈ d−1((a, b)) admits a neighborhood contained inside
this preimage, and hence the preimage is open as the union of these neighborhoods. Since the open
intervals form a basis for the standard topology on R, we obtain that d is continuous. �

5. (a) We have
‖x‖2 = x21 + · · ·+ x2n = x1x1 + · · ·+ xnxn = x · x.

Also

(ax) · (by) = (ax1)(by1) + · · ·+ (axn)(byn) = (ab)(x1y1 + · · ·+ xnyn) = (ab)(x · y).

�

(b) We compute
x · y = x1y1 + · · ·+ xnyn = y1x1 + · · ·+ ynxn = y · x.

Also

x · (y+ z) = x1(y1 + z1) + · · ·+ xn(yn + zn) = (x1y1 + · · ·xnyn) + (x1z1 + · · ·xnzn) = x ·y+x · z.

�

(c) If either ‖x‖ = 0 or ‖y‖ = 0, then all entries of this n-tuple are zero and thus the inequality
reduces to 0 ≤ 0. So we may assume both ‖x‖ and ‖y‖ are non-zero and let a = 1

‖x‖ and b = 1
‖y‖ .

Then expanding and using the previous parts yields

0 ≤ ‖ax± by‖2 = (ax± by) · (ax± by) = (ax) · (ax)± (ax) · (by)± (by) · (ax) + (by) · (by)

= a2‖x‖2 ± (ab)(x · y)± (ba)(y · x) + b2‖y‖2 = 1± 2(ab)(x · y) + 1 = 2± 2(ab)(x · y).

This is equivalent to ±ab(x · y) ≤ 1. Multiplying both sides by ‖x‖‖y‖ shows this is further
equivalent to ±x · y ≤ ‖x‖‖y‖. Hence |x · y| ≤ ‖x‖‖y‖. �

(d) Using the previous parts we compute

‖x + y‖2 = (x + y) · (x + y) = x · x + x · y + y · x + y · y
≤ ‖x‖2 + ‖x‖‖y‖+ ‖y‖‖x‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.

Taking square roots yields the desired inequality. �
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(e) We clearly have d(x,y) ≥ 0, and equality implies

0 = d(x,y)2 =

n∑
j=1

(xj − yj)2.

Since each term (xj −yj)2 is non-negative, their summing to zero implies they are all zero. Hence
xj = yj and so x = y. The symmetry d(x,y) = d(y,x) follows from (xj − yj)2 = (−(xj − yj))2 =
(−xj + yj)

2 = (yj − xj)2. Finally, for the triangle inequality, using the previous part we have

d(x, z) = ‖x− z‖ = ‖x− y + y − x‖ ≤ ‖x− y‖+ ‖y − z‖ = d(x,y) + d(y, z).

Hence d is a metric. �

6. (a) Solving 1
p + 1

q = 1 for q yields

q =
p

p− 1
.

Since p > p− 1, we have q > 1. Since p > 1, we have q <∞. �

(b) Note that a = 0 or b = 0 makes the inequality trivially true, so we assume a, b > 0. Thus the
desired inequality is equivalent to the one obtained by dividing both sides by b:

aλb−λ ≤ λab−1 + 1− λ.

Denoting t := a
b , this is equivalent to tλ ≤ λt+ 1− λ. Note that t > 0, and so it suffices to show

tλ − λt ≤ 1 − λ for all t > 0. Set f(t) := tλ − λt and observe that f ′(t) = λtλ−1 − λ. Thus we
have f ′(t) = 0 if and only if t = 1. Noting that f ′′(t) = λ(λ − 1)tλ−2 is negative for all t > 0
(since λ − 1 < 0), we see from the second derivative test that f achieves its maximum value at
t = 1 and that maximum value is f(1) = 1− λ. Thus f(t) ≤ 1− λ for all t > 0 as desired. �

(c) Let q = p
p−1 be the conjugate exponent to p. Fix 1 ≤ i ≤ n, and consider a := |xi|p

‖x‖pp , b := |yi|q
‖y‖qq ,

and λ := 1
p . Observe that

1− λ =
p− 1

p
=

1

q
.

So using part (b) we have

|xiyi| = ‖x‖p‖y‖q
(
|xi|p

‖x‖pp

)1/p( |yi|q
‖y‖qq

)1/q

= ‖x‖p‖y‖qaλb1−λ

≤ ‖x‖p‖y‖q(λa+ (1− λ)b) = ‖x‖p‖y‖q
(

1

p

|xi|p

‖x‖pp
+

1

q

|yi|q

‖y‖qq

)
.

Thus

|x1y1|+ · · ·+ |xnyn| ≤ ‖x‖p‖y‖q
(

1

p

|x1|p + · · ·+ |xn|p

‖x‖pp
+

1

q

|y1|q + · · ·+ |yn|q

‖y‖qq

)
= ‖x‖p‖y‖q

(
1

p

‖x‖qp
‖x‖pp

+
1

q

‖y‖qq
‖y‖qq

)
= ‖x‖p‖y‖q

(
1

p
+

1

q

)
= ‖x‖p‖y‖q.

�

(d) Consider

‖x + y‖pp =

n∑
i=1

|xi + yi|p =

n∑
i=1

|xi + yi||xi + yi|p−1 ≤
n∑
i=1

|xi||xi + yi|p−1 +

n∑
i=1

|yi||xi + yi|p−1.

We apply part (c) to each sum in the last expression to obtain

‖x + y‖pp ≤ ‖x‖p

(
n∑
i=1

|xi + yi|q(p−1)
)1/q

+ ‖y‖p

(
n∑
i=1

|xi + yi|q(p−1)
)1/q

5 c©Brent Nelson 2020



Math 461 Homework 7 Solutions 10/23/2020

Using q = p
p−1 , this becomes

‖x + y‖pp ≤ (‖x‖p + ‖y‖p)‖x + y‖p−1p .

Dividing both sides by ‖x + y‖p−1p (an noting that the inequality is trivially true when this is
zero) yields the desired inequality. �

(e) The positive, non-degeneracy, and symmetry of dp are all clear, while the triangle inequality
follows from the previous part:

dp(x, z) = ‖x− z‖p = ‖x− y + y − z‖p ≤ ‖x− y‖p + ‖y − z‖p = dp(x,y) + dp(y, z).

�

(f) Observe that for each i = 1, . . . , n we have

|xi| = (|xi|p)1/p ≤ (|x1|p + · · ·+ |xn|p)1/p = ‖x‖p.

Hence
‖x‖∞ = max

1≤i≤n
|xi| ≤ ‖x‖p.

Thus d∞(x,y) ≤ dp(x,y) for all x,y ∈ Rn and it follows that

Bdp(x, ε) ⊂ Bd∞(x, ε).

This shows the topology induced by dp is finer than the topology induced by d∞. Since d∞ is the
square metric, we know from lecture that this induces the product topology on Rn.

We next observe that ‖x‖p ≤ ‖x 1 follows from taking the pth power of each side:

‖xp‖p = |x1|p + · · ·+ |xn|p ≤ (|x1|+ · · ·+ |xn|)p.

Consequently, by the same argument as above we have that the topology induced by d1 is finer
than the topology induced by dp. From Exercise 2, we know that the former topology is nothing
more than the product topology. Hence the topology induced by dp is the product topology. �
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