
Math 317H-001 Solutions Midterm 2

1. (a) (10 pts) We first find the RREF of A using row operations: 2 0 −2 −1 −7
0 1 2 1 −2
1 1 1 0 −5

 R3↔R1→

 1 1 1 0 −5
0 1 2 1 −2
2 0 −2 −1 −7


→

R3 7→R3−2R1

 1 1 1 0 −5
0 1 2 1 −2
0 −2 −4 −1 3


→

R37→R3+2R2

 1 1 1 0 −5
0 1 2 1 −2
0 0 0 1 −1


R27→R2−R3→

 1 1 1 0 −5
0 1 2 0 −1
0 0 0 1 −1


R17→R1−R2→

 1 0 −1 0 −4
0 1 2 0 −1
0 0 0 1 −1


Since the pivots are in columns 1, 2, and 4 it follows that the corresponding columns of A: 2

0
1

 ,

 0
1
1

 ,

 −1
1
0


form a basis for the column space of A.

(b) (3 pts) Since the pivots of the RREF of A appear in rows 1, 2, and 3 those rows form a basis for the row space
of A: 

1
0
−1

0
−4

 ,


0
1
2
0
−1

 ,


0
0
0
1
−1

 .

(c) (4 pts) Using the RREF of A we see that Ax = 0 has solutions of the form

x =


x3 + 4x5
−2x3 + x5

x3
x5
x5

 = x3


1
−2

1
0
0

 + x5


4
1
0
1
1

 , x3, x5 ∈ R.

Thus 
1
−2

1
0
0

 ,


4
1
0
1
1


is a basis for Ker(A).

(d) (3 pts) By the rank-nullity theorem, we know

dim(Ker(AT )) = nullity(AT ) = 3− rank(AT ).

By part (b), we have that rank(AT ) = 3 and so dim(Ker(AT )) = 0.
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2. (a) (3 pts) Recall that the jth column of [I]SB is given by

[I(vj)]S = [vj ]S = vj .

Thus

[I]SB =

 2 0 −1
0 1 1
1 1 0

 .

(b) (10 pts) We know [I]BS = ([I]SB)−1, so we compute the inverse by performing row operations on ([I]SB | I3): 2 0 −1 1 0 0
0 1 1 0 1 0
1 1 0 0 0 1

 R1↔R3→
R17→R1−2R3

 1 1 0 0 0 1
0 1 1 0 1 0
0 −2 −1 1 0 −2


R17→R1−R2→
R37→R3+2R2

 1 0 −1 0 −1 1
0 1 1 0 1 0
0 0 1 1 2 −2


R17→R1+R3→
R2 7→R2−R3

 1 0 0 1 1 −1
0 1 0 −1 −1 2
0 0 1 1 2 −2


Thus

[I]BS =

 1 1 −1
−1 −1 2

1 2 −2


(c) (7 pts) We are told B is a basis of eigenvectors of A. Thus

[A]BB =

 0 0 0
0 3 0
0 0 3

 .

So using a change of basis we see that

A = [A]SS = [I]SB[A]BB[I]BS =

 2 0 −1
0 1 1
1 1 0

 0 0 0
0 3 0
0 0 3

 1 1 −1
−1 −1 2

1 2 −2


=

 2 0 −1
0 1 1
1 1 0

 0 0 0
−3 −3 6

3 6 −6

 =

 −3 −6 6
0 3 0
−3 −3 6


3. (a) (7 pts) We will compute the determinant using cofactor expansion along the second row:

charA(z) = det(A− zI) = det

 −3− z −6 6
0 3− z 0
−3 −3 6− z

 = 0 + (−1)2+2(3− z)((−3− z)(6− z)− 18) + 0

= (3− z)(−18− 3z + z2 − 18) = (3− z)(z2 − 3z) = −z(z − 3)2.

(b) (3 pts) Clearly the roots of charA(z) are z = 0 and z = 3. Thus σ(A) = {0, 3}.
(c) (10 pts) From the characteristic polynomial we know the algebraic multiplicities: m0(A) = 1 and m3(A) = 2.

Thus Ker(A−0I) is at most one-dimensional and from the previous question we see that (2, 0, 1)T is an eigenvector
with eigenvalue 0. Thus (2, 0, 1)T forms a basis for Ker(A − 0I). Also we know Ker(A − 3I) is at most two-
dimensional and from the previous problem we see that (0, 1, 1)T and (−1, 1, 0)T are linearly independent vectors
in this eigenspace. Thus they necessarily form a basis for the eigenspace.
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Alternatively, we can compute direclty. For λ = 0, we compute the kernel of A− 0I = A: −3 −6 6 0
0 3 0 0
−3 −3 6 0

 R1 7→− 1
3R1

R27→ 1
3R2
→

R3 7→− 1
3R3

 1 2 −2 0
0 1 0 0
1 1 −2 0


R17→R1−2R2→
R37→R3−R1

 1 0 −2 0
0 1 0 0
0 −1 0 0


→

R3 7→R3+R2

 1 0 −2 0
0 1 0 0
0 0 0 0

 .

Thus (2, 0, 1)T is a basis for Ker(A− 0I).

For λ = 3, we compute the kernel of A− 3I: −6 −6 6 0
0 0 0 0
−3 −3 3 0

 R17→− 1
6R1

→
R3 7→2R3−R1

 1 1 −1 0
0 0 0 0
0 0 0 0

 .

Thus (−1, 1, 0)T and (1, 0, 1)T form a basis for Ker(A− 3I).

4. (a) (3 pts) For each i = 2, . . . , n we have

A(wi) = A(v1 − vi) = Av1 −Avi = b− b = 0.

Thus wi ∈ Ker(A) for i = 2, . . . , n. �

(b) (7 pts) Suppose
α2w2 + · · ·+ αnwn = 0

for scalars α2, . . . , αn. Using wi = v1 −wi, we obtain

0 = α2(v1 − v2) + · · ·+ αn(v1 − vn) = (α2 + · · ·+ αn)v1 − α2v2 − · · · − αnvn.

Since v1, . . . ,vn are a basis and consequently linearly independent, we must have that the above coefficients are
all zero. In particular, −α2 = · · · = −αn = 0 which of course implies α2 = · · · = αn = 0. Thus w2, . . . ,wn are
linearly independent. �

(c) (10 pts) We claim that rank(A) = 1. Indeed, for any v ∈ Rn

v = α1v1 + · · ·+ αnvn

for some scalars α1, . . . , αn. Using the linearity of A we then have

Av = α1Av1 + · · ·+ αnAvn = α1b + · · ·+ αnb = (α1 + · · ·+ αn)b.

Thus Av ∈ span{b}. Thus Ran(A) ⊂ span{b} and the reverse inclusion follows since A(αv1) = αb. Thus
Ran(A) = span{b} and in particular rank(A) = dim(Ran(A)) = 1. Now, by the rank-nullity theorem, we have

dim(Ker(A)) = nullity(A) = n− rank(A) = n− 1.

Thus w2, . . . ,wn is a set of n − 1 linearly independent vectors in a subspace with dimension equal to n − 1. It
follows that w2, . . . ,wn is necessarily a basis for Ker(A). �

5. (a) (2 pts) Every invertible matrix can be written as a sum product of elementary matrices.

(b) (2 pts) Any two matrix representations of a linear transformation are equal similar.

(c) (2 pts) A generating system for a finite-dimensional vector space V cannot have more fewer than dim(V ) vectors
in it.
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(d) (2 pts) A vector space is finite-dimensional if and only if it has a unique basis consisting of finitely many vectors.

(e) (2 pts) The nullity rank of a matrix and its transpose are equal.

(f) (2 pts)The row column space of a matrix A is equal to the range of A.

(g) (2 pts) The determinant is invariant under row reordering replacement.

(h) (2 pts) The determinant is linear multiplicative.

(i) (2 pts) For a linear transformation T : V → V , an eigenvector of T is a non-zero vector v ∈ V such that T (v) = λv
for some scalar λ.

(j) (2 pts) For a linear transformation T : V → V with eigenvalue λ, the dimension of Ker(T − λI) is the geometric
multiplicity of λ.
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