1. (a) (10 pts) We first find the RREF of A using row operations:

$$
\begin{aligned}
& \left(\begin{array}{rrrrr}
2 & 0 & -2 & -1 & -7 \\
0 & 1 & 2 & 1 & -2 \\
1 & 1 & 1 & 0 & -5
\end{array}\right) \xrightarrow{R 3 \leftrightarrow} R 1\left(\begin{array}{rrrrr}
1 & 1 & 1 & 0 & -5 \\
0 & 1 & 2 & 1 & -2 \\
2 & 0 & -2 & -1 & -7
\end{array}\right) \\
& R 3 \mapsto \overrightarrow{R 3}-2 R 1\left(\begin{array}{rrrrr}
1 & 1 & 1 & 0 & -5 \\
0 & 1 & 2 & 1 & -2 \\
0 & -2 & -4 & -1 & 3
\end{array}\right) \\
& R 3 \mapsto \overrightarrow{R 3}+2 R 2\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 & -5 \\
0 & 1 & 2 & 1 & -2 \\
0 & 0 & 0 & 1 & -1
\end{array}\right) \\
& R 2 \mapsto R 2-R 3\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 & -5 \\
0 & 1 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right) \\
& R 1 \mapsto R 1-R 2\left(\begin{array}{rrrrr}
1 & 0 & -1 & 0 & -4 \\
0 & 1 & 2 & 0 & -1 \\
0 & 0 & 0 & 1 & -1
\end{array}\right)
\end{aligned}
$$

Since the pivots are in columns 1,2 , and 4 it follows that the corresponding columns of A :

$$
\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right)
$$

form a basis for the column space of A.
(b) (3 pts) Since the pivots of the RREF of A appear in rows 1, 2, and 3 those rows form a basis for the row space of A :

$$
\left(\begin{array}{r}
1 \\
0 \\
-1 \\
0 \\
-4
\end{array}\right), \quad\left(\begin{array}{r}
0 \\
1 \\
2 \\
0 \\
-1
\end{array}\right), \quad\left(\begin{array}{r}
0 \\
0 \\
0 \\
1 \\
-1
\end{array}\right)
$$

(c) (4 pts) Using the RREF of A we see that $A \mathbf{x}=\mathbf{0}$ has solutions of the form

$$
\mathbf{x}=\left(\begin{array}{c}
x_{3}+4 x_{5} \\
-2 x_{3}+x_{5} \\
x_{3} \\
x_{5} \\
x_{5}
\end{array}\right)=x_{3}\left(\begin{array}{r}
1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
4 \\
1 \\
0 \\
1 \\
1
\end{array}\right), \quad x_{3}, x_{5} \in \mathbb{R}
$$

Thus

$$
\left(\begin{array}{r}
1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
4 \\
1 \\
0 \\
1 \\
1
\end{array}\right)
$$

is a basis for $\operatorname{Ker}(A)$.
(d) (3 pts) By the rank-nullity theorem, we know

$$
\operatorname{dim}\left(\operatorname{Ker}\left(A^{T}\right)\right)=\operatorname{nullity}\left(A^{T}\right)=3-\operatorname{rank}\left(A^{T}\right)
$$

By part (b), we have that $\operatorname{rank}\left(A^{T}\right)=3$ and so $\operatorname{dim}\left(\operatorname{Ker}\left(A^{T}\right)\right)=0$.
2. (a) (3 pts) Recall that the j th column of $[I]_{\mathcal{B}}^{\mathcal{S}}$ is given by

$$
\left[I\left(\mathbf{v}_{j}\right)\right]_{\mathcal{S}}=\left[\mathbf{v}_{j}\right]_{\mathcal{S}}=\mathbf{v}_{j}
$$

Thus

$$
[I]_{\mathcal{B}}^{\mathcal{S}}=\left(\begin{array}{rrr}
2 & 0 & -1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

(b) (10 pts) We know $[I]_{\mathcal{S}}^{\mathcal{B}}=\left([I]_{\mathcal{B}}^{\mathcal{S}}\right)^{-1}$, so we compute the inverse by performing row operations on $\left([I]_{\mathcal{B}}^{\mathcal{S}} \mid I_{3}\right)$:

$$
\begin{aligned}
& \left(\begin{array}{rrr|rrr}
2 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \underset{\substack{ \\
R 1 \mapsto R 1 \\
\xrightarrow[R 1]{ } \\
\hline \\
R_{3} \\
0}}{ }\left(\begin{array}{rrr|rrr}
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & -2 & -1 & 1 & 0 & -2
\end{array}\right) \\
& \underset{R}{R 1 \mapsto R 1-R 2} \xrightarrow{\xrightarrow{~}} \underset{R 3+2 R 2}{ }\left(\begin{array}{rrr|rrr}
1 & 0 & -1 & 0 & -1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 2 & -2
\end{array}\right) \\
& \underset{\substack{ \\
R 1 \mapsto R 1 \\
R 2 \mapsto R 2-R 3}}{\xrightarrow{\longrightarrow}}\left(\begin{array}{lll|rrr}
1 & 0 & 0 & 1 & 1 & -1 \\
0 & 1 & 0 & -1 & -1 & 2 \\
0 & 0 & 1 & 1 & 2 & -2
\end{array}\right)
\end{aligned}
$$

Thus

$$
[I]_{\mathcal{S}}^{\mathcal{B}}=\left(\begin{array}{rrr}
1 & 1 & -1 \\
-1 & -1 & 2 \\
1 & 2 & -2
\end{array}\right)
$$

(c) ($7 \mathbf{p t s}$) We are told \mathcal{B} is a basis of eigenvectors of A. Thus

$$
[A]_{\mathcal{B}}^{\mathcal{B}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

So using a change of basis we see that

$$
\begin{aligned}
A=[A]_{\mathcal{S}}^{\mathcal{S}}=[I]_{\mathcal{B}}^{\mathcal{S}}[A]_{\mathcal{B}}^{\mathcal{B}}[I]_{\mathcal{S}}^{\mathcal{B}} & =\left(\begin{array}{rrr}
2 & 0 & -1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & -1 \\
-1 & -1 & 2 \\
1 & 2 & -2
\end{array}\right) \\
& =\left(\begin{array}{rrr}
2 & 0 & -1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{rrr}
0 & 0 & 0 \\
-3 & -3 & 6 \\
3 & 6 & -6
\end{array}\right)=\left(\begin{array}{rrr}
-3 & -6 & 6 \\
0 & 3 & 0 \\
-3 & -3 & 6
\end{array}\right)
\end{aligned}
$$

3. (a) ($\mathbf{7} \mathbf{~ p t s}$) We will compute the determinant using cofactor expansion along the second row:

$$
\begin{aligned}
\operatorname{char}_{A}(z) & =\operatorname{det}(A-z I)=\operatorname{det}\left(\begin{array}{rrr}
-3-z & -6 & 6 \\
0 & 3-z & 0 \\
-3 & -3 & 6-z
\end{array}\right)=0+(-1)^{2+2}(3-z)((-3-z)(6-z)-18)+0 \\
& =(3-z)\left(-18-3 z+z^{2}-18\right)=(3-z)\left(z^{2}-3 z\right)=-z(z-3)^{2}
\end{aligned}
$$

(b) ($\mathbf{3} \mathbf{p t s}$) Clearly the roots of $\operatorname{char}_{A}(z)$ are $z=0$ and $z=3$. Thus $\sigma(A)=\{0,3\}$.
(c) (10 pts) From the characteristic polynomial we know the algebraic multiplicities: $m_{0}(A)=1$ and $m_{3}(A)=2$. Thus $\operatorname{Ker}(A-0 I)$ is at most one-dimensional and from the previous question we see that $(2,0,1)^{T}$ is an eigenvector with eigenvalue 0 . Thus $(2,0,1)^{T}$ forms a basis for $\operatorname{Ker}(A-0 I)$. Also we know $\operatorname{Ker}(A-3 I)$ is at most twodimensional and from the previous problem we see that $(0,1,1)^{T}$ and $(-1,1,0)^{T}$ are linearly independent vectors in this eigenspace. Thus they necessarily form a basis for the eigenspace.

Alternatively, we can compute direclty. For $\lambda=0$, we compute the kernel of $A-0 I=A$:

$$
\begin{gathered}
\left(\begin{array}{rrr|l}
-3 & -6 & 6 & 0 \\
0 & 3 & 0 & 0 \\
-3 & -3 & 6 & 0
\end{array}\right) \underset{\substack{R 1 \mapsto-\frac{1}{3} R 1 \\
R 2 \mapsto \frac{1}{3} R 2 \\
\rightarrow 3 \mapsto-\frac{1}{3} R 3}}{\substack{R 1}}\left(\begin{array}{rrr|r}
1 & 2 & -2 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & -2 & 0
\end{array}\right) \\
\underset{\substack{R 1 \mapsto R 1-2 R 2 \\
R 3 \mapsto R 3-R 1}}{ }\left(\begin{array}{rrr|r}
1 & 0 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \\
\underset{R 3 \mapsto R 3+R 2}{ }\left(\begin{array}{rrr|r}
1 & 0 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Thus $(2,0,1)^{T}$ is a basis for $\operatorname{Ker}(A-0 I)$.
For $\lambda=3$, we compute the kernel of $A-3 I$:

$$
\left(\begin{array}{rrr|r}
-6 & -6 & 6 & 0 \\
0 & 0 & 0 & 0 \\
-3 & -3 & 3 & 0
\end{array}\right) \underset{R}{R 1 \mapsto 2 R 3-R 1} \begin{array}{r}
R 1 \mapsto-\frac{1}{6} R 1 \\
R 3
\end{array}\left(\begin{array}{rrr|r}
1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Thus $(-1,1,0)^{T}$ and $(1,0,1)^{T}$ form a basis for $\operatorname{Ker}(A-3 I)$.
4. (a) (3 pts) For each $i=2, \ldots, n$ we have

$$
A\left(\mathbf{w}_{i}\right)=A\left(\mathbf{v}_{1}-\mathbf{v}_{i}\right)=A \mathbf{v}_{1}-A \mathbf{v}_{i}=\mathbf{b}-\mathbf{b}=\mathbf{0}
$$

Thus $\mathbf{w}_{i} \in \operatorname{Ker}(A)$ for $i=2, \ldots, n$.
(b) (7 pts) Suppose

$$
\alpha_{2} \mathbf{w}_{2}+\cdots+\alpha_{n} \mathbf{w}_{n}=\mathbf{0}
$$

for scalars $\alpha_{2}, \ldots, \alpha_{n}$. Using $\mathbf{w}_{i}=\mathbf{v}_{1}-\mathbf{w}_{i}$, we obtain

$$
\mathbf{0}=\alpha_{2}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)+\cdots+\alpha_{n}\left(\mathbf{v}_{1}-\mathbf{v}_{n}\right)=\left(\alpha_{2}+\cdots+\alpha_{n}\right) \mathbf{v}_{1}-\alpha_{2} \mathbf{v}_{2}-\cdots-\alpha_{n} \mathbf{v}_{n}
$$

Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are a basis and consequently linearly independent, we must have that the above coefficients are all zero. In particular, $-\alpha_{2}=\cdots=-\alpha_{n}=0$ which of course implies $\alpha_{2}=\cdots=\alpha_{n}=0$. Thus $\mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ are linearly independent.
(c) (10 pts) We claim that $\operatorname{rank}(A)=1$. Indeed, for any $\mathbf{v} \in \mathbb{R}^{n}$

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

for some scalars $\alpha_{1}, \ldots, \alpha_{n}$. Using the linearity of A we then have

$$
A \mathbf{v}=\alpha_{1} A \mathbf{v}_{1}+\cdots+\alpha_{n} A \mathbf{v}_{n}=\alpha_{1} \mathbf{b}+\cdots+\alpha_{n} \mathbf{b}=\left(\alpha_{1}+\cdots+\alpha_{n}\right) \mathbf{b}
$$

Thus $A \mathbf{v} \in \operatorname{span}\{\mathbf{b}\}$. Thus $\operatorname{Ran}(A) \subset \operatorname{span}\{\mathbf{b}\}$ and the reverse inclusion follows since $A\left(\alpha \mathbf{v}_{1}\right)=\alpha \mathbf{b}$. Thus $\operatorname{Ran}(A)=\operatorname{span}\{\mathbf{b}\}$ and in particular $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Ran}(A))=1$. Now, by the rank-nullity theorem, we have

$$
\operatorname{dim}(\operatorname{Ker}(A))=\operatorname{nullity}(A)=n-\operatorname{rank}(A)=n-1
$$

Thus $\mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ is a set of $n-1$ linearly independent vectors in a subspace with dimension equal to $n-1$. It follows that $\mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ is necessarily a basis for $\operatorname{Ker}(A)$.
5. (a) (2 pts) Every invertible matrix can be written as a sum product of elementary matrices.
(b) (2 pts) Any two matrix representations of a linear transformation are equat similar.
(c) (2 pts) A generating system for a finite-dimensional vector space V cannot have more fewer than $\operatorname{dim}(V)$ vectors in it.
(d) (2 pts) A vector space is finite-dimensional if and only if it has a ziqique basis consisting of finitely many vectors.
(e) (2 pts) The nullity rank of a matrix and its transpose are equal.
(f) (2 pts) The row column space of a matrix A is equal to the range of A.
(g) (2 pts) The determinant is invariant under row reordering replacement.
(h) ($2 \mathbf{p t s}$) The determinant is linear multiplicative.
(i) (2 pts) For a linear transformation $T: V \rightarrow V$, an eigenvector of T is a non-zero vector $\mathbf{v} \in V$ such that $T(\mathbf{v})=\lambda \mathbf{v}$ for some scalar λ.
(j) (2 pts) For a linear transformation $T: V \rightarrow V$ with eigenvalue λ, the dimension of $\operatorname{Ker}(T-\lambda I)$ is the geometric multiplicity of λ.

