
Math 317H-001 Solutions Midterm 1

1. (a) (5 pts)

• T ◦ T

 x
y
z

 =

 z
0
0


• T ◦ T ◦ T

 x
y
z

 =

 0
0
0


(b) (10 pts) Suppose, towards a contradiction, that T is left invertible with left-inverse S. Then S : R3 → R3 and

S ◦ T = I. But from the previous part we see that T ◦ T ◦ T = O, the zero transformation. So composing with S
on the left three times yields

S ◦ S ◦ S ◦ T ◦ T ◦ T = S ◦ S ◦ S ◦O
S ◦ S ◦ I ◦ T ◦ T = O

S ◦ S ◦ T ◦ T = O

...

I = O,

which is a contradiction. Thus T is not left invertible.

Next, suppose, again towards a contradiction, that T is right invertible with right-inverse S. Taking the equation
T ◦ T ◦ T = O and composing with S three times on the right again yields I = O, a contradiction. Thus T is not
right invertible either. �

(c) (5 pts) Recall that the columns of A are given by T (e1), T (e2), T (e3), where e1, e2, e3 is the standard basis for
R3. Thus we compute:

T

 1
0
0

 =

 0
0
0

 , T

 0
1
0

 =

 1
0
0

 , T

 0
0
1

 =

 0
1
0

 .

Therefore,

A =

 0 1 0
0 0 1
0 0 0

 .

(d) (5 pts) Recall that [T ◦ T ] = [T ][T ] = AA, and similarly [T ◦ T ◦ T ] = AAA. Thus we simply compute the matrix
multiplication given A above:

[T ◦ T ] =

 0 0 1
0 0 0
0 0 0


[T ◦ T ◦ T ] =

 0 0 0
0 0 0
0 0 0

 .

2. (a) (5 pts) We claim that 0 is the element 1 ∈ V . Indeed, for any x ∈ V we have

x⊕ 1 = x1 = x.

Thus 1 satisfies the zero vector property and therefore is THE zero vector. �

(b) (5 pts) Given x ∈ V , we claim that the additive inverse with respect to ⊕ is 1
x . First note that the reciprocal

exists since x > 1. It then suffices to check x⊕ 1
x = 0. That is, given the previous part we must show x⊕ 1

x = 1.
Using the definition of ⊕ we have

x⊕ 1

x
= x

1

x
= 1,

as needed. �
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3. (a) (5 pts) We compute

Tr(A1) = 0 + 0 = 0

Tr(A2) = 0 + 0 = 0

Tr(A3) = 1 +−1 = 0.

Thus A1, A2, A3 ∈ Null(Tr). �

(b) (5 pts) Suppose there are scalars α1, α2, α3 such that α1A1 + α2A2 + α3A3 = 0. Recalling that the zero vector
in M2×2(R) is the matrix of all zeros, this implies

α1

(
0 1
0 0

)
+ α2

(
0 0
1 0

)
+ α3

(
1 0
0 −1

)
=

(
0 0
0 0

)
(
α3 α1

α2 −α3

)
=

(
0 0
0 0

)
.

So α1 = α2 = α3 = 0, and therefore A1, A2, A3 are linearly independent. �

(c) (10 pts) It suffices to show that A1, A2, A3 are spanning for Null(Tr). Let B ∈ Null(Tr) be arbitrary, say with
entries

B =

(
a b
c d

)
.

We must write B as a linear combination of A1, A2, A3. We first observe that

B = bA1 + cA2 +

(
a 0
0 d

)
.

Now, since B ∈ Null(Tr), we have 0 = Tr(B) = a + b. Thus d = −a, and so the third term above equals aA3.
Thus

B = bA1 + cA2 + aA3.

Since B ∈ Null(Tr) was arbitrary, this shows A1, A2, A3 are spanning for Null(Tr) and therefore a basis. �

4. (a) (10 pts) We first translate the linear system into the following augmented matrix: 1 −1 −2 0 2 0
3 −3 −1 5 −4 0
−1 1 4 2 −3 0

 .

Next we perform row operations until we arrive at the reduced row echelon form: 1 −1 −2 0 2 0
3 −3 −1 5 −4 0
−1 1 4 2 −3 0

 R2 7→R2−3R1−→
R3 7→R3+R1

 1 −1 −2 0 2 0
0 0 5 5 −10 0
0 0 2 2 −1 0


R2 7→ 1

5R2−→

 1 −1 −2 0 2 0
0 0 1 1 −2 0
0 0 2 2 −1 0


R3 7→R3−2R2−→

 1 −1 −2 0 2 0
0 0 1 1 −2 0
0 0 0 0 3 0


R3 7→ 1

3R3−→

 1 −1 −2 0 2 0
0 0 1 1 −2 0
0 0 0 0 1 0


R1 7→R1−2R3−→
R2 7→R2+2R3

 1 −1 −2 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0


R1 7→R1+2R2−→

 1 −1 0 2 0 0
0 0 1 1 0 0
0 0 0 0 1 0


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From this we see that x1, x3, x5 are pivot variables, while x2, x4 are free variables. So we will translate the above
RREF back into a linear system and then solve for our pivot variables: x1 − x2 + 2x4 = 0

x3 + x4 = 0
x5 = 0

−→

 x1 = x2 − 2x4
x3 = −x4
x5 = 0

Therefore all solutions to this linear system are of the following form:
x2 − 2x4

x2
−x4
x4
0

 x2, x4 ∈ R.

(b) (5 pts) Let A be the coefficient matrix of the above linear system. Then x ∈ R5 is an element of X if and only if
Ax = 0. Therefore X = Null(A), and we have shown on the homework that this always gives a subspace.

Alternatively, one can directly check the following: (i) 0 ∈ X; (ii) if x,y ∈ X then x + y ∈ X; and (iii) if x ∈ X
then tx ∈ X for any t ∈ R. The previous part gives us a general description of the elements of X, which can be
used to directly verify each of these three conditions. �

5. (a) (5 pts) By a theorem from lecture, we know that any linearly independent set in R3 can contain at most three
vectors. Consequently, the system v1,v2,v3,v4,v5 must be linearly dependent. �

(b) (5 pts) Let A be the matrix with columns v1,v2,v3,v4,v5:

A =

 1 −1 −2 0 2
3 −3 −1 5 −4
−1 1 4 2 −3

 .

Observe that this is precisely the coefficient matrix from the previous problem. Therefor its reduced row echelon
form is:  1 −1 0 2 0

0 0 1 1 0
0 0 0 0 1

 .

Since there is a pivot in every row, a theorem from lecture tells us that the system v1,v2,v3,v4,v5 spans R3. �

6. (a) (2 pts) A system of vectors v1, . . . ,vn in a vector space V is a basis if every other vector v ∈ V admits a unique
representation as a linear combination of v1, . . . ,vn.

(b) (2 pts) A system of vectors v1, . . . ,vn in a vector space V is linearly independent if only the trivial linear
combination of v1, . . . ,vn equals the zero vector.

(c) (2 pts) If a system of vectors v1, . . . ,vn ∈ V is linearly dependent, then every some vk can be written as a linear
combination of the other vectors.

(d) (2 pts) If a system of vectors v1, . . . ,vn is a spanning system in V , then every v ∈ V admits a unique representation
as a linear combination of v1, . . . ,vn.

(e) (2 pts) A transformation T : V → W is quadratic linear if and only if T (αv + βw) = αT (v) + βT (w) for all
v,w ∈ V and all scalars α, β.

(f) (2 pts) A linear transformation is an isomorphism if and only if it is injective invertible.

(g) (2 pts) A linear transformation A : V → W is right invertible if there exists a linear transformation B : W → V
such that A ◦B = IW .

(h) (2 pts) Suppose v1, . . . ,vn is a basis for a vector space V , and suppose w1, . . .wn is a system basis in a vector
space W . If T : V →W is a linear transformation satisfying T (vi) = wi for i = 1, . . . , n, then T is an isomorphism.

(i) (2 pts) The kernel range of a linear transformation T : V → W is the set of all vectors w ∈ W for which there
exists v ∈ V such that T (v) = w.

(j) (2 pts) Matrix multiplication is not commutative.
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