1. (a) (5 pts)

- $T \circ T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}z \\ 0 \\ 0\end{array}\right)$
- $T \circ T \circ T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
(b) (10 pts) Suppose, towards a contradiction, that T is left invertible with left-inverse S. Then $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $S \circ T=I$. But from the previous part we see that $T \circ T \circ T=O$, the zero transformation. So composing with S on the left three times yields

$$
\begin{gathered}
S \circ S \circ S \circ T \circ T \circ T=S \circ S \circ S \circ O \\
S \circ S \circ I \circ T \circ T=O \\
S \circ S \circ T \circ T=O \\
\vdots \\
I=O,
\end{gathered}
$$

which is a contradiction. Thus T is not left invertible.
Next, suppose, again towards a contradiction, that T is right invertible with right-inverse S. Taking the equation $T \circ T \circ T=O$ and composing with S three times on the right again yields $I=O$, a contradiction. Thus T is not right invertible either.
(c) (5 pts) Recall that the columns of A are given by $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), T\left(\mathbf{e}_{3}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is the standard basis for \mathbb{R}^{3}. Thus we compute:

$$
T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad T\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad T\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Therefore,

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

(d) (5 pts) Recall that $[T \circ T]=[T][T]=A A$, and similarly $[T \circ T \circ T]=A A A$. Thus we simply compute the matrix multiplication given A above:

$$
\begin{aligned}
{[T \circ T] } & =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
{[T \circ T \circ T] } & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

2. (a) ($\mathbf{5} \mathbf{~ p t s}$) We claim that $\mathbf{0}$ is the element $1 \in V$. Indeed, for any $x \in V$ we have

$$
x \oplus 1=x 1=x
$$

Thus 1 satisfies the zero vector property and therefore is THE zero vector.
(b) (5 pts) Given $x \in V$, we claim that the additive inverse with respect to \oplus is $\frac{1}{x}$. First note that the reciprocal exists since $x>1$. It then suffices to check $x \oplus \frac{1}{x}=\mathbf{0}$. That is, given the previous part we must show $x \oplus \frac{1}{x}=1$. Using the definition of \oplus we have

$$
x \oplus \frac{1}{x}=x \frac{1}{x}=1
$$

as needed.
3. (a) (5 pts) We compute

$$
\begin{aligned}
& \operatorname{Tr}\left(A_{1}\right)=0+0=0 \\
& \operatorname{Tr}\left(A_{2}\right)=0+0=0 \\
& \operatorname{Tr}\left(A_{3}\right)=1+-1=0 .
\end{aligned}
$$

Thus $A_{1}, A_{2}, A_{3} \in \operatorname{Null}(\operatorname{Tr})$.
(b) (5 pts) Suppose there are scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that $\alpha_{1} A_{1}+\alpha_{2} A_{2}+\alpha_{3} A_{3}=\mathbf{0}$. Recalling that the zero vector in $M_{2 \times 2}(\mathbb{R})$ is the matrix of all zeros, this implies

$$
\begin{aligned}
\alpha_{1}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+\alpha_{2}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+\alpha_{3}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) & =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{rr}
\alpha_{3} & \alpha_{1} \\
\alpha_{2} & -\alpha_{3}
\end{array}\right) & =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

So $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$, and therefore A_{1}, A_{2}, A_{3} are linearly independent.
(c) (10 pts) It suffices to show that A_{1}, A_{2}, A_{3} are spanning for $\operatorname{Null}(\operatorname{Tr})$. Let $B \in \operatorname{Null}(\operatorname{Tr})$ be arbitrary, say with entries

$$
B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

We must write B as a linear combination of A_{1}, A_{2}, A_{3}. We first observe that

$$
B=b A_{1}+c A_{2}+\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)
$$

Now, since $B \in \operatorname{Null}(\operatorname{Tr})$, we have $0=\operatorname{Tr}(B)=a+b$. Thus $d=-a$, and so the third term above equals $a A_{3}$. Thus

$$
B=b A_{1}+c A_{2}+a A_{3}
$$

Since $B \in \operatorname{Null}(\operatorname{Tr})$ was arbitrary, this shows A_{1}, A_{2}, A_{3} are spanning for $\operatorname{Null}(\operatorname{Tr})$ and therefore a basis.
4. (a) (10 pts) We first translate the linear system into the following augmented matrix:

$$
\left(\begin{array}{rrrrr|r}
1 & -1 & -2 & 0 & 2 & 0 \\
3 & -3 & -1 & 5 & -4 & 0 \\
-1 & 1 & 4 & 2 & -3 & 0
\end{array}\right)
$$

Next we perform row operations until we arrive at the reduced row echelon form:

$$
\begin{aligned}
& \left.\left(\begin{array}{rrrrr|r}
1 & -1 & -2 & 0 & 2 & 0 \\
3 & -3 & -1 & 5 & -4 & 0 \\
-1 & 1 & 4 & 2 & -3 & 0
\end{array}\right) \underset{\substack{ \\
R_{2} \mapsto R_{2}-3 R_{1} \\
R_{3} \mapsto R_{3}+R_{1}}}{\substack{1 \\
\hline \\
0 \\
0 \\
0 \\
0 \\
0}} \begin{array}{rrrrr|r}
5 & 5 & -10 & 0 \\
0 & 2 & -1 & 0
\end{array}\right) \\
& \xrightarrow{R_{2} \mapsto \frac{1}{5} R_{2}}\left(\begin{array}{rrrrr|r}
1 & -1 & -2 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & -2 & 0 \\
0 & 0 & 2 & 2 & -1 & 0
\end{array}\right) \\
& \xrightarrow{R_{3} \mapsto R_{3}-2 R_{2}}\left(\begin{array}{rrrrr|r}
1 & -1 & -2 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 3 & 0
\end{array}\right) \\
& \xrightarrow{R_{3} \mapsto \frac{1}{3} R_{3}}\left(\begin{array}{rrrrr|r}
1 & -1 & -2 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \\
& \underset{R_{1} \mapsto R_{1}-2 R_{3}}{R_{2} \mapsto R_{2}+2 R_{3}}\left(\begin{array}{rrrrr|r}
1 & -1 & -2 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow{R_{1} \mapsto R_{1}+2 R_{2}}\left(\begin{array}{rrrrr|r}
1 & -1 & 0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

From this we see that x_{1}, x_{3}, x_{5} are pivot variables, while x_{2}, x_{4} are free variables. So we will translate the above RREF back into a linear system and then solve for our pivot variables:

$$
\left\{\begin{array} { r l }
{ x _ { 1 } - x _ { 2 } + 2 x _ { 4 } } & { = 0 } \\
{ x _ { 3 } + x _ { 4 } } & { = 0 } \\
{ x _ { 5 } } & { = 0 }
\end{array} \rightarrow \left\{\begin{array}{rl}
x_{1} & =x_{2}-2 x_{4} \\
x_{3} & =-x_{4} \\
x_{5} & =0
\end{array}\right.\right.
$$

Therefore all solutions to this linear system are of the following form:

$$
\left(\begin{array}{c}
x_{2}-2 x_{4} \\
x_{2} \\
-x_{4} \\
x_{4} \\
0
\end{array}\right) \quad x_{2}, x_{4} \in \mathbb{R}
$$

(b) (5 pts) Let A be the coefficient matrix of the above linear system. Then $\mathbf{x} \in \mathbb{R}^{5}$ is an element of X if and only if $A \mathbf{x}=\mathbf{0}$. Therefore $X=\operatorname{Null}(A)$, and we have shown on the homework that this always gives a subspace.
Alternatively, one can directly check the following: (i) $\mathbf{0} \in X$; (ii) if $\mathbf{x}, \mathbf{y} \in X$ then $\mathbf{x}+\mathbf{y} \in X$; and (iii) if $\mathbf{x} \in X$ then $t \mathbf{x} \in X$ for any $t \in \mathbb{R}$. The previous part gives us a general description of the elements of X, which can be used to directly verify each of these three conditions.
5. (a) (5 pts) By a theorem from lecture, we know that any linearly independent set in \mathbb{R}^{3} can contain at most three vectors. Consequently, the system $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$ must be linearly dependent.
(b) (5 pts) Let A be the matrix with columns $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$:

$$
A=\left(\begin{array}{rrrrr}
1 & -1 & -2 & 0 & 2 \\
3 & -3 & -1 & 5 & -4 \\
-1 & 1 & 4 & 2 & -3
\end{array}\right)
$$

Observe that this is precisely the coefficient matrix from the previous problem. Therefor its reduced row echelon form is:

$$
\left(\begin{array}{rrrrr}
1 & -1 & 0 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Since there is a pivot in every row, a theorem from lecture tells us that the system $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$ spans \mathbb{R}^{3}.
6. (a) (2 pts) A system of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in a vector space V is a basis if every other vector $\mathbf{v} \in V$ admits a unique representation as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.
(b) (2 pts) A system of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in a vector space V is linearly independent if only the trivial linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ equals the zero vector.
(c) (2 pts) If a system of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$ is linearly dependent, then every some \mathbf{v}_{k} can be written as a linear combination of the other vectors.
(d) (2 pts) If a system of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a spanning system in V, then every $\mathbf{v} \in V$ admits a tuique representation as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.
(e) (2 pts) A transformation $T: V \rightarrow W$ is quadratic linear if and only if $T(\alpha \mathbf{v}+\beta \mathbf{w})=\alpha T(\mathbf{v})+\beta T(\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in V$ and all scalars α, β.
(f) (2 pts) A linear transformation is an isomorphism if and only if it is injective invertible.
(g) (2 pts) A linear transformation $A: V \rightarrow W$ is right invertible if there exists a linear transformation $B: W \rightarrow V$ such that $A \circ B=I_{W}$.
(h) (2 pts) Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis for a vector space V, and suppose $\mathbf{w}_{1}, \ldots \mathbf{w}_{n}$ is a system basis in a vector space W. If $T: V \rightarrow W$ is a linear transformation satisfying $T\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$ for $i=1, \ldots, n$, then T is an isomorphism.
(i) (2 pts) The kernet range of a linear transformation $T: V \rightarrow W$ is the set of all vectors $\mathbf{w} \in W$ for which there exists $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{w}$.
(j) (2 pts) Matrix multiplication is not commutative.

