Exercises:

1. For each of the following matrices find a diagonalization or show one does not exist.
(a) $\left(\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right)$.
(b) $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.
(c) $\left(\begin{array}{rrr}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right)$.
2. Let $A \in M_{n \times n}$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ counting multiplicities. Prove the following formulas:
(a) $\operatorname{Tr}(A)=\lambda_{1}+\cdots+\lambda_{n}$.
(b) $\operatorname{det}(A)=\lambda_{1} \cdots \lambda_{n}$.
3. Suppose $A \in M_{n \times n}$ is diagonalizable and $\operatorname{char}_{A}(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots a_{1} z+a_{0}$. Show that

$$
a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{n}=O
$$

[Note: this also holds for non-diagonalizable matrices and is called the Cayley-Hamilton theorem.]
4. Suppose $A \in M_{n \times n}$ has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and consider the following subspace of $M_{n \times n}$:

$$
V:=\operatorname{span}\left\{I, A, A^{2}, A^{3}, \ldots\right\} .
$$

Prove that $\operatorname{dim}(V)=n$.
5. Verify that $\langle A, B\rangle_{2}:=\operatorname{Tr}\left(B^{*} A\right)$ defines an inner product on $M_{m \times n}$.
6. Let V be an inner product space with a spanning system $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Prove that for $\mathbf{x} \in V,\left\langle\mathbf{x}, \mathbf{v}_{k}\right\rangle=0$ for each $k=1, \ldots, n$ if and only if $\mathbf{x}=\mathbf{0}$.

Solutions:

1. (a) By Exercise 5 on Homework 8, $\operatorname{char}_{A}(z)=(z-2)^{2}$ and $(1,1)^{T}$ is a basis for the eigenspace $\operatorname{Ker}(A-2 I)$. Thus the geometric multipliicty of $\lambda=2$ is strictly less than its algebraic multiplicity. Therefore A is not diagonalizable.
(b) By Exercise 5 on Homework $8, \sigma(A)=\frac{1 \pm \sqrt{5}}{2}$. Denote these quantities by φ and τ, respectively. The same exercise showed $(\varphi, 1)^{T}$ is a basis for the eigenspace $\operatorname{Ker}(A-\varphi I)$, and $(\tau, 1)^{T}$ is a basis for the eigenspace $\operatorname{Ker}(A-\tau I)$. Thus a diagaonlization of A is given by

$$
A=\left(\begin{array}{cc}
\varphi & \tau \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
\varphi & 0 \\
0 & \tau
\end{array}\right)\left(\begin{array}{cc}
\varphi & \tau \\
1 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\varphi & \tau \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
\varphi & 0 \\
0 & \tau
\end{array}\right) \frac{1}{\varphi-\tau}\left(\begin{array}{cc}
1 & -\tau \\
-1 & \varphi
\end{array}\right)
$$

(c) By Exercise 5 on Homework $8, \sigma(A)=\{-2,1\}$. Also $(-1,1,0)^{T}$ and $(-1,0,1)^{T}$ is a basis for the eigenspace $\operatorname{Ker}(A-(-2) I)$, and $(1,-1,1)^{T}$ is a basis for the eigenspace $\operatorname{Ker}(A-1 I)$. Thus a diagonalization of A is given by

$$
A=\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)^{-1}
$$

To compute the inverse, we do row operations on an augmented matrix:

$$
\begin{aligned}
& \left(\begin{array}{rrr|rrr}
-1 & -1 & 1 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{R 1 \rightarrow R_{3} \rightarrow R_{2} \rightarrow R_{1}}\left(\begin{array}{rrr|rrr}
1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
-1 & -1 & 1 & 1 & 0 & 0
\end{array}\right) \\
& R_{3} \mapsto R_{3}+R_{1}+R_{2}\left(\begin{array}{rrr|rrr}
1 & 0 & -1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \\
& \underset{R_{2} \mapsto R_{2}-R_{3}}{R_{1} \mapsto R_{1}+R_{3}}\left(\begin{array}{lll|rrr}
1 & 0 & 0 & 1 & 2 & 1 \\
0 & 1 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

Thus A has diagonalization:

$$
A=\left(\begin{array}{rrr}
-1 & -1 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & 1 \\
-1 & -1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

2. By Theorem 4.12, there exists an invertible matrix $Q \in M_{n \times n}$ so that

$$
A=Q\left(\begin{array}{ccc}
\lambda_{1} & & * \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right) Q^{-1}
$$

Denote the upper triangular matrix by T. Then

$$
\operatorname{Tr}(A)=\operatorname{Tr}\left(Q T Q^{-1}\right)=\operatorname{Tr}\left(Q^{-1} Q T\right)=\operatorname{Tr}(T)=\lambda_{1}+\cdots+\lambda_{n}
$$

Also,

$$
\operatorname{det}(A)=\operatorname{det}\left(Q T Q^{-1}\right)=\operatorname{det}(Q) \operatorname{det}(T) \operatorname{det}\left(Q^{-1}\right)=\operatorname{det}(T)=\lambda_{1} \cdots \lambda_{n}
$$

3. Let $A=Q D Q^{-1}$ be a diagonalization of A, where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A counting multiplicities. By the functional calculus, we have

$$
a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{n}=\operatorname{char}_{A}(A)=Q \operatorname{char}_{A}(D) Q^{-1}
$$

Now, since $\lambda_{1}, \ldots, \lambda_{n}$ are the roots of $\operatorname{char}_{A}(z)$, we have

$$
\operatorname{char}_{A}(D)=\left(\begin{array}{ccc}
\operatorname{char}_{A}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & \operatorname{char}_{A}\left(\lambda_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
0 & & \\
& \ddots & \\
& & 0
\end{array}\right)=O
$$

Hence $a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I_{n}=Q O Q^{-1}=O$.
4. We claim that $\mathcal{B}:=\left\{I, A, A^{2}, \ldots, A^{n-1}\right\}$ is a basis for V, in which case we will have $\operatorname{dim}(V)=n$. We first show that the system is spanning. Define

$$
p(z):=\operatorname{char}_{A}(z)=\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right)
$$

Note that by expanding we have $p(z)=z^{n}+q(z)$ where $q(z)$ is degree at most $n-1$. Also note that by Corollary 4.10, A is diagonalizable.
We claim that for any $k \geq n$ we have $A^{k} \in \operatorname{span} \mathcal{B}$. We will proceed by induction on k. For the base case, $k=n$, we have by Exercise 3 that $p(A)=O$. Thus

$$
O=p(A)=A^{n}+q(A)
$$

so that $A^{n}=-q(A)$. Since q is degree at most $n-1, A^{n}=-q(A) \in \operatorname{span} \mathcal{B}$. Now, for the induction step assume the claim holds for k; that is,

$$
A^{k}=\alpha_{0} I+\alpha_{1} A+\cdots+\alpha_{n-2} A^{n-2}+\alpha_{n-1} A^{n-1}
$$

for some scalars $\alpha_{0}, \ldots, \alpha_{n-1}$. Then using the base case again we have

$$
A^{k+1}=\alpha_{0} A+\alpha_{1} A^{2}+\cdots+\alpha_{n-2} A^{n-1}+\alpha_{n-1} A^{n}=\alpha_{0} A+\alpha_{1} A^{2}+\cdots+\alpha_{n-2} A^{n-1}+\alpha_{n-1}(-q(A)),
$$

which is in $\operatorname{span} \mathcal{B}$. So by induction $A^{k} \in \operatorname{span} \mathcal{B}$ for all $k \geq 0$ and hence \mathcal{B} is spanning.
Towards showing \mathcal{B} is linearly independent (and hence a basis) suppose

$$
\alpha_{0} I+\alpha_{1} A+\cdots+\alpha_{n-1} A^{n-1}=O
$$

for some scalars $\alpha_{0}, \ldots, \alpha_{n-1}$. Assume, towards a contradiction, that not all of these scalars are zero. Then we can define a non-trivial polynomial

$$
r(z):=\alpha_{0}+\alpha_{1} z+\cdots+\alpha_{n-1} z^{n-1}
$$

and $r(A)=O$. If $A=Q D Q^{-1}$ is a diagonalization of A, then we have

$$
r(D)=Q^{-1} \operatorname{Qr}(D) Q^{-1} Q=Q^{-1} r(A) Q=Q^{-1} O Q=O
$$

However, $r(D)$ is the diagonal matrix with entries $r\left(\lambda_{1}\right), \ldots, r\left(\lambda_{n}\right)$. So if it equals the zero matrix, then $\lambda_{1}, \ldots, \lambda_{n}$ must all be roots of r. Since $\lambda_{1}, \ldots, \lambda_{n}$ are all distinct, this would imply $r(z)$ has n distinct roots which contradicts $r(z)$ being of degree at most $n-1$. Thus it must be that $\alpha_{0}=\cdots=\alpha_{n-1}=0$, and so \mathcal{B} is a linearly independent system.
5. We must check each of the four parts of the definition of an inner product. We first note that

$$
\operatorname{Tr}\left(B^{*} A\right)=\sum_{j=1}^{n}\left(B^{*} A\right)_{j, j}=\sum_{j=1}^{n} \sum_{i=1}^{m}\left(B^{*}\right)_{j, i}(A)_{i, j}=\sum_{i=1}^{m} \sum_{j=1}^{n} \overline{(B)_{i, j}}(A)_{i, j} .
$$

(1) Conjugate Symmetry: using the above formula, we have

$$
\langle B, A\rangle_{2}=\operatorname{Tr}\left(A^{*} B\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} \overline{(A)_{i, j}}(B)_{i, j}=\overline{\sum_{i=1}^{m} \sum_{j=1}^{n}(A)_{i, j} \overline{(B)_{i, j}}}=\overline{\operatorname{Tr}\left(B^{*} A\right)}=\overline{\langle A, B\rangle_{2}} .
$$

(2) Linearity: using the linearity of the trace we have

$$
\begin{aligned}
\langle\alpha A+\beta B, C\rangle_{2} & =\operatorname{Tr}\left(C^{*}(\alpha A+\beta B)\right)=\operatorname{Tr}\left(\alpha C^{*} A+\beta C^{*} B\right) \\
& =\alpha \operatorname{Tr}\left(C^{*} A\right)+\beta \operatorname{Tr}\left(C^{*} B\right)=\alpha\langle A, C\rangle_{2}+\beta\langle B, C\rangle_{2}
\end{aligned}
$$

(3) Non-negativity: using the above formula we have

$$
\langle A, A\rangle_{2}=\sum_{i=1}^{m} \sum_{j=1}^{m} \overline{(A)_{i, j}}(A)_{i, j}=\sum_{i=1}^{m} \sum_{j=1}^{m}\left|(A)_{i, j}\right|^{2},
$$

which is greater than or equal to zero as a sum of non-negative numbers.
(4) Non-degeneracy: using the computation from the previous part, we see that $\langle A, A\rangle_{2}=0$ if and only if

$$
\sum_{i=1}^{m} \sum_{j=1}^{m}\left|(A)_{i, j}\right|^{2}=0
$$

which is possible if and only if $(A)_{i, j}=0$ for each $i=1, \ldots, m$ and $j=1, \ldots, n$. That is, if and only if $A=O$.
6. If $\mathbf{x}=\mathbf{0}$ then we immediately have $\left\langle\mathbf{x}, \mathbf{v}_{k}\right\rangle=0$ for each $k=1, \ldots, n$. Conversely, suppose $\left\langle\mathbf{x}, \mathbf{v}_{k}\right\rangle=0$ for each $k=1, \ldots, n$. Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ span V, there exists scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+$ $\cdots+\alpha_{n} \mathbf{v}_{n}$. Consequently,

$$
\langle\mathbf{x}, \mathbf{x}\rangle=\left\langle\mathbf{x}, \alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}\right\rangle=\bar{\alpha}_{1}\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle+\cdots+\bar{\alpha}_{n}\left\langle\mathbf{x}, \mathbf{v}_{n}\right\rangle=\bar{\alpha}_{1} 0+\cdots+\bar{\alpha}_{n} 0=0
$$

Thus $\langle\mathbf{x}, \mathbf{x}\rangle=0$ and so by non-degeneracy $\mathbf{x}=\mathbf{0}$.

