Exercises:

1. Consider the two following bases for \mathbb{P}_{2} :

$$
\mathcal{S}:=\left\{1, x, x^{2}\right\} \quad \text { and } \quad \mathcal{A}=\left\{x-1, x^{2}+x, 2 x\right\} .
$$

(a) Compute $[I]_{\mathcal{A}}^{\mathcal{S}}$, the change of coordinate matrix from \mathcal{A} to \mathcal{S}.
(b) Compute $[I]_{\mathcal{S}}^{\mathcal{A}}$, the change of coordinate matrix from \mathcal{S} to \mathcal{A}.
(c) Compute the following coordinate vectors:

- $\left[3 x^{2}-x+2\right]_{\mathcal{A}}$
- $\left[x^{2}+x-3\right]_{\mathcal{A}}$
- $\left[x^{2}+x\right]_{\mathcal{A}}$
(d) For $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined by $T(p(x))=p^{\prime}(x)$, compute the following matrix representations:
- $[T]_{\mathcal{S}}^{\mathcal{S}}$
- $[T]_{\mathcal{A}}^{\mathcal{S}}$
- $[T]_{\mathcal{S}}^{\mathcal{A}}$
- $[T]_{\mathcal{A}}^{\mathcal{A}}$

2. Define a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by letting $T(\mathbf{v})$ be the reflection of \mathbf{v} over the line $y=-\frac{1}{3} x$. For the standard basis $\mathcal{S}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, compute $[T]_{\mathcal{S}}^{\mathcal{S}}$.
3. Show that if $A, B \in M_{n \times n}$ are similar, then $\operatorname{Tr}(A)=\operatorname{Tr}(B)$.
4. Consider the matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be its column vectors. Prove that the area of the parallelogram determined by $\mathbf{v}_{1}, \mathbf{v}_{2}$ is always $|a d-b c|$. [Hint: find a rotation matrix R_{θ} such that $R_{\theta} \mathbf{v}_{1}=\alpha \mathbf{e}_{1}$ for some scalar α.]
5. Let $A \in M_{n \times m}$.
(a) Suppose $n=m$. Prove that $A^{T} A$ is invertible if and only if $A A^{T}$ is invertible.
(b) Suppose $n \neq m$. Find a counterexample to the previous statement.
6. Fix $m, n \in \mathbb{N}$.
(a) Show that $\operatorname{det}\left(\begin{array}{cc}E & \mathbf{0} \\ \mathbf{0} & I_{n}\end{array}\right)=\operatorname{det}(E)$ for an elementary matrix $E \in M_{m \times m}$.
(b) Show that $\operatorname{det}\left(\begin{array}{cc}I_{m} & \mathbf{0} \\ \mathbf{0} & E\end{array}\right)=\operatorname{det}(E)$ for an elementary matrix $E \in M_{n \times n}$.
(c) Show that $\operatorname{det}\left(\begin{array}{cc}A & B \\ \mathbf{0} & C\end{array}\right)=\operatorname{det}(A) \operatorname{det}(C)$ for $A \in M_{m \times m}, B \in M_{m \times n}$, and $C \in M_{n \times n}$.
[Hint: use a product and the first two parts.]

Solutions:

1. (a) $[I]_{\mathcal{A}}^{\mathcal{S}}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 0\end{array}\right)$.
(b) $[I]_{\mathcal{S}}^{\mathcal{A}}=\left([I]_{\mathcal{A}}^{\mathcal{S}}\right)^{-1}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & -1 / 2\end{array}\right)$
(c) $\quad \bullet\left[3 x^{2}-x+2\right]_{\mathcal{A}}=[I]_{\mathcal{S}}^{\mathcal{A}}\left[3 x^{2}-x+2\right]_{\mathcal{S}}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & -1 / 2\end{array}\right)\left(\begin{array}{r}2 \\ -1 \\ 3\end{array}\right)=\left(\begin{array}{r}-2 \\ 3 \\ -1\end{array}\right)$

- $\left[x^{2}+x-3\right]_{\mathcal{A}}=[I]_{\mathcal{S}}^{\mathcal{A}}\left[3 x^{2}+x-3\right]_{\mathcal{S}}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & -1 / 2\end{array}\right)\left(\begin{array}{r}-3 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{r}3 \\ 1 \\ -3 / 2\end{array}\right)$.
- Observe that $x^{2}+x$ is the second basis vector in \mathcal{A}, so $\left[x^{2}+x\right]_{\mathcal{A}}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
(d) $\quad[T]_{\mathcal{S}}^{\mathcal{S}}=\left([T(1)]_{\mathcal{S}}[T(x)]_{\mathcal{S}}\left[T\left(x^{2}\right)\right]_{\mathcal{S}}\right)=\left([0]_{\mathcal{S}}[1]_{\mathcal{S}}[2 x]_{\mathcal{S}}\right)=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)$.
- $[T]_{\mathcal{A}}^{\mathcal{S}}=[T]_{\mathcal{S}}^{\mathcal{S}_{\mathcal{S}}}[I]_{\mathcal{A}}^{\mathcal{S}}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{rrr}-1 & 0 & 0 \\ 1 & 1 & 2 \\ 0 & 1 & 0\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 0\end{array}\right)$
- $[T]_{\mathcal{S}}^{\mathcal{A}}=[I]_{\mathcal{S}}^{\mathcal{A}}[T]_{\mathcal{S}}^{\mathcal{S}}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & -1 / 2\end{array}\right)\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{rrr}0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 / 2 & 1\end{array}\right)$.
- $[T]_{\mathcal{A}}^{\mathcal{A}}=[I]_{\mathcal{S}}^{\mathcal{A}}[T]_{\mathcal{A}}^{\mathcal{S}}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & -1 / 2\end{array}\right)\left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{rrr}-1 & -1 & -2 \\ 0 & 0 & 0 \\ 1 / 2 & 3 / 2 & 1\end{array}\right)$.

2. Consider the following vectors which interact nicely with this linear transformation:

$$
\mathbf{b}_{1}:=\binom{-3}{1} \quad \mathbf{b}_{2}:=\binom{1}{3} .
$$

Note that \mathbf{b}_{1} is parallel to the line $y=-\frac{1}{3} x$, while \mathbf{b}_{2} is perpendicular to it. Thus $T\left(\mathbf{b}_{1}\right)=\mathbf{b}_{1}$ while $T\left(\mathbf{b}_{2}=-\mathbf{b}_{2}\right.$. Consider the basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$. Then by the observations we just made

$$
[T]_{\mathcal{B}}^{\mathcal{B}}=\left(\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}\left[T\left(\mathbf{b}_{2}\right]_{\mathcal{B}}\right)=\left(\left[\mathbf{b}_{1}\right]_{\mathcal{B}}\left[-\mathbf{b}_{2}\right]_{\mathcal{B}}\right)=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .\right.
$$

To compute $[T]_{\mathcal{S}}^{\mathcal{S}}$, we will need the change of coordinate matrices $[I]_{\mathcal{B}}^{\mathcal{S}}$ and $[I]_{\mathcal{S}}^{\mathcal{B}}$:

$$
\begin{aligned}
& {[I]_{\mathcal{B}}^{\mathcal{S}}=\left(\left[I\left(\mathbf{b}_{1}\right)\right]_{\mathcal{S}}\left[I\left(\mathbf{b}_{2}\right)\right]_{\mathcal{S}}\right)=\left(\mathbf{b}_{1} \mathbf{b}_{2}\right)=\left(\begin{array}{rr}
-3 & 1 \\
1 & 3
\end{array}\right)} \\
& {[I]_{\mathcal{S}}^{\mathcal{B}}=\left([I]_{\mathcal{B}}^{\mathcal{S}}\right)^{-1}=\left(\begin{array}{rr}
-3 / 10 & 1 / 10 \\
1 / 10 & 3 / 10
\end{array}\right)}
\end{aligned}
$$

Finally, we compute

$$
[T]_{\mathcal{S}}^{\mathcal{S}}=[I]_{\mathcal{B}}^{\mathcal{S}}[T]_{\mathcal{B}}^{\mathcal{B}}[I]_{\mathcal{S}}^{\mathcal{B}}=\left(\begin{array}{rr}
-3 & 1 \\
1 & 3
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{rr}
-3 / 10 & 1 / 10 \\
1 / 10 & 3 / 10
\end{array}\right)=\left(\begin{array}{rr}
4 / 5 & -3 / 5 \\
-3 / 5 & -4 / 5
\end{array}\right)
$$

3. Suppose A and B are similar. Then there exists an invertible Q such that $A=Q^{-1} B Q$. Then using Exercise 6 from Homework 3 we have

$$
\operatorname{Tr}(A)=\operatorname{Tr}\left(Q^{-1} B Q\right)=\operatorname{Tr}\left(B Q Q^{-1}\right)=\operatorname{Tr}(B)
$$

4. Let θ be the counter-clockwise angle between the positive x-axis and \mathbf{v}_{1}. Consider

$$
R_{-\theta}=\left(\begin{array}{rr}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right)=\left(\begin{array}{rr}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right)=\frac{1}{\sqrt{a^{2}+c^{2}}}\left(\begin{array}{rr}
a & c \\
-c & a
\end{array}\right) .
$$

Recall that $R_{-\theta}$ is the linear transformation that rotates \mathbb{R}^{2} by $-\theta$ radians. Observe that

$$
R_{-\theta} \mathbf{v}_{1}=\frac{1}{\sqrt{a^{2}+c^{2}}}\binom{a^{2}+c^{2}}{0}=\binom{\sqrt{a^{2}+c^{2}}}{0}
$$

Also, we have

$$
R_{-\theta} \mathbf{v}_{2}=\frac{1}{\sqrt{a^{2}+c^{2}}}\binom{a b+c d}{a d-b c}
$$

The parallelogram associated to $R_{-\theta} \mathbf{v}_{1}$ and $R_{-\theta} \mathbf{v}_{2}$ has area given by its base times its height (like the example from lecture):

$$
\sqrt{a^{2}+c^{2}} \cdot\left|\frac{1}{\sqrt{a^{2}+c^{2}}}(a d-b c)\right|=|a d-b c| .
$$

The parallelogram associated to \mathbf{v}_{1} and \mathbf{v}_{2} is a rotation of the above parallelogram and therefore has the same area.
5. (a) We have

$$
\operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(A^{T}\right) \operatorname{det}(A)=\operatorname{det}(A) \operatorname{det}\left(A^{T}\right)=\operatorname{det}\left(A A^{T}\right)
$$

Thus $\operatorname{det}\left(A^{T} A\right) \neq 0$ if and only if $\operatorname{det}\left(A A^{T}\right) \neq 0$. Since the determinant being nonzero is equivalent to the matrix being invertible, we have $A^{T} A$ is invertible if and only if $A A^{T}$ is invertible.
(b) Consider $A=\left(\begin{array}{ll}1 & 0\end{array}\right) \in M_{1 \times 2}$. Then

$$
A^{T} A=\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Since this matrix is upper triangular, its determinant is the product of its diagonal entries: $\operatorname{det}\left(A^{T} A\right)=0$. Thus $A^{T} A$ is not invertible. On the other hand,

$$
A A^{T}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)=(1)
$$

which is the identity matrix in $M_{1 \times 1}$ and in particular is invertible.
6. (a) Observe that if E is elementary, then so is

$$
\left(\begin{array}{cc}
E & \mathbf{0} \\
\mathbf{0} & I_{n}
\end{array}\right)
$$

Moreover, both elementary matrices are of the same type. So if E is type 1 , then both matrices have determinant -1 . If E is type 2 with scalar $\alpha \neq 0$ on the diagonal, then so is the above matrix and hence they both have determinant α. Finally, if E is type 3 then so is the above matrix and hence both have determinant equal to one.
(b) This follows by the same argument as in the previous part.
(c) Let E_{1}, \ldots, E_{k} be elementary matrices such that $A=E_{1} \cdots E_{k} \tilde{A}$, where \tilde{A} is the RREF of A. These exist since row operations can be used to go from \tilde{A} to A. Note that: (i) \tilde{A} is upper triangular; (ii) A is not invertible iff \tilde{A} is missing pivot and hence has a zero along its diagonal; and (iii) A is invertible iff $\tilde{A}=I_{n}$.
Let F_{1}, \ldots, F_{ℓ} be elementary matrices such that $C=\tilde{C} F_{\ell} \cdots F_{1}$, where \tilde{C} is upper triangular. To see that these exist, let D be the RREF of C^{T}. By using a series of row exchanges, one can turn D into a lower triangular matrix D^{\prime} (simply reverse the order of rows). Thus there are elementary matrices G_{1}, \ldots, G_{ℓ} such that $C^{T}=G_{1} \cdots G_{\ell} D_{\tilde{\sim}}^{\prime}$. Taking the transpose of each side yields $C=\left(D^{\prime}\right)^{T} G_{\ell}^{T} \cdots G_{1}^{T}$. Since D^{\prime} is lower triangular, $\tilde{C}:=\left(D^{\prime}\right)^{T}$ is upper triangular, and $F_{1}:=G_{1}^{T}, \ldots, F_{\ell}:=G_{\ell}^{T}$ are elementary matrices. Note that: (i) C is not invertible iff \tilde{C} has a zero along its diagonal; and (ii) C is invertible iff $\tilde{C}=I_{n}$. Indeed, C is invertible iff C^{T} and then we infer (i) and (ii) from D.

Now, since all elementary matrices are invertible, we can define $\tilde{B}:=\left(E_{1} \cdots E_{k}\right)^{-1} B\left(F_{\ell} \cdots F_{1}\right)^{-1}$. Then $B=E_{1} \cdots E_{k} \tilde{B} F_{\ell} \cdots F_{1}$. Observe that

$$
\begin{aligned}
\left(\begin{array}{cc}
A & B \\
\mathbf{0} & C
\end{array}\right) & =\left(\begin{array}{cc}
E_{1} \cdots E_{k} \tilde{A} & E_{1} \cdots E_{k} \tilde{B} F_{\ell} \cdots F_{1} \\
\tilde{C} F_{\ell} \cdots F_{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
E_{1} & \mathbf{0} \\
\mathbf{0} & I_{n}
\end{array}\right) \cdots\left(\begin{array}{cc}
E_{k} & \mathbf{0} \\
\mathbf{0} & I_{n}
\end{array}\right)\left(\begin{array}{cc}
\tilde{A} & \tilde{B} \\
\mathbf{0} & \tilde{C}
\end{array}\right)\left(\begin{array}{cc}
I_{m} & \mathbf{0} \\
\mathbf{0} & F_{\ell}
\end{array}\right) \cdots\left(\begin{array}{cc}
I_{m} & \mathbf{0} \\
\mathbf{0} & F_{1}
\end{array}\right)
\end{aligned}
$$

Since \tilde{A} and \tilde{C} are upper triangular, so is

$$
M:=\left(\begin{array}{cc}
\tilde{A} & \tilde{B} \\
\mathbf{0} & \tilde{C}
\end{array}\right)
$$

Using the first two parts and the fact that the determinant of a product is the product of the determinants, we have

$$
\operatorname{det}\left(\begin{array}{cc}
A & B \\
\mathbf{0} & C
\end{array}\right)=\operatorname{det}\left(E_{1}\right) \cdots \operatorname{det}\left(E_{k}\right) \operatorname{det}(M) \operatorname{det}\left(F_{\ell}\right) \cdots \operatorname{det}\left(F_{1}\right)
$$

If either A or C is not invertible, then $\operatorname{det}(A) \operatorname{det}(C)=0$ and as noted above either \tilde{A} or \tilde{C} will have a zero along their diagonal. But then so does M and hence $\operatorname{det}(M)=0$. It follows that

$$
\operatorname{det}\left(\begin{array}{cc}
A & B \\
\mathbf{0} & C
\end{array}\right)=0=\operatorname{det}(A) \operatorname{det}(C)
$$

Finally, suppose A and C are both invertible. As noted above, $\tilde{A}=I_{m}$ and $\tilde{C}=I_{n}$. Therefore the diagonal entries of M are all equal to one so that $\operatorname{det}(M)=1$. Also note that this implies $A=E_{1} \cdots E_{k}$ and $C=F_{\ell} \cdots F_{1}$. Thus

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
A & B \\
\mathbf{0} & C
\end{array}\right) & =\operatorname{det}\left(E_{1}\right) \cdots \operatorname{det}\left(E_{k}\right) \operatorname{det}\left(F_{\ell}\right) \cdots \operatorname{det}\left(F_{1}\right) \\
& =\operatorname{det}\left(E_{1} \cdots E_{k}\right) \operatorname{det}\left(F_{\ell} \cdots F_{1}\right)=\operatorname{det}(A) \operatorname{det}(C)
\end{aligned}
$$

as claimed.

