Exercises:

1. For the following matrix, compute its rank and find bases for each of its four fundamental subspaces:

$$
A=\left(\begin{array}{rrrrr}
1 & 2 & 3 & 1 & 1 \\
1 & 4 & 0 & 1 & 2 \\
0 & 2 & -3 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

2. Let $S: U \rightarrow V$ and $T: V \rightarrow W$ be a linear transformations between finite-dimensional vector spaces.
(a) Prove that if $V_{0} \subset V$ is a subspace, then

$$
T\left(V_{0}\right)=\left\{\mathbf{w} \in W: \mathbf{w}=T(\mathbf{v}) \text { for some } \mathbf{v} \in V_{0}\right\}
$$

is a subspace.
(b) Prove that $\operatorname{dim}\left(T\left(V_{0}\right)\right) \leq \min \left\{\operatorname{rank}(T), \operatorname{dim}\left(V_{0}\right)\right\}$.
(c) Prove that $\operatorname{rank}(T \circ S) \leq \min \{\operatorname{rank}(T), \operatorname{rank}(S)\}$.
3. Let V be a finite dimensional vector space and let $X, Y \subset V$ be subspaces. The goal of this exercise is to proof the following formula

$$
\operatorname{dim}(X+Y)=\operatorname{dim}(X)+\operatorname{dim}(Y)-\operatorname{dim}(X \cap Y)
$$

Here, $X+Y:=\{\mathbf{v}=\mathbf{x}+\mathbf{y}: \mathbf{x} \in X, \mathbf{y} \in Y\}$.
(a) Prove that $X+Y$ is a subspace of V.
(b) The direct sum of X and Y is the following set

$$
X \oplus Y:=\{(x, y): x \in X, y \in Y\}
$$

This can be made into a vector space with operations of addition

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right),
$$

and scalar multiplication

$$
\alpha(x, y)=(\alpha x, \alpha y) .
$$

You do not need to prove that $X \oplus Y$ is a vector space, but do prove that $\operatorname{dim}(X \oplus Y)=$ $\operatorname{dim}(X)+\operatorname{dim}(Y)$.
(c) Consider the transformation $T: X \oplus Y \rightarrow V$ defined by $T(x, y)=x-y$. Prove that T is linear.
(d) Show that $\operatorname{Ran}(T)=X+Y$.
(e) Show that $\operatorname{Ker}(T) \cong X \cap Y$.
(f) Use the rank-nullity theorem on T to prove the claimed formula.
4. Let $A \in M_{m \times n}$. Prove that $A \mathbf{x}=\mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{F}^{m}$ if and only if $A^{T} \mathbf{x}=\mathbf{0}$ has a unique solution.
5. Complete the following set of vectors to a basis for \mathbb{R}^{5} :

$$
\mathbf{v}_{1}=\left(\begin{array}{r}
1 \\
2 \\
-1 \\
2 \\
3
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
2 \\
2 \\
1 \\
5 \\
5
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{r}
-1 \\
-4 \\
4 \\
7 \\
-8
\end{array}\right)
$$

Solutions:

1. The RREF of A is

$$
B=\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 / 4 & 1 / 2 \\
0 & 0 & 1 & 1 / 6 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Since there are three pivots, we have $\operatorname{rank}(A)=3$. The pivots occur in the first three columns of B, so the corresponding columns of A form a basis for $\operatorname{Ran}(A)$:

$$
\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
4 \\
2 \\
0
\end{array}\right),\left(\begin{array}{r}
3 \\
0 \\
-3 \\
0
\end{array}\right) .
$$

The pivots also occur in the first three rows of B, so those rows form a basis for $\operatorname{Ran}\left(A^{T}\right)$:

$$
\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{r}
0 \\
1 \\
0 \\
1 / 4 \\
1 / 2
\end{array}\right),\left(\begin{array}{r}
0 \\
0 \\
1 \\
1 / 6 \\
0
\end{array}\right) .
$$

To find a basis for $\operatorname{Ker}(A)$, we note that the augmented matrix $(B \mid \mathbf{0})$ implies the solution of $A \mathbf{x}=\mathbf{0}$ are of the form:

$$
\mathbf{x}=\left(\begin{array}{c}
0 \\
-\frac{1}{4} x_{4}-\frac{1}{2} x_{5} \\
-\frac{1}{6} x_{4} \\
x_{4} \\
x_{5}
\end{array}\right)=x_{4}\left(\begin{array}{r}
0 \\
-1 / 4 \\
-1 / / 6 \\
1 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{r}
0 \\
-1 / 2 \\
0 \\
0 \\
1
\end{array}\right), \quad x_{4}, x_{5} \in \mathbb{F}
$$

Thus $\left(0,-\frac{1}{4},-\frac{1}{6}, 1,0\right)^{T},\left(0,-\frac{1}{2}, 0,0,1\right)^{T}$ form a basis for $\operatorname{Ker}(A)$.
To find a basis for $\operatorname{Ker}\left(A^{T}\right)$, we first compute the RREF of A^{T} :

$$
C=\left(\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

So solutions to $A^{T} \mathbf{x}=\mathbf{0}$ are of the form

$$
\mathbf{x}=\left(\begin{array}{c}
x_{3} \\
-x_{3} \\
x_{3} \\
0
\end{array}\right)=x_{3}\left(\begin{array}{r}
1 \\
-1 \\
1 \\
0
\end{array}\right)
$$

Therefore $(1,-1,1,0)^{T}$ is a basis for $\operatorname{Ker}\left(A^{T}\right)$.
2. (a) Suppose V_{0} is a subpace. Then $\mathbf{0}_{V} \in V_{0}$ and therefore

$$
\mathbf{0}_{W}=T\left(\mathbf{0}_{V}\right) \in T\left(V_{0}\right)
$$

Next, let $\mathbf{w}_{1}, \mathbf{w}_{2} \in T\left(V_{0}\right)$. Then there exists $\mathbf{v}_{1}, \mathbf{v}_{2} \in V_{0}$ such that $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1}$ and $T\left(\mathbf{v}_{2}\right)=\mathbf{w}_{2}$. But then using the linearity of T we have

$$
\mathbf{w}_{1}+\mathbf{w}_{2}=T\left(\mathbf{v}_{1}\right)+T\left(\mathbf{v}_{2}\right)=T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) .
$$

Since V_{0} is a subspace, $\mathbf{v}_{1}+\mathbf{v}_{2} \in V_{0}$ and so $\mathbf{w}_{1}+\mathbf{w}_{2} \in T\left(V_{0}\right)$. Finally, let α be a scalar and let $\mathbf{w}_{1}, \mathbf{v}_{1}$ be as above. Again using the linearity of T and the fact that V_{0} is a subspace, we have

$$
\alpha \mathbf{w}_{1}=\alpha T\left(\mathbf{v}_{1}\right)=T\left(\alpha \mathbf{v}_{1}\right) \in T\left(V_{0}\right)
$$

Thus $T\left(V_{0}\right)$ is a subspace.
(b) We will show $\operatorname{dim}\left(T\left(V_{0}\right)\right) \leq \operatorname{rank}(T)$ and $\operatorname{dim}\left(T\left(V_{0}\right)\right) \leq \operatorname{dim}\left(V_{0}\right)$, which implies the desired inequality. First, note that $V_{0} \subset V$ implies $T\left(V_{0}\right) \subset T(V)$. Thus $T\left(V_{0}\right)$ is a subspace (by the previous part) of $T(V)$. But $T(V)=\operatorname{Ran}(T)$ and so

$$
\operatorname{dim}\left(T\left(V_{0}\right)\right) \leq \operatorname{dim}(T(V))=\operatorname{dim}(\operatorname{Ran}(T))=\operatorname{rank}(T)
$$

Next, note that V_{0} is finite-dimensional by virtue of being a subspace of the finite-dimensional vector space V. So let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ form a basis for V_{0}. Then $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{r}\right)$ is spanning for $T\left(V_{0}\right)$. Indeed, given any $\mathbf{w} \in T\left(V_{0}\right)$ we have $\mathbf{w}=T(\mathbf{v})$ for some $\mathbf{v} \in V_{0}$. But then there are scalars $\alpha_{1}, \ldots, \alpha_{r}$ such that $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{r} \mathbf{v}_{r}$. Applying T to each side and using linearity we see that

$$
\mathbf{w}=T(\mathbf{v})=T\left(\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{r} \mathbf{v}_{r}\right)=\alpha_{1} T\left(\mathbf{v}_{1}\right)+\cdots+\alpha_{r} T\left(\mathbf{v}_{r}\right)
$$

Thus $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{r}\right)$ are spanning for $T\left(V_{0}\right)$ as claimed. Consequently, we know that this system can be reduced to a basis for $T\left(V_{0}\right)$. But then this system will have at most r vectors which implies

$$
\operatorname{dim}\left(T\left(V_{0}\right)\right) \leq r=\operatorname{dim}\left(V_{0}\right)
$$

as claimed.
(c) Denote $V_{0}:=S(U)=\operatorname{Ran}(S)$. Then $T\left(V_{0}\right)=T(S(U))=\operatorname{Ran}(T \circ S)$. Thus

$$
\begin{aligned}
\operatorname{rank}(T \circ S) & =\operatorname{dim}\left(T\left(V_{0}\right)\right) \\
\operatorname{rank}(S) & =\operatorname{dim}\left(V_{0}\right) .
\end{aligned}
$$

Therefore the desired inequality follows immediately from the previous part.
3. (a) Since both X and Y are subspaces, $\mathbf{0}_{V} \in X$ and $\mathbf{0}_{V} \in Y$. Therefore

$$
\mathbf{0}_{V}=\mathbf{0}_{V}+\mathbf{0}_{V} \in X+Y
$$

Next, let $\mathbf{v}_{1}, \mathbf{v}_{2} \in X+Y$. Then there are $\mathbf{x}_{1}, \mathbf{x}_{2} \in X$ and $\mathbf{y}_{1}, \mathbf{y}_{2} \in Y$ such that

$$
\mathbf{v}_{1}=\mathbf{x}_{1}+\mathbf{y}_{1} \quad \text { and } \quad \mathbf{v}_{2}=\mathbf{x}_{2}+\mathbf{y}_{2}
$$

But then since X and Y are closed under addition we have

$$
\mathbf{v}_{1}+\mathbf{v}_{2}=\mathbf{x}_{1}+\mathbf{y}_{1}+\mathbf{x}_{2}+\mathbf{y}_{2}=\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\left(\mathbf{y}_{1}+\mathbf{y}_{2}\right) \in X+Y
$$

Finally, let α be a scalar and let $\mathbf{v}_{1}, \mathbf{x}_{1}, \mathbf{y}_{1}$ be as above. Since X and Y are closed under scalar multiplication, we have (by the distributive law) that

$$
\alpha \mathbf{v}_{1}=\alpha\left(\mathbf{x}_{1}+\mathbf{y}_{1}\right)=\alpha \mathbf{x}_{1}+\alpha \mathbf{y}_{1} \in X+Y
$$

Thus $X+Y$ is a subspace.
(b) Since X and Y are subspaces of the finite-dimensional V, they are both finite-dimensional. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}$ be bases for X and Y, respectively. We claim that

$$
\left(\mathbf{x}_{1}, \mathbf{0}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{0}\right),\left(\mathbf{0}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{0}, \mathbf{y}_{m}\right)
$$

is a basis for $X \oplus Y$. If this is true, then we have $\operatorname{dim}(X \oplus Y)=n+m=\operatorname{dim}(X)+\operatorname{dim}(Y)$, as desired. We first check linear independence: suppose there are scalars $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}$ such that

$$
\alpha_{1}\left(\mathbf{x}_{1}, \mathbf{0}\right)+\cdots+\alpha_{n}\left(\mathbf{x}_{n}, \mathbf{0}\right)+\beta_{1}\left(\mathbf{0}, \mathbf{y}_{1}\right)+\cdots+\beta_{m}\left(\mathbf{0}, \mathbf{y}_{m}\right)=\mathbf{0}_{X \oplus Y}
$$

Note that $\mathbf{0}_{X \oplus Y}=(\mathbf{0}, \mathbf{0})$. By definition of the addition and scalar multiplication operations, this is equivalent to

$$
\left(\alpha_{1} \mathbf{x}_{1}+\cdots \alpha_{n} \mathbf{x}_{n}, \beta_{1} \mathbf{y}_{1}+\cdots+\beta_{m} \mathbf{y}_{m}\right)=(\mathbf{0}, \mathbf{0})
$$

which is in turn equivalent to the pair of equations

$$
\begin{aligned}
\alpha_{1} \mathbf{x}_{1}+\cdots \alpha_{n} \mathbf{x}_{n} & =\mathbf{0} \\
\beta_{1} \mathbf{y}_{1}+\cdots+\beta_{m} \mathbf{y}_{m} & =\mathbf{0} .
\end{aligned}
$$

As $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}$ are both bases, we must have $\alpha_{1}=\cdots=\alpha_{n}=0$ and $\beta_{1}=\cdots=$ $\beta_{m}=0$. Hence the original vectors are linearly independent. To see that they are spanning, let $(\mathbf{x}, \mathbf{y}) \in X \oplus Y$. Then there are scalars $\alpha_{1}, \ldots, \alpha_{n}$ and scalars $\beta_{1}, \ldots, \beta_{m}$ such that

$$
\begin{aligned}
\alpha_{1} \mathbf{x}_{1}+\cdots \alpha_{n} \mathbf{x}_{n} & =\mathbf{x} \\
\beta_{1} \mathbf{y}_{1}+\cdots+\beta_{m} \mathbf{y}_{m} & =\mathbf{y}
\end{aligned}
$$

But then by the same computation as above, we have

$$
\alpha_{1}\left(\mathbf{x}_{1}, \mathbf{0}\right)+\cdots+\alpha_{n}\left(\mathbf{x}_{n}, \mathbf{0}\right)+\beta_{1}\left(\mathbf{0}, \mathbf{y}_{1}\right)+\cdots+\beta_{m}\left(\mathbf{0}, \mathbf{y}_{m}\right)=(\mathbf{x}, \mathbf{y}) .
$$

Hence the vectors are spanning and therefore a basis for $X \oplus Y$.
(c) Let $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right),\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \in X \oplus Y$ and let α and β be scalars. Then

$$
\begin{aligned}
T\left(\alpha\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)+\beta\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)\right) & =T\left(\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2}, \alpha \mathbf{y}_{1}+\beta \mathbf{y}_{2}\right) \\
& =\left(\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2}\right)-\left(\alpha \mathbf{y}_{1}+\beta \mathbf{y}_{2}\right) \\
& =\alpha\left(\mathbf{x}_{1}-\mathbf{y}_{1}\right)+\beta\left(\mathbf{x}_{2}-\mathbf{y}_{2}\right)=\alpha T\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)+\beta T\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)
\end{aligned}
$$

Thus T is linear.
(d) Let $\mathbf{v} \in X+Y$. Then there exists $\mathbf{x} \in X$ and $\mathbf{y} \in Y$ such that $\mathbf{v}=\mathbf{x}+\mathbf{y}$. But then $T(\mathbf{x},-\mathbf{y})=$ $\mathbf{x}-(-\mathbf{y})=\mathbf{x}+\mathbf{y}=\mathbf{v}$. Thus $X+Y \subset \operatorname{Ran}(T)$. On the other hand, for any $(\mathbf{x}, \mathbf{y}) \in X \oplus Y$, we have $T(\mathbf{x}, \mathbf{y})=\mathbf{x}-\mathbf{y}=\mathbf{x}+(-\mathbf{y}) \in X+Y$. So the other inclusion holds and we therefore have $X+Y=\operatorname{Ran}(T)$.
(e) Suppose $(\mathbf{x}, \mathbf{y}) \in \operatorname{Ker}(T)$. Then $\mathbf{0}=T(\mathbf{x}, \mathbf{y})=\mathbf{x}-\mathbf{y}$, which implies $\mathbf{x}=\mathbf{y}$. Since $\mathbf{x} \in X$ and $\mathbf{y} \in Y$, their being equal implies $\mathbf{x}=\mathbf{y} \in X \cap Y$. Thus $\operatorname{Ker}(T)=\{(\mathbf{w}, \mathbf{w}): \mathbf{w} \in X \cap Y\}$. We claim that

$$
\operatorname{Ker}(T) \ni(\mathbf{w}, \mathbf{w}) \mapsto \mathbf{w} \in X \cap Y
$$

defines an isomorphism. Indeed, it is clearly linear and its inverse is simply the map

$$
X \cap Y \ni \mathbf{w} \mapsto(\mathbf{w}, \mathbf{w}) \in \operatorname{Ker}(T)
$$

Thus $\operatorname{Ker}(T) \cong X \cap Y$ as claimed.
(f) The rank-nullity theorem for T states

$$
\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(X \oplus Y)
$$

By part (b), the right-hand side is $\operatorname{dim}(X)+\operatorname{dim}(Y)$. By part $(\mathrm{d}), \operatorname{rank}(T)=\operatorname{dim}(\operatorname{Ran}(T))=$ $\operatorname{dim}(X+Y)$. By part (e), nullity $(T)=\operatorname{dim}(\operatorname{Ker}(T))=\operatorname{dim}(X \cap Y)$. Substituting all of this into the above equation yields

$$
\operatorname{dim}(X+Y)+\operatorname{dim}(X \cap Y)=\operatorname{dim}(X)+\operatorname{dim}(Y)
$$

Subtracting $\operatorname{dim}(X \cap Y)$ from each side yields the desired equation.
4. (\Longrightarrow) : Suppose $A \mathbf{x}=\mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{F}^{m}$. By an observation from lecture, this means the RREF of A has a pivot in every row and therefore $\operatorname{rank}(A)=m$. By the matrix version of the rank-nullity theorem we have $\operatorname{nullity}\left(A^{T}\right)=m-\operatorname{rank}(A)=0$. Thus $\operatorname{Ker}\left(A^{T}\right)$ is the zero subspace, which only contains $\mathbf{0}$. Hence $A^{T} \mathbf{x}=\mathbf{0}$ has a unique solutions (namely $\mathbf{x}=\mathbf{0}$).
(\Longleftarrow) : Suppose $A^{T} \mathbf{x}=\mathbf{0}$ has a unique solution. By an observation from lecture, this means the RREF of A^{T} has a pivot in every column. Since $A^{T} \in M_{n \times m}$, this means $\operatorname{rank}\left(A^{T}\right)=m$. But the rank of A and A^{T} agree, so $\operatorname{rank}(A)=m$. Thus the RREF of A has a pivot in every row, and therefore $A \mathbf{x}=\mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{F}^{m}$.
5. We let A be the matrix with rows $\mathbf{v}_{1}^{T}, \mathbf{v}_{2}^{T}, \mathbf{v}_{3}^{T}$. Then its RREF is:

$$
\left(\begin{array}{rrrrr}
1 & 0 & 2 & 0 & \frac{7}{2} \\
0 & 1 & -\frac{3}{2} & 0 & \frac{1}{4} \\
0 & 0 & 0 & 1 & -\frac{1}{2}
\end{array}\right) .
$$

Columns 3 and 5 are missing pivots. So by the algorithm discussed in lecture, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{e}_{3}, \mathbf{e}_{5}$ form a basis for \mathbb{R}^{5}. (Note that we can verify this by checking that the RREF of the matrix $\left(\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{e}_{3} \mathbf{e}_{5}\right)$ is I_{5}.)

