Exercises:

1. Let $T: V \rightarrow W$ be an isomorphism, and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$.
(a) Prove that if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a generating system in V, then $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ is a generating system in W.
(b) Prove that if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a linearly independent system in V, then $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ is a linearly independent system in W.
(c) Prove that if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis for V, then $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ is a basis for in W.
2. Find all right inverses of the matrix $A=(1,1) \in M_{1 \times 2}$. Use this to prove that A is not left invertible.
3. Suppose $A: V \rightarrow W$ and $B: U \rightarrow V$ are linear transformations such that $A \circ B$ is invertible.
(a) Prove that A is right invertible and B is left invertible.
(b) Find an example of such an A and B so that A is not left invertible and B is not right invertible.
4. Let $T: V \rightarrow W$ be a linear transformation.
(a) Show that

$$
\operatorname{Null}(T)=\left\{\mathbf{v} \in V: T(\mathbf{v})=\mathbf{0}_{W}\right\}
$$

is a subspace of V.
(b) Show that

$$
\operatorname{Ran}(T)=\{\mathbf{w} \in W: \text { there exists } \mathbf{v} \in V \text { such that } T(\mathbf{v})=\mathbf{w}\}
$$

is a subspace of W.
(c) Prove that T is an isomorphism if and only if $\operatorname{Null}(T)=\left\{\mathbf{0}_{V}\right\}$ (the trivial subspace) and $\operatorname{Ran}(T)=$ W.
5. Let $X, Y \subset V$ be subspaces of V.
(a) Show that $X \cap Y$ is a subspace of V.
(b) Show that $X \cup Y$ is a subspace of V if and only if either $X \subset Y$ or $Y \subset X$.
6. Recall that $\mathcal{L}(V, W)$ denotes the space of linear transformations from V to W. Consider the following subset

$$
\mathcal{I} \mathcal{L}(V, W):=\{T \in \mathcal{L}(V, W): T \text { is invertible }\} .
$$

Show that $\mathcal{I L}(V, W)$ is a subspace if and only if $O \in \mathcal{I} \mathcal{L}(V, W)$ where $O: V \rightarrow W$ is the trivial linear transformation defined by $O(\mathbf{v})=\mathbf{0}_{W}$ for all $\mathbf{v} \in V$.
[Hint: for the "if" direction think about what it means for V and W if O is invertible.]

Solutions:

1. (a) Let $\mathbf{w} \in W$ be an arbitrary vector. We must show there exists scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
\mathbf{w}=\sum_{j=1}^{n} \alpha_{j} T\left(\mathbf{v}_{j}\right)
$$

Note that since T is invertible, its inverse $T^{-1}: W \rightarrow V$ exists. Then $T^{-1}(\mathbf{w}) \in V$. Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are generating, there exists scalars $\beta_{1}, \ldots, \beta_{n}$ such that

$$
T^{-1}(\mathbf{w})=\sum_{j=1}^{n} \beta_{j} \mathbf{v}_{j}
$$

Applying T to each side yields

$$
\begin{aligned}
T\left(T^{-1}(\mathbf{w})\right) & =T\left(\sum_{j=1}^{n} \beta_{j} \mathbf{v}_{j}\right) \\
\mathbf{w} & =\sum_{j=1}^{n} \beta_{j} T\left(\mathbf{v}_{j}\right)
\end{aligned}
$$

where on the left we have used the definition of the inverse, and on the right we have used the linearity of T. Thus if we choose $\alpha_{1}=\beta_{1}, \ldots, \alpha_{n}=\beta_{n}$, then we have the desired equality. Since $\mathbf{w} \in W$ was arbitrary, this shows that $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ is a generating system in W.
(b) Suppose there are scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
\sum_{j=1}^{n} \alpha_{j} T\left(\mathbf{v}_{j}\right)=\mathbf{0}
$$

We must show $\alpha_{1}=\cdots=\alpha_{n}=0$. Using the linearity of T, this is equivalent to

$$
T\left(\sum_{j=1}^{n} \alpha_{j} \mathbf{v}_{j}\right)=\mathbf{0}
$$

Applying T^{-1} to each side then yields

$$
\sum_{j=1}^{n} \alpha_{j} \mathbf{v}_{j}=\mathbf{0}
$$

since $T^{-1}(\mathbf{0})=\mathbf{0}$. Now, since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a linearly independent system, the above equation implies that we must have $\alpha_{1}=\cdots=\alpha_{n}=0$, as needed.
(c) Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis. Then the system is generating and linearly independent. Therefore parts (a) and (b) imply the system $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ is generating and linearly independent (respectively), and consequently a basis.
2. A right inverse of A is a matrix $B \in M_{2 \times 1}$ such that $A B=I_{1}=(1)$. Label the entries of $B=\binom{a}{b}$. Then

$$
A B=(a+b) .
$$

Thus we require $a+b=1$ or $b=1-a$. That is, the right inverses of A look like $\binom{a}{1-a}$ for any scalar a.
Suppose, towards a contradiction, that A is left invertible. Then A is both left and right invertible and hence invertible. However, we showed in lecture that this means the left and right inverses of A are the same, and moreover are unique. This is a contradiction because choosing $a=0$ and $a=1$ yield two distinct right inverses for A. Thus it must be that A is not left invertible.
3. (a) Consider the following equations which hold by virtue of the invertibility of $A \circ B$:

$$
\begin{aligned}
& (A \circ B) \circ(A \circ B)^{-1}=I_{W} \\
& (A \circ B)^{-1} \circ(A \circ B)=I_{U}
\end{aligned}
$$

Since the composition of linear transformations is associative, we can move the parentheses above around to get:

$$
\begin{aligned}
& A \circ\left(B \circ(A \circ B)^{-1}\right)=I_{W} \\
& \left((A \circ B)^{-1} \circ A\right) \circ B=I_{U}
\end{aligned}
$$

The first equation is precisely saying that $B \circ(A \circ B)^{-1}$ is the right inverse of A, while the second equation says $(A \circ B)^{-1} \circ A$ is the left inverse of B. Thus A is right invertible and B is left invertible.
(b) Let $A=(1,1) \in M_{1 \times 2}$ and $B=\binom{1}{0}$. Then $A B=(1)=I_{1}$, which is invertible, but as was shown in the previous exercise A is not left invertible. Consequently, B cannot be right invertible because if it was, then its right inverse would necessarily be A, but this would contradict A not being left invertible.
4. (a) We know $T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$ since T is a linear transformation. Thus $\mathbf{0}_{V} \in \operatorname{Null}(T)$. Next, let $\mathbf{v}, \mathbf{w} \in \operatorname{Null}(T)$. Then since T is linear we have

$$
T(\mathbf{v}+\mathbf{w})=T(\mathbf{v})+T(\mathbf{w})=\mathbf{0}_{W}+\mathbf{0}_{W}=\mathbf{0}_{W}
$$

so that $\mathbf{v}+\mathbf{w} \in \operatorname{Null}(T)$. Finally, for $\mathbf{v} \in \operatorname{Null}(T)$ and a scalar α we have

$$
T(\alpha \mathbf{v})=\alpha T(\mathbf{v})=\alpha \mathbf{0}_{W}=\mathbf{0}_{W}
$$

where we have again used the linearity of T along with Exercise 3 on Homework 1 . Thus $\alpha \mathbf{v} \in$ $\operatorname{Null}(T)$, and so $\operatorname{Null}(T)$ is a subspace.
(b) Since $T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$, we know $\mathbf{0}_{W} \in \operatorname{Ran}(T)$. Let $\mathbf{w}_{1}, \mathbf{w}_{2} \in \operatorname{Ran}(T)$. Then there exists $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$ so that $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1}$ and $T\left(\mathbf{v}_{2}\right)=\mathbf{w}_{2}$. So using the linearity of T we have

$$
T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=T\left(\mathbf{v}_{1}\right)+T\left(\mathbf{v}_{2}\right)=\mathbf{w}_{1}+\mathbf{w}_{2},
$$

which means $\mathbf{w}_{1}+\mathbf{w}_{2} \in \operatorname{Ran}(T)$. Finally, let $\mathbf{w} \in \operatorname{Ran}(T)$ and let α be a scalar. There exists $\mathbf{v} \in V$ so that $T(\mathbf{v})=\mathbf{w}$, and therefore $T(\alpha \mathbf{v})=\alpha T(\mathbf{v})=\alpha \mathbf{w}$. Thus $\alpha \mathbf{w} \in \operatorname{Ran}(T)$, and $\operatorname{Ran}(T)$ is a subspace.
(c) (\Longrightarrow) : Assume that T is an isomorphism. Suppose $\mathbf{v} \in \operatorname{Null}(T)$, so that $T(\mathbf{v})=\mathbf{0}_{W}$. Since T is invertible, we can apply T^{-1} to each side, which yields $\mathbf{v}=T^{-1}\left(\mathbf{0}_{W}\right)$. But since T^{-1} is linear, we must have $T^{-1}\left(\mathbf{0}_{W}\right)=\mathbf{0}_{V}$, and so $\mathbf{v}=\mathbf{0}_{V}$. Thus $\operatorname{Null}(T) \subset\left\{\mathbf{0}_{V}\right\}$. On the other hand, $\mathbf{0}_{V}$ is always in the null space of T so we in fact have $\operatorname{Null}(T)=\left\{\mathbf{0}_{V}\right\}$.
Next let $\mathbf{w} \in W$ be arbitrary. Define $\mathbf{v}:=T^{-1}(\mathbf{w}) \in V$. Then $T(\mathbf{v})=T\left(T^{-1}(\mathbf{w})\right)=\mathbf{w}$, which means winRan (T). Since \mathbf{w} was arbitrary, this implies $W \subset \operatorname{Ran}(T)$. The other inclusion follows by definition of the range, so we therefore have $\operatorname{Ran}(T)=W$.
(\Longleftarrow) : Assume $\operatorname{Null}(T)=\left\{\mathbf{0}_{V}\right\}$ and $\operatorname{Ran}(T)=W$. We will define a linear transformation $S: W \rightarrow$ V and show that it is the inverse of T. We first make an observation. Let $\mathbf{w} \in W=\operatorname{Ran}(T)$, then there exists at least one $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{w}$. We claim that this \mathbf{v} is in fact unique. Indeed, suppose there is another $\mathbf{v}^{\prime} \in V$ such that $T\left(\mathbf{v}^{\prime}\right)=\mathbf{w}$. Then

$$
T\left(\mathbf{v}-\mathbf{v}^{\prime}\right)=T(\mathbf{v})-T\left(\mathbf{v}^{\prime}\right)=\mathbf{w}-\mathbf{w}=\mathbf{O}_{W}
$$

This means $\mathbf{v}-\mathbf{v}^{\prime} \in \operatorname{Null}(T)$, but since the null space is the trivial subspace we must have $\mathbf{v}-\mathbf{v}^{\prime}=\mathbf{0}_{V}$, or equivalently $\mathbf{v}=\mathbf{v}^{\prime}$. Thus \mathbf{v} is unique.
We therefore define a transformation $S: W \rightarrow V$ by letting $S(\mathbf{w})$ equal the unique $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{w}$. We must check that S is linear and that it is the inverse of T. We check the latter condition first. Let $\mathbf{v} \in V$ be arbitrary and call $\mathbf{w}:=T(\mathbf{v})$. By definition of S, we have $S(\mathbf{w})=\mathbf{v}$ and so

$$
S \circ T(\mathbf{v})=S(T(\mathbf{v}))=S(\mathbf{w})=\mathbf{v}
$$

Since $\mathbf{v} \in V$ was arbitrary, this implies $S \circ T=I_{V}$. Next let $\mathbf{w} \in W$ be arbitrary and call $\mathbf{v}:=S(\mathbf{w})$. Again, by definition of S we must have $T(\mathbf{v})=\mathbf{w}$. Thus

$$
T \circ S(\mathbf{w})=T(S(\mathbf{w}))=T(\mathbf{v})=\mathbf{w}
$$

Since $\mathbf{w} \in W$ was arbitrary, this implies $T \circ S=I_{W}$. Finally, we verify that S is linear. Let $\mathbf{w}_{1}, \mathbf{w}_{2} \in W$ and let α, β be scalars. Call $v:=S\left(\alpha \mathbf{w}_{1}+\beta \mathbf{w}_{2}\right), \mathbf{v}_{1}:=S\left(\mathbf{w}_{1}\right)$, and $\mathbf{v}_{2}:=S\left(\mathbf{w}_{2}\right)$. We must show $\mathbf{v}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$. Observe that by the linearity of T and the definition of S we have

$$
T\left(\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}\right)=\alpha T\left(\mathbf{v}_{1}\right)+\beta T\left(\mathbf{v}_{2}\right)=\alpha \mathbf{w}_{1}+\beta \mathbf{w}_{2}
$$

Since \mathbf{v} is defined to be the unique vector satisfying $T(\mathbf{v})=\alpha \mathbf{w}_{1}+\beta \mathbf{w}_{2}$, we must have $\mathbf{v}=$ $\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$ as desired.
5. (a) Since X and Y are both subspaces, we have $\mathbf{0}_{V} \in X$ and $\mathbf{0}_{V} \in Y$. Thus $\mathbf{0}_{V} \in X \cap Y$. Let $\mathbf{v}, \mathbf{w} \in X \cap Y$. Then $\mathbf{v}, \mathbf{w} \in X$ and since X is subspace we have $\mathbf{v}+\mathbf{w} \in X$. Similarly, $\mathbf{v}, \mathbf{w} \in Y$ so that $\mathbf{v}+\mathbf{w} \in Y$. Thus $\mathbf{v}+\mathbf{w} \in X \cap Y$. Finally, let $\mathbf{v} \in X \cap Y$ and let α be a scalar. Then $\mathbf{v} \in X$ and so $\alpha \mathbf{v} \in X$. Similarly, $\mathbf{v} \in Y$ and so $\alpha \mathbf{v} \in Y$. Hence $\alpha \mathbf{v} \in X \cap Y$, which means $X \cap Y$ is a subspace.
(b) (\Longrightarrow) : We will use proof by contrapositive to show this. That is, we will assume that neither $X \subset Y$ nor $Y \subset X$ and then show that $X \cup Y$ is not a subspace. In particular, we will show that $X \cup Y$ is not closed under addition. Now, since X is not contained in Y there exists some $\mathbf{v} \in X$ such that $\mathbf{v} \notin Y$. Similarly, since Y is not contained in X there is some $\mathbf{w} \in Y$ such that $\mathbf{w} \in \notin X$. Now, $\mathbf{v}, \mathbf{w} \in X \cup Y$ but we claim $\mathbf{v}+\mathbf{w} \notin X \cup Y$. Indeed, if we had $\mathbf{v}+\mathbf{w} \in X \cup Y$ then it would follow that either $\mathbf{v}+\mathbf{w} \in X$ or $\mathbf{v}+\mathbf{w} \in Y$ (or both). If $\mathbf{v}+\mathbf{w} \in X$ then there is some $\mathbf{x} \in X$ such that $\mathbf{v}+\mathbf{w}=\mathbf{x}$. But then $\mathbf{w}=\mathbf{x}-\mathbf{v}$ and the difference on the right is in X since both \mathbf{x} and \mathbf{v} are. This contradicts $\mathbf{w} \notin X$. So we cannot have $\mathbf{v}+\mathbf{w} \in X$. On the other hand, if we have $\mathbf{v}+\mathbf{w} \in Y$ then there is some $\mathbf{y} \in Y$ such that $\mathbf{v}+\mathbf{w}=\mathbf{y}$. But then $\mathbf{v}=\mathbf{y}-\mathbf{w}$, which is in Y since both \mathbf{y} and \mathbf{w} are. This contradicts $\mathbf{v} \notin Y$. Since we cannot have either $\mathbf{v}+\mathbf{w} \in X$ or $\mathbf{v}+\mathbf{w} \in Y$, we must have $\mathbf{v}+\mathbf{w} \notin X \cup Y$. So $X \cup Y$ is not a subspace.
(\Longleftarrow) : If $X \subset Y$ or $Y \subset X$, then $X \cup Y$ is either Y or X, respectively. In either case, $X \cup Y$ is a subspace.
6. (\Longrightarrow) : If $\mathcal{I} \mathcal{L}(V, W)$ is a subspace, then it necessarily contains the zero vector, which in $\mathcal{L}(V, W)$ is the trivial linear transformation O.
(\Longleftarrow) : Assume $O \in \mathcal{I} \mathcal{L}(V, W)$. Let O^{-1} be the inverse of O. Observe that for any $\mathbf{v} \in V$ we have

$$
\mathbf{v}=O^{-1} \circ O(\mathbf{v})=O^{-1}(O(\mathbf{v}))=O^{-1}\left(\mathbf{0}_{W}\right)=\mathbf{0}_{V}
$$

since O^{-1} is a linear transformation. Thus $\mathbf{v} \in \mathbf{0}_{V}$, and since this was an arbitrary vector we therefore have $V=\left\{\mathbf{0}_{V}\right\}$ is a vector space with exactly one element. Similarly, for any $\mathbf{w} \in W$ we have

$$
\mathbf{w}=O \circ O^{-1}(\mathbf{w})=O\left(O^{-1}(\mathbf{w})\right)=\mathbf{0}_{W}
$$

So $\mathbf{w}=\mathbf{0}_{W}$ and by the same reasoning as above we get that $W=\left\{\mathbf{0}_{W}\right\}$. Now, consider any $T \in$ $\mathcal{L}(V, W)$. Then $T=O$ since they agree on all vectors of $V: T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}=O\left(\mathbf{0}_{V}\right)$. Consequently $\mathcal{L}(V, W)=\{O\}$ is a vector space with exactly one element. It follows that $\mathcal{I} \mathcal{L}(V, W)=\{O\}$, and so we see that it is a subspace; namely, the trivial subspace.

