Exercises:

1. Does the following system of vectors form a basis in \mathbb{R}^{3} ? Justify your answer.

$$
\mathbf{v}_{1}=\left(\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right) \quad \mathbf{v}_{2}=\left(\begin{array}{r}
0 \\
4 \\
-1
\end{array}\right) \quad \mathbf{v}_{3}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right)
$$

2. Let $\mathbb{P}_{2}(\mathbb{R})$ be the vector space of polynomials with real coefficients and degree at most 2 . Show that the vectors

$$
p_{0}(x)=1 \quad p_{1}(x)=x \quad p_{2}(x)=\frac{1}{3}\left(2 x^{2}-1\right)
$$

form a basis in $\mathbb{P}_{2}(\mathbb{R})$.
3. The following are True/False. Prove the True statements and provide counterexamples for the False statements.
(a) Any set containing a zero vector is linearly dependent.
(b) A basis must contain 0.
(c) Subsets of linearly dependent sets are linearly dependent.
(d) Subsets of linearly independent sets are linearly independent.
(e) If $\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}=\mathbf{0}$ for vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$, then all the scalars $\alpha_{1}, \ldots, \alpha_{n}$ are zero.
4. We say a matrix A is symmetric if $A^{T}=A$. Find a basis for the space of symmetric 2×2 matrices (and prove it is in fact a basis). Make note of the number of elements in your basis.
5. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in V$ be a system of vectors that is linearly independent but not spanning. Show that one can find a vector $\mathbf{v}_{p+1} \in V$ so that the larger system $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}, \mathbf{v}_{p+1}$ is still linearly independent.
6. Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}$ form a basis in a vector space V. Define $\mathbf{w}_{1}:=\mathbf{v}_{1}+\mathbf{v}_{2}$ and $\mathbf{w}_{2}:=\mathbf{v}_{1}-\mathbf{v}_{2}$. Prove that $\mathbf{w}_{1}, \mathbf{w}_{2}$ is also a basis in V.
7. In each of the following, prove whether or not the given transformation is a linear transformation.
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T\left((x, y, z)^{T}\right)=(x+3 y,-z)^{T}$.
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $T\left((x, y, z)^{T}\right)=x+4$.
(c) Let V be the space of functions of the form $f: \mathbb{R} \rightarrow \mathbb{R}$ with the usual addition and scalar multiplication. Define $T: V \rightarrow V$ by $T(f)=f^{2}$. That is,

$$
[T(f)](x)=f(x)^{2} \quad x \in \mathbb{R}
$$

Solutions:

1. No, the system is linearly dependent: $3 \mathbf{v}_{1}+2 \mathbf{v}_{2}+(-1) \mathbf{v}_{3}=\mathbf{0}$.
2. Note that p_{0}, p_{1}, p_{2} is almost the standard basis for $\mathbb{P}_{3}(\mathbb{R})$, with the exception of p_{2}. However, we do have that

$$
\frac{3}{2} p_{2}(x)+\frac{1}{2} p_{0}(x)=\frac{1}{2}\left(2 x^{2}-1\right)+\frac{1}{2}=x^{2} .
$$

Thus for arbitrary $p(x)=a_{2} x^{2}+a_{1} x+a_{0}$ we have

$$
\begin{align*}
p(x) & =a_{2}\left(\frac{3}{2} p_{2}(x)+\frac{1}{2} p_{0}(x)\right)+a_{1} p_{1}(x)+a_{0} p_{0}(x) \\
& =\left(a_{0}+\frac{1}{2} a_{2}\right) p_{0}(x)+a_{1} p_{1}(x)+\frac{3}{2} a_{2} p_{2}(x) \tag{1}
\end{align*}
$$

So every vector in $\mathbb{P}_{2}(\mathbb{R})$ admits a representation as a linear combination of p_{0}, p_{1}, p_{2}. It remains to show that this linear combination is unique. Suppose $p(x)=b_{0} p_{0}(x)+b_{1} p_{1}(x)+b_{2} p_{2}(x)$. Plugging in the formulas for p_{0}, p_{1}, p_{2} we obtain

$$
p(x)=\left(b_{0}-\frac{1}{3} b_{2}\right)+b_{1} x+\frac{2}{3} b_{2} x^{2} .
$$

This implies

$$
\begin{aligned}
b_{0}-\frac{1}{3} b_{2} & =a_{0} \\
b_{1} & =a_{1} \\
\frac{2}{3} b_{2} & =a_{2}
\end{aligned}
$$

Solving these equations for b_{0}, b_{1}, b_{2} yields $b_{0}=a_{0}+\frac{1}{2} a_{2}, b_{1}=a_{1}$, and $b_{2}=\frac{3}{2} a_{2}$. Hence the linear combination in (1) is unique.
3. (a) True. Consider the linear combination where the coefficient of $\mathbf{0}$ is one and the rest of the coefficients are zero, which clearly yields $\mathbf{0}$. Since there is at least one non-zero coefficient, this is a non-trivial linear combination, and so the system is linearly dependent.
(b) False. The standard basis for \mathbb{R}^{3} does not contain 0.
(c) False. Let $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)^{T} \in \mathbb{R}^{3}$ be any vector and let $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ be the standard basis for \mathbb{R}^{3}. Then the system $\mathbf{v}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is linearly dependent since

$$
\mathbf{v}+\left(-v_{1}\right) \mathbf{e}_{1}+\left(-v_{2}\right) \mathbf{e}_{2}+\left(-v_{3}\right) \mathbf{e}_{3}=\mathbf{0}
$$

But on the other hand, the subset $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is linearly independent since it is a basis.
(d) True. Suppose the system $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p} \in V$ is linearly independent. Let $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{q}\right\} \subset\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be any subset. Suppose

$$
\sum_{i=1}^{q} \alpha_{i} \mathbf{w}_{i}=\mathbf{0}
$$

We can view the left-hand side as a linear combination of the full system v_{1}, \ldots, v_{p}, where the coefficients of the missing vectors are all zero:

$$
\sum_{i=1}^{q} \alpha_{i} \mathbf{w}_{i}=\sum_{i=1}^{q} \alpha_{i} \mathbf{w}_{i}+\sum_{\mathbf{v}_{j} \notin\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{q}\right\}} 0 \mathbf{v}_{j} .
$$

Since the original system is linearly independent, it must be that all the scalar coefficients are zero. In particular, $\alpha_{1}=\cdots=\alpha_{q}=0$ and so the system $\mathbf{w}_{1}, \ldots, \mathbf{w}_{q}$ is linearly independent.
(e) False. Let $\mathbf{v}_{1}=\mathbf{v}_{2}=\mathbf{0}$ in any vector space. Then (1) $\mathbf{v}_{1}+(1) \mathbf{v}_{2}=\mathbf{0}$.
4. First note that if $A=A^{T}$ is a symmetric 2×2 matrix, then

$$
A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

for scalars a, b, c. We then have

$$
A=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

and the matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

are symmetric. So these three matrices form a spanning system. The system is also linearly independent: if

$$
\alpha_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\alpha_{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\alpha_{2}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\mathbf{0}
$$

for scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$ then

$$
\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\alpha_{2} & \alpha_{3}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

so that $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. Thus the system is linearly independent and consequently a basis. Finally, we note that the basis contains three vectors.
5. Since the system is not spanning, there must be at least one vector $\mathbf{v} \in V$ which does not admit a representation as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$. Fix any such vector and denote it by \mathbf{v}_{p+1}. We claim the system $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}, \mathbf{v}_{p+1}$ is linearly independent. Indeed, suppose

$$
\begin{equation*}
\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{p} \mathbf{v}_{p}+\alpha_{p+1} \mathbf{v}_{p+1}=\mathbf{0} \tag{2}
\end{equation*}
$$

We must show $\alpha_{1}, \ldots, \alpha_{p}, \alpha_{p+1}$ are all zero.
First suppose $\alpha_{p+1} \neq 0$. This means we can divide by α_{p+1} and so we can solve (2) for \mathbf{v}_{p+1} :

$$
\mathbf{v}_{p+1}=\frac{\alpha_{1}}{\alpha_{p+1}} \mathbf{v}_{1}+\cdots+\frac{\alpha_{p}}{\alpha_{p+1}} \mathbf{v}_{p}
$$

But this contradicts \mathbf{v}_{p+1} not admitting a representation as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$. So it must be that $\alpha_{p+1}=0$.
If $\alpha_{p+1}=0$, then (2) becomes

$$
\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{p} \mathbf{v}_{p}=\mathbf{0}
$$

Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is a linearly independent system it follows that the rest of the coefficients must be zero. Thus the system is linearly independent.
6. By a theorem from lecture, it suffices to show that $\mathbf{w}_{1}, \mathbf{w}_{2}$ is spanning and linearly independent.

We first check it is spanning. Observe that

$$
\begin{aligned}
& \mathbf{w}_{1}=\mathbf{v}_{1}+\mathbf{v}_{2} \\
& \mathbf{w}_{2}=\mathbf{v}_{1}-\mathbf{v}_{2}
\end{aligned} \Longleftrightarrow \begin{aligned}
& \mathbf{v}_{1}=\frac{1}{2} \mathbf{w}_{1}+\frac{1}{2} \mathbf{w}_{2} \\
& \mathbf{v}_{2}=\frac{1}{2} \mathbf{w}_{1}-\frac{1}{2} \mathbf{w}_{2}
\end{aligned}
$$

Let $\mathbf{v} \in V$ be an arbitrary vector. Since $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a basis, we know there exists scalars α_{1}, α_{2} so that $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}$. Using the above formulas for the \mathbf{v}_{i} in terms of the \mathbf{w}_{j}, this becomes:

$$
\mathbf{v}=\alpha_{1}\left(\frac{1}{2} \mathbf{w}_{1}+\frac{1}{2} \mathbf{w}_{2}\right)+\alpha_{2}\left(\frac{1}{2} \mathbf{w}_{1}-\frac{1}{2} \mathbf{w}_{2}\right)=\frac{\alpha_{1}+\alpha_{2}}{2} \mathbf{w}_{1}+\frac{\alpha_{1}-\alpha_{2}}{2} \mathbf{w}_{2} .
$$

So we have written the arbitrary vector $\mathbf{v} \in V$ as a linear combination of $\mathbf{w}_{1}, \mathbf{w}_{2}$; that is, $\mathbf{w}_{1}, \mathbf{w}_{2}$ is a spanning system.
Next we check the system is linearly independent. Suppose

$$
\mathbf{0}=\alpha_{1} \mathbf{w}_{1}+\alpha_{2} \mathbf{w}_{2}
$$

for some scalars α_{1}, α_{2}. We must show $\alpha_{1}=\alpha_{2}=0$. Using the formulas for the \mathbf{w}_{i} in terms of the \mathbf{v}_{j}, the above equation becomes:

$$
\mathbf{0}=\alpha_{1}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)+\alpha_{2}\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)=\left(\alpha_{1}+\alpha_{2}\right) \mathbf{v}_{1}+\left(\alpha_{1}-\alpha_{2}\right) \mathbf{v}_{2}
$$

Since $\mathbf{v}_{1}, \mathbf{v}_{2}$ forms a basis, the system is linearly independent. So it must be that $\alpha_{1}+\alpha_{2}=0$ and $\alpha_{1}-\alpha_{2}=0$. Solving this system of equations yields $\alpha_{1}=\alpha_{2}=0$, as needed. Thus $\mathbf{w}_{1}, \mathbf{w}_{2}$ is a linearly independent system.
7. (a) This transformation is linear:

$$
\begin{aligned}
T\left(\alpha\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\beta\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right) & =T\left(\begin{array}{c}
\alpha x+\beta a \\
\alpha y+\beta b \\
\alpha z+\beta c
\end{array}\right)=\binom{\alpha x+\beta a+3(\alpha y+\beta b)}{-(\alpha z+\beta c)} \\
& =\alpha\binom{x+3 y}{-z}+\beta\binom{a+3 b}{-c}=\alpha T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\beta T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
\end{aligned}
$$

(b) This transformation is not linear. Consider $\mathbf{v}:=(1,0,0)^{T}$. If T were linear, then we should have $T(2 \mathbf{v})=2 T(\mathbf{v})$. However,

$$
T(2 \mathbf{v})=T\left(\begin{array}{c}
2 \\
0 \\
0
\end{array}\right)=2+4=6
$$

while

$$
2 T(\mathbf{v})=2 T\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)=2(1+4)=10 .
$$

Thus T is no linear.
(c) This transformation is not linear. Consider $f(x):=x$. If T were linear, then we should have $T(2 f)=2 T(f)$. However, $(2 f)(x)=2 x$ and so

$$
[T(2 f)](x)=(2 x)^{2}=4 x^{2},
$$

while

$$
[2 T(f)](x)=2[T(f)](x)=2\left(x^{2}\right)=2 x^{2} .
$$

These functions clearly are different, but to make this difference explicit note that the differ at $x=1$ in particular. Thus T is not linear.

