
Math 317H Homework 1 Solutions 9/9/2021

Exercises:

1. For each of the following, decide whether the objects and operations described form a vector space. If
they do, show that they satisfy the axioms. If not, show that they fail to satisfy at least one axiom.

(a) The set R3 of 3 dimensional columns of real numbers, with addition defined by v1
v2
v3

+

 w1

w2

w3

 =

 4v1 + 4w1

4v2 + 4w2

4v3 + 4w3

 ,

and the usual scalar multiplication.

(b) The set of real polynomials of degree exactly n:

p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0,

with an 6= 0, and with addition and scalar multiplication defined the same way we did in class for
polynomials of degree at most n.

(c) The subset of R3 given by:

V =


 x

y
z

 ∈ R3 | x+ 2y − z = 0

 ,

with the usual addition and scalar multiplication.

(d) The subset of R3 given by:

V =


 x

y
z

 ∈ R3 | x+ 2y − z = 3

 ,

with the usual addition and scalar multiplication.

(e) The subset of R3 given by:

V =


 x

y
z

 ∈ R3 | x6 + y2 + z4 = 0

 ,

with the usual addition and scalar multiplication.

(f) The set of functions
V = {f : R→ R | f(5) = 0},

with addition given by (f + g)(x) = f(x) + g(x) and scalar multiplication by (αf)(x) = α(f(x)).

2. Let V be a general vector space.

(a) For v ∈ V , prove that v has a unique additive inverse.

(b) For v ∈ V and a scalar α, prove that (−α)v is the additive inverse of αv.

(c) Prove that the additive inverse of 0 is 0.

3. Let V be a general vector space with zero vector 0. Prove that α0 = 0 for any scalar α.

[Hint: treat the cases α = 0 and α 6= 0 separately.]

———————————————————————————————————————————–

Solutions:
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1. (a) This is not a vector space because it fails the zero element axiom. Suppose, towards a contra-
diction, that w = (w1, w2, w3)T ∈ R3 is the zero vector. Then for any v = (v1, v2, v3)T ∈ R3 we
should have v + w = v. The way addition is defined for this set, this implies 4v1 + 4w1

4v2 + 4w2

4v3 + 4w4

 =

 v1
v2
v3

 ,

or 4vj +4wj = vj for each j = 1, 2, 3. Solving for wj , we obtain wj = 3
4vj for each j = 1, 2, 3. This

is a contradiction because each wj is fixed, while we can take vj to be any real number. Thus
zero vector does not exist and this is not a vector space. �

[Note: it is not sufficient to argue that the usual zero vector (0, 0, 0)T fails to be a zero vector.
This only shows that that particular vector is not the zero vector for this addition operation, but
it could be that there is some other strange vector that plays the role of the zero vector here.
That is why in the proof above we consider a vector w with no other assumptions on it.]

(b) This is not a vector space for a number of reasons. One is that it is not closed under scalar
multiplication: the polynomial p(x) = xn is in this set, but the scalar multiple 0p(x) = 0 is not
because it does not have degree n.

You can also argue that it is not closed under addition: p(x) = xn and q(x) = −xn are both in
the set but p(x) + q(x) = 0 is not.

Finally, you can argue that it fails the zero element axiom. Indeed, suppose towards a contradiction
that q(x) = bnx

n + · · ·+ b1x+ b0 is a zero vector. �

(c) This is a vector space. First note that if v = (x, y, z)T ,w = (a, b, c)T ∈ V then v + w =
(x+ a, y + b, z + c)T and

(x+ a) + 2(y + b)− (z + c) = (x+ 2y − z) + (a+ 2b− c) = 0 + 0 = 0.

So v + w ∈ V . Also, for a scalar α we have αv = (αx, αy, αz)T and

αx+ 2(αy)− αz = α(x+ 2y − z) = α(0) = 0,

So αv ∈ V . That is, V is closed under addition and scalar multiplication.

Regarding the axioms, commutativity, additivity, multiplicative identity, multiplicative associa-
tivity, and the distributive laws all follow since they hold in R3. So it remains to show that there
is a zero vector and that every element has an additive inverse. Observe that the usual zero vector
0 = (0, 0, 0)T in V since 0 + 2(0)− 0 = 0. This vector then does indeed play the role of the zero
vector. Finally, if v = (x, y, z)T ∈ V then its usual additive inverse −v = (−x,−y,−z)T also in
V :

(−x) + 2(−y)− (−z) = −(x+ 2y − z) = −0 = 0.

Hence all the axioms are satisfied and so this is indeed a vector space. �

(d) This is not a vector space for a number of reasons. First it is not closed under scalar multiplication:
if v = (x, y, z)T ∈ V then 0v = (0, 0, 0)T and 0 + 2(0)− 0 6= 3.

You can also argue that it is not closed under addition: we have that (3, 0, 0)T and (0, 0,−3)T

are in V but their sum (3, 0,−3)T is not since 3 + 2(0)− (−3) = 6 6= 0.

You can also argue that it also fails to have a zero vector. Since addition is defined the same way
as for R3, it must be that the zero vector is of the form 0 = (0, 0, 0)T but this vector fails to be
in V .

Finally, you can argue that it fails the additive inverse axiom. Since addition is defined the
same way as for R3, for v = (x, y, z)T ∈ V its additive inverse must be the usual one −v =
(−x,−y,−z)T . But −x+ 2(−y)− (−z) = −(x+ 2y − z) = −(3) = −3 6= 3. �

(e) This is a vector space. The only way to satisfy the condition x6+y2+z4 = 0 (since the degrees are
all even) is if x = y = z = 0. Thus V consists of exactly one vector: the zero vector 0 = (0, 0, 0)T .
Since 0+0 = 0 and α0 = 0 for all scalars α, V is closed under addition and scalar multiplication.
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Moreover, since these are inherited from R3, they automatically satisfy commutativity, additivity,
multiplicative identity, multiplicative associativity, and the distributive laws. Finally, V has a
zero vector and additive inverses:

−0 = (−0,−0,−0)T = (0, 0, 0)T = 0.

Thus V is a vector space.

(f) This is a vector space. We first note that it is closed under addition since for f, g ∈ V we have
(f+g)(5) = f(5)+g(5) = 0+0 = 0, so that f+g ∈ V . It is also closed under scalar multiplication:
for f ∈ V and a scalar α we have (αf)(5) = α(f(5)) = α(0) = 0 so that αf ∈ V .

2. (a) Fix v ∈ V . Suppose that there are w1,w2 ∈ V such that v + wj = 0 for j = 1, 2; that is, w1

and w2 are both additive inverses of v. We must show w1 = w2. Using the zero vector and
associativity of addition we have

w1 = w1 + 0 = w1 + (v + w2) = (w1 + v) + w2 = 0 + w2 = w2.

Thus w1 = w2. �

(b) Fix v ∈ V and a scalar α. Then using the distributive law we have

αv + (−α)v = (α+−α)v = 0v.

From class, we know that 0v = 0. Thus αv + (−α)v = 0. That means (−α)v is an additive
inverse for αv, and so by the previous part of the exercise it must be that (−α)v = −(αv). �

[Note: observe that, in particular, this implies that (−1)v = −(1v) = −v by the multiplicative
identity axiom.]

(c) By the zero element axiom, we know 0 + 0 = 0. But this also means that 0 is its own additive
inverse. �

3. Fix a scalar α. We will consider two cases: α = 0 and α 6= 0.

First suppose α = 0. We showed in class that 0v = 0 for all v ∈ V . So in particular 00 = 0, which
finishes this case.

Next, suppose that α 6= 0. We have seen in class that the zero vector in a vector space is unique. So
if we can show v + α0 = v for all v ∈ V , then α0 is a zero vector and therefore must equal the zero
vector 0. Note that since α 6= 0, 1/α exists. So for any v ∈ V we use the multiplicative identity,
distributive law, and zero vector axioms to compute:

v + α0 =

(
α

1

α

)
v + α0 = α

(
1

α
v + 0

)
= α

(
1

α
v

)
= v.

So α0 is indeed an additive identity and must therefore equal 0. This completes the second case and
the proof. �
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