Exercises:

1. Let V be an inner product space with an orthonormal basis $\mathcal{B}:=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
(a) Prove that for any $\mathbf{x}, \mathbf{y} \in V$

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle[\mathbf{x}]_{\mathcal{B}},[\mathbf{y}]_{\mathcal{B}}\right\rangle
$$

where the first inner product is from V and the second is from \mathbb{F}^{n}.
(b) Prove Parseval's identity:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{j=1}^{n}\left\langle\mathbf{x}, \mathbf{v}_{j}\right\rangle\left\langle\mathbf{v}_{j}, \mathbf{y}\right\rangle \quad \forall \mathbf{x}, \mathbf{y} \in V
$$

2. Let V be an inner product space and let P_{E} be the orthogonal projection onto a subspace $E \subset V$.
(a) Prove that $P_{E}(\mathbf{v})=\mathbf{v}$ if and only if $\mathbf{v} \in E$.
(b) Prove that $P_{E}(\mathbf{w})=\mathbf{0}$ if and only if $\mathbf{w} \perp E$.
(c) Show that $P_{E} \circ P_{E}=P_{E}$ and $P_{E} \circ\left(I-P_{E}\right)=O$.
3. Let V be an inner product space and let $S \subset V$ be a subset. Define

$$
S^{\perp}:=\{\mathbf{v} \in V: \mathbf{v} \perp \mathbf{x} \forall \mathbf{x} \in S\}
$$

(a) Prove that S^{\perp} is a subspace (even when S is not).
(b) Show that $S \subset\left(S^{\perp}\right)^{\perp}$.
(c) Prove that $S=\left(S^{\perp}\right)^{\perp}$ if and only if S is a subspace.
(d) Prove that $\left(S^{\perp}\right)^{\perp}=\operatorname{span} S$.
4. Let V be a finite-dimensional inner product space, let $E \subset V$ be a proper subspace $(E \neq V$ and $E \neq\{\mathbf{0}\})$, and let P_{E} be the orthogonal projection onto E.
(a) Determine the spectrum $\sigma\left(P_{E}\right)$.
(b) Prove that P_{E} is diagonalizable.
(c) Find a diagonalization of P_{E}.
5. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{F}^{n}$. Show that the system $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is orthonormal if and only if the matrix

$$
A=\left(\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right)
$$

is unitary.
6. Let $A \in M_{n \times n}$ be a normal matrix: $A^{*} A=A A^{*}$.
(a) Show that an eigenvector \mathbf{v} of A with eigenvalue λ is also an eigenvector of A^{*} with eigenvalue $\bar{\lambda}$.
(b) Show that if λ, μ are distinct eigenvalues of A, then the eigenspaces $\operatorname{Ker}(A-\lambda I)$ and $\operatorname{Ker}(A-\mu I)$ are orthogonal.
(c) Show that there exists a unitary matrix $U \in M_{n \times n}$ so that

$$
A=U\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) U^{*}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A counting multiplicities.
7^{*}. (Not collected) Let V be a real vector space with norm $\|\cdot\|$. Assume the parallelogram identity holds:

$$
\|\mathbf{x}+\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|^{2}=2\|\mathbf{x}\|^{2}+2\|\mathbf{y}\|^{2}
$$

for all $\mathbf{x}, \mathbf{y} \in V$. Define

$$
\langle\mathbf{x}, \mathbf{y}\rangle:=\frac{1}{4}\|\mathbf{x}+\mathbf{y}\|^{2}-\frac{1}{4}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

In this exercise you will prove that the above map is an inner product.
(a) Show that $\langle\mathbf{x}, \mathbf{x}\rangle=\|\mathbf{x}\|^{2}$ for all $\mathbf{x} \in V$. Use this to prove non-negativity and non-degeneracy.
(b) Prove symmetry directly; that is, show that $\langle\mathbf{y}, \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.
(c) Show that $\langle 2 \mathbf{x}, \mathbf{y}\rangle=2\langle\mathbf{x}, \mathbf{y}\rangle$ and $\left\langle\frac{1}{2} \mathbf{x}, \mathbf{y}\right\rangle=\frac{1}{2}\langle\mathbf{x}, \mathbf{y}\rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.
(d) Show that $\langle\mathbf{w}+\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{w}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle$ for all $\mathbf{w}, \mathbf{x}, \mathbf{y} \in V$.
[Hint: use $\mathbf{w}+\mathbf{x} \pm \mathbf{y}=\mathbf{w} \pm \frac{1}{2} \mathbf{y}+\mathbf{x} \pm \frac{1}{2} \mathbf{y}$.]
(e) Show that $\langle-\mathbf{x}, \mathbf{y}\rangle=-\langle\mathbf{x}, \mathbf{y}\rangle$ for all $\mathbf{x}, \mathbf{y} \in V$.
(f) Show that $\langle n \mathbf{x}, \mathbf{y}\rangle=n\langle\mathbf{x}, \mathbf{y}\rangle$ and $\left\langle\frac{1}{n} \mathbf{x}, \mathbf{y}\right\rangle=\frac{1}{n}\langle\mathbf{x}, \mathbf{y}\rangle$ for all $n \in \mathbb{Z}$ and all $\mathbf{x}, \mathbf{y} \in V$.
(g) Show that $\langle q \mathbf{x}, \mathbf{y}\rangle=q\langle\mathbf{x}, \mathbf{y}\rangle$ for all $q \in \mathbb{Q}$ and all $\mathbf{x}, \mathbf{y} \in V$.
(h) Use the previous parts to prove rational linearity; that is,

$$
\langle p \mathbf{w}+q \mathbf{x}, \mathbf{y}\rangle=p\langle\mathbf{w}, \mathbf{y}\rangle+q\langle\mathbf{x}, \mathbf{y}\rangle
$$

for all $p, q \in \mathbb{Q}$ and all $\mathbf{w}, \mathbf{x}, \mathbf{y} \in V$.
(i) Use the parallelogram identity and the triangle inequality to show $|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in V$.
(j) Show that

$$
|\langle\alpha \mathbf{x}, \mathbf{y}\rangle-\alpha\langle\mathbf{x}, \mathbf{y}\rangle| \leq 2|\alpha-q|\|\mathbf{x}\|\|\mathbf{y}\|
$$

for any $\alpha \in \mathbb{R}, q \in \mathbb{Q}$, and $\mathbf{x}, \mathbf{y} \in V$.
(j) Use the fact that \mathbb{Q} is dense in \mathbb{R} (that is, any real number has a sequence of rational numbers converging to it) to prove $\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$ for all $\alpha \in \mathbb{R}$ and all $\mathbf{x}, \mathbf{y} \in V$.
(k) Use the previous parts to prove linearity.

Solutions:

1. (a) We know there are scalars $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$ such that

$$
[\mathbf{x}]_{\mathcal{B}}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n} \quad \text { and } \quad[\mathbf{y}]_{\mathcal{B}}=\beta_{1} \mathbf{v}_{1}+\cdots+\beta_{n} \mathbf{v}_{n}
$$

This implies

$$
\mathbf{x}=\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \quad \text { and } \quad \mathbf{y}=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right)
$$

Now, using linearity and conjugate linearity we have

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}, \beta_{1} \mathbf{v}_{1}+\cdots+\beta_{n} \mathbf{v}_{n}\right\rangle=\sum_{i, j=1}^{n} \alpha_{i} \bar{\beta}_{j}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle
$$

Recalling that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an orthonormal system, this reduces to

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} \alpha_{i} \bar{\beta}_{i}\left\|\mathbf{v}_{i}\right\|^{2}=\sum_{i=1}^{n} \alpha_{i} \bar{\beta}_{i}=\left\langle[\mathbf{x}]_{\mathcal{B}},[\mathbf{y}]_{\mathcal{B}}\right\rangle
$$

(b) Letting the α_{i} 's and β_{i} 's be as in the previous part, we have for each $j=1, \ldots, n$ that

$$
\left\langle\mathbf{x}, \mathbf{v}_{j}\right\rangle=\left\langle\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}, \mathbf{v}_{j}\right\rangle=\sum_{i=1}^{n} \alpha_{i}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\alpha_{j}\left\|\mathbf{v}_{j}\right\|^{2}=\alpha_{j}
$$

By a similar computation, we obtain $\left\langle\mathbf{v}_{j}, \mathbf{y}\right\rangle=\bar{\beta}_{j}$. Thus by part (a) we obtain

$$
\sum_{j=1}^{n}\left\langle\mathbf{x}, \mathbf{v}_{j}\right\rangle\left\langle\mathbf{v}_{j}, \mathbf{y}\right\rangle=\sum_{j=1}^{n} \alpha_{j} \bar{\beta}_{j}=\left\langle[\mathbf{x}]_{\mathcal{B}},[\mathbf{y}]_{\mathcal{B}}\right\rangle=\langle\mathbf{x}, \mathbf{y}\rangle
$$

2. (a) (\Longrightarrow) : Suppose $P_{E}(\mathbf{v})=\mathbf{v}$. Then by definition of the orthogonal projection $\mathbf{v}=P_{E}(\mathbf{v}) \in E$.
(\Longleftarrow) : Suppose $\mathbf{v} \in E$. Then recall that by a theorem from lecture we have

$$
\left\|\mathbf{v}-P_{E}(\mathbf{v})\right\| \leq\|\mathbf{v}-\mathbf{x}\| \quad \forall \mathbf{x} \in E
$$

In particular, this holds for $\mathbf{x}=\mathbf{v}$ which makes the right-hand side zero. This forces the left-hand side to be zero and so we must have $\mathbf{v}-P_{E}(\mathbf{v})=\mathbf{0}$, or $\mathbf{v}=P_{E}(\mathbf{v})$.
(b) (\Longrightarrow) : Suppose $P_{E}(\mathbf{w})=\mathbf{0}$. Observe that $\mathbf{w}=\mathbf{w}-\mathbf{0}=\mathbf{w}-P_{E}(\mathbf{w})$, which is orthogonal to E by definition of the orthogonal projection.
(\Longleftarrow) : Suppose $\mathbf{w} \perp E$. Let $\mathbf{v} \in E$, then

$$
\left\langle P_{E}(\mathbf{w}), \mathbf{v}\right\rangle=\left\langle P_{E}(\mathbf{w}), \mathbf{v}\right\rangle-\langle\mathbf{w}, \mathbf{v}\rangle=\left\langle P_{E}(\mathbf{w})-\mathbf{w}, \mathbf{v}\right\rangle=-\left\langle\mathbf{w}-P_{E}(\mathbf{w}), \mathbf{v}\right\rangle=0
$$

where the last equality holds since $\left(\mathbf{w}-P_{E}(\mathbf{w})\right) \perp E$ by definition of the orthogonal projection. The above holds, in particular, when $\mathbf{v}=P_{E}(\mathbf{w})$, which yields $\left\langle P_{E}(\mathbf{w}), P_{E}(\mathbf{w})\right\rangle=0$ and so $P_{E}(\mathbf{w})=\mathbf{0}$ by non-degeneracy.
(c) Let $\mathbf{v} \in V$. Then $P_{E}(\mathbf{v}) \in E$ by part (a). Thus, by part (a) again we have $P_{E}\left(P_{E}(\mathbf{v})\right)=P_{E}(\mathbf{v})$. That is, $P_{E} \circ P_{E}(\mathbf{v})=P_{E}(\mathbf{v})$. Since $\mathbf{v} \in V$ was arbitrary, this implies $P_{E} \circ P_{E}=P_{E}$.
For the second equation, simply observe

$$
P_{E} \circ\left(I-P_{E}\right)=P_{E} \circ I-P_{E} \circ P_{E}=P_{E}-P_{E}=O
$$

where we have used the first part.
3. (a) Let $\mathbf{v}, \mathbf{w} \in S^{\perp}$ and let α, β be scalars. Then for any $\mathbf{x} \in S$ we have by linearity of the inner product that

$$
\langle\alpha \mathbf{v}+\beta \mathbf{w}, \mathbf{x}\rangle=\alpha\langle\mathbf{v}, \mathbf{x}\rangle+\beta\langle\mathbf{w}, \mathbf{x}\rangle=\alpha 0+\beta 0=0
$$

Thus $\alpha \mathbf{v}+\beta \mathbf{w} \in S^{\perp}$ and so S^{\perp} is closed under addition and scalar multiplication. Also, $\langle\mathbf{0}, \mathbf{x}\rangle=0$ for all $\mathbf{x} \in S$, and so $\mathbf{0} \in S^{\perp}$. Hence S is a subspace.
(b) Let $\mathbf{x} \in S$. Then for any $\mathbf{v} \in S^{\perp}$ we have $\langle\mathbf{x}, \mathbf{v}\rangle=0$ so that $\mathbf{x} \perp \mathbf{v}$. Since $\mathbf{v} \in S^{\perp}$ was arbitrary, we have $\mathbf{x} \in\left(S^{\perp}\right)^{\perp}$.
(c) (\Longrightarrow) : Suppose $S=\left(S^{\perp}\right)^{\perp}$. Then letting $S_{1}:=S^{\perp}$, we have $S=S_{1}^{\perp}$ and so S is a subspace by part (a).
(\Longleftarrow) : Suppose S is a subspace. From part (b) we know $S \subset\left(S^{\perp}\right)^{\perp}$, and so it suffices to show $S \supset\left(S^{\perp}\right)^{\perp}$. Let $\mathbf{y} \in\left(S^{\perp}\right)^{\perp}$ and let P_{S} be the orthogonal projection onto S. Let $\mathbf{w}:=\mathbf{y}-P_{S}(\mathbf{y})$, which is orthogonal to S by definition of the orthogonal projection. That is, $\mathbf{w} \in S^{\perp}$ and so $P_{S}(\mathbf{y}) \perp \mathbf{w}$, but also $\mathbf{y} \perp \mathbf{w}$ since $\mathbf{y} \in\left(S^{\perp}\right)^{\perp}$. Thus

$$
\langle\mathbf{w}, \mathbf{w}\rangle=\left\langle\mathbf{y}-P_{S}(\mathbf{y}), \mathbf{w}\right\rangle=\langle\mathbf{y}, \mathbf{w}\rangle-\left\langle P_{S}(\mathbf{y}), \mathbf{w}\right\rangle=0-0=0
$$

By non-degeneracy we must have $\mathbf{w}=\mathbf{0}$, which implies $\mathbf{y}=P_{S}(\mathbf{y})$. Then by Exercise 2.(a), we have $\mathbf{y} \in S$.
(d) Let $E:=\operatorname{span} S$, which is a subspace. Now, the inclusion $S \subset E$ implies $E^{\perp} \subset S^{\perp}$. Indeed, if $\mathbf{w} \in E^{\perp}$ then $\mathbf{w} \perp \mathbf{v}$ for all $\mathbf{v} \in E$. In particular, $\mathbf{w} \perp \mathbf{x}$ for all $\mathbf{x} \in S \subset E$ and thus $\mathbf{w} \in S^{\perp}$. Thus $E^{\perp} \subset S^{\perp}$, and by the same reasoning we have $\left(S^{\perp}\right)^{\perp} \subset\left(E^{\perp}\right)^{\perp}$. By part (c), we then know the latter set is E and so $\left(S^{\perp}\right)^{\perp} \subset E$. On the other hand, by parts (a) and (b), $\left(S^{\perp}\right)^{\perp}$ is a subspace containing S. It must therefore contain the span of S; that is, $E \subset\left(S^{\perp}\right)^{\perp}$. Hence $E=\left(S^{\perp}\right)^{\perp}$, as claimed.
4. (a) Let $\lambda \in \sigma\left(P_{E}\right)$ and let \mathbf{v} be an associated eigenvector. Since $P_{E} \circ P_{E}=P_{E}$ by Exercise 2.(c), we have

$$
\lambda \mathbf{v}=P_{E}(\mathbf{v})=P_{E} \circ P_{E}(\mathbf{v})=P_{E}(\lambda \mathbf{v})=\lambda^{2} \mathbf{v}
$$

which implies $\left(\lambda-\lambda^{2}\right) \mathbf{v}=\mathbf{0}$. Since $\mathbf{v} \neq \mathbf{0}$ (by virtue of being an eigenvector), we must have $\lambda-\lambda^{2}=0$. Noting that $\lambda-\lambda^{2}=\lambda(1-\lambda)$, we see that this is only possible if $\lambda \in\{0,1\}$. Hence $\sigma\left(P_{E}\right) \subset\{0,1\}$. On the other hand, since E is a propert subspace there exists non-zero vectors $\mathbf{v} \in E$ and $\mathbf{w} \in E^{\perp}$ and by Exercise 2.(a),(b) we have

$$
\begin{aligned}
P_{E}(\mathbf{v}) & =\mathbf{v}=1 \mathbf{v} \\
P_{E}(\mathbf{w}) & =\mathbf{0}=0 \mathbf{w}
\end{aligned}
$$

so that $1,0 \in \sigma\left(P_{E}\right)$. Thus $\sigma\left(P_{E}\right)=\{0,1\}$.
(b) Let \mathcal{B} be a basis for E and let \mathcal{C} be a basis for E^{\perp}. From the proof of Corollary 5.16 which says

$$
\operatorname{dim}(E)+\operatorname{dim}\left(E^{\perp}\right)=\operatorname{dim}(V)
$$

we know that $\mathcal{B} \cup \mathcal{C}$ is a basis for V. By the previous part, we know this is a basis of eigenvectors for P_{E} and therefore P_{E} is diagonalizable.
(c) Let \mathcal{B} and \mathcal{C} be as in the previous part. Then

$$
\left[P_{E}\right]_{\mathcal{B} \cup \mathcal{C}}^{\mathcal{B} \cup \mathcal{C}}=\left(\begin{array}{cccccc}
1 & & & & & 0 \\
& \ddots & & & & \\
& & 1 & & & \\
& & & 0 & & \\
& & & & \ddots & \\
0 & & & & & 0
\end{array}\right)
$$

where the number of 1 's along the diagonal is $\operatorname{dim}(E)$.
5. Note that

$$
A^{*}=\left(\begin{array}{c}
\mathbf{v}_{1}^{*} \\
\vdots \\
\mathbf{v}_{n}^{*}
\end{array}\right)
$$

It follows that

$$
\left(A^{*} A\right)_{i, j}=\mathbf{v}_{i}^{*} \mathbf{v}_{j}=\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle
$$

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an orthonormal system, we obtain

$$
\left(A^{*} A\right)_{i, j}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { otherwise }
\end{array}=\left(I_{n}\right)_{i, j}\right.
$$

Thus $A^{*} A=I_{n}$ which implies A^{*} is a left-inverse of A. Since A is square, it is the inverse of A. That is, $A^{*}=A^{-1}$ and so A is unitary.
Conversely, suppose A is unitary. Then by our computation above we have

$$
\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\left(A^{*} A\right)_{i, j}=\left(I_{n}\right)_{i, j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Hence $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is an orthonormal system.
6. (a) We must show $A^{*} \mathbf{v}=\bar{\lambda} \mathbf{v}$, and we will use the non-degeneracy of the inner product to accomplish this:

$$
\begin{aligned}
\left\langle A^{*} \mathbf{v}-\bar{\lambda} \mathbf{v}, A^{*} \mathbf{v}-\bar{\lambda} \mathbf{v}\right\rangle & =\left\langle A^{*} \mathbf{v}, A^{*} \mathbf{v}\right\rangle-\lambda\left\langle A^{*} \mathbf{v}, \mathbf{v}\right\rangle-\bar{\lambda}\left\langle\mathbf{v}, A^{*} \mathbf{v}\right\rangle-|\lambda|^{2}\langle\mathbf{v}, \mathbf{v}\rangle \\
(\text { Proposition 5.6) } & =\left\langle\mathbf{v}, A A^{*} \mathbf{v}\right\rangle-\lambda\langle\mathbf{v}, A \mathbf{v}\rangle-\bar{\lambda}\langle A \mathbf{v}, \mathbf{v}\rangle-|\lambda|^{2}\langle\mathbf{v}, \mathbf{v}\rangle \\
(A \text { is normal) } & =\left\langle\mathbf{v}, A^{*} A \mathbf{v}\right\rangle-\lambda\langle\mathbf{v}, \lambda \mathbf{v}\rangle-\bar{\lambda}\langle\lambda \mathbf{v}, \mathbf{v}\rangle-|\lambda|^{2}\langle\mathbf{v}, \mathbf{v}\rangle \\
& =\langle A \mathbf{v}, A \mathbf{v}\rangle-|\lambda|^{2}\langle\mathbf{v}, \mathbf{v}\rangle-\left|\lambda^{2}\right|\langle\mathbf{v}, \mathbf{v}\rangle+|\lambda|^{2}\langle\mathbf{v}, \mathbf{v}\rangle \\
& =\langle\lambda \mathbf{v}, \lambda \mathbf{v}\rangle-|\lambda|^{2}\langle\mathbf{v}, \mathbf{v}\rangle \\
& =|\lambda|^{2}\langle\mathbf{v}, \mathbf{v}\rangle-|\lambda|^{2}\langle\mathbf{v}, \mathbf{v}\rangle=0
\end{aligned}
$$

Hence $A^{*} \mathbf{v}-\bar{\lambda} \mathbf{v}=\mathbf{0}$, or equivalently $A^{*} \mathbf{v}=\bar{\lambda} \mathbf{v}$.
(b) Let $\mathbf{v} \in \operatorname{Ker}(A-\lambda I)$ and $\mathbf{w} \in \operatorname{Ker}(A-\mu I)$. Since $\lambda \neq \mu$, one of them must be non-zero. Without loss of generality we may assume $\lambda \neq 0$. Using part (a) and Proposition 5.6 we have

$$
\langle\mathbf{v}, \mathbf{w}\rangle=\frac{\lambda}{\lambda}\langle\mathbf{v}, \mathbf{w}\rangle=\frac{1}{\lambda}\langle\lambda \mathbf{v}, \mathbf{w}\rangle=\frac{1}{\lambda}\langle A \mathbf{v}, \mathbf{w}\rangle=\frac{1}{\lambda}\left\langle\mathbf{v}, A^{*} \mathbf{w}\right\rangle=\frac{1}{\lambda}\langle\mathbf{v}, \bar{\mu} \mathbf{w}\rangle=\frac{\mu}{\lambda}\langle\lambda, \mu\rangle .
$$

Thus

$$
\left(1-\frac{\mu}{\lambda}\right)\langle\mathbf{v}, \mathbf{w}\rangle=0
$$

Since $\lambda \neq \mu$, we know the first factor above is non-zero. Thus the second factor, $\langle\mathbf{v}, \mathbf{w}\rangle$, must be zero. That is, $\mathbf{v} \perp \mathbf{w}$. Since $\mathbf{v} \in \operatorname{Ker}(A-\lambda I)$ and $\mathbf{w} \in \operatorname{Ker}(A-\mu I)$ were arbitrary, the eigenspaces are orthogonal.
(c) Let $\lambda_{1}, \ldots, \lambda_{r}$ be the distinct eigenvalues of A. From lecture we know that normal matrices are diagonalizable, so it follows that

$$
\sum_{k=1}^{r} \operatorname{dim}\left(\operatorname{Ker}\left(A-\lambda_{k} I\right)\right)=n
$$

For each $k=1, \ldots, r$, let \mathcal{B}_{k} be an orthonormal basis for the eigenspace $\operatorname{Ker}\left(A-\lambda_{k} I\right)$. Note that \mathcal{B}_{k} consists of eigenvectors of A with eignevalue λ_{k}. By the previous part, $\mathcal{B}:=\mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{r}$ is an orthonormal system and hence linearly independent. The above equation implies \mathcal{B} contains n elements and hence is an orthonormal basis for \mathbb{F}^{n} (consisting of eigenvectors for A). Let $U \in M_{n \times n}$ be the matrix whose columns are the vectors in \mathcal{B}. Then

$$
A=U\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right) U^{-1}
$$

By Exercise $5, U$ is a unitary matrix and so $U^{-1}=U^{*}$.
7*. (a) We have

$$
\langle\mathbf{x}, \mathbf{x}\rangle=\frac{1}{4}\|\mathbf{x}+\mathbf{x}\|^{2}-\frac{1}{4}\|\mathbf{x}-\mathbf{x}\|^{2}=\frac{1}{4}\|2 \mathbf{x}\|^{2}-\frac{1}{4}\|\mathbf{0}\|^{2}=\frac{1}{4} 4\|x\|^{2}-0=\|x\|^{2} .
$$

Thus $\langle\mathbf{x}, \mathbf{x}\rangle=\|x\|^{2} \geq 0$ for all $\mathbf{x} \in V$, and $\langle\mathbf{x}, \mathbf{x}\rangle=0 \Leftrightarrow\|\mathbf{x}\|=0 \Leftrightarrow \mathbf{x}=\mathbf{0}$, which implies $\langle\cdot, \cdot\rangle$ is non-negative and non-degenerate.
(b) We compute

$$
\langle\mathbf{y}, \mathbf{x}\rangle=\frac{1}{4}\|\mathbf{y}+\mathbf{x}\|^{2}-\frac{1}{4}\|\mathbf{y}-\mathbf{x}\|^{2}=\frac{1}{4}\|\mathbf{x}+\mathbf{y}\|^{2}-\frac{1}{4}\|-(\mathbf{x}-\mathbf{y})\|^{2}=\frac{1}{4}\|\mathbf{x}+\mathbf{y}\|^{2}-\frac{1}{4}|-1|^{2}\|\mathbf{x}-\mathbf{y}\|^{2}=\langle\mathbf{x}, \mathbf{y}\rangle .
$$

(c) We compute

$$
\begin{equation*}
\langle 2 \mathbf{x}, \mathbf{y}\rangle=\frac{1}{4}\|2 \mathbf{x}+\mathbf{y}\|^{2}-\frac{1}{4}\|2 \mathbf{x}-\mathbf{y}\|^{2}=\frac{1}{4}\|(\mathbf{x}+\mathbf{y})+\mathbf{x}\|^{2}-\frac{1}{4}\|(\mathbf{x}-\mathbf{y})+\mathbf{x}\|^{2} . \tag{1}
\end{equation*}
$$

Now, using the parallelogram identity, we have

$$
\begin{aligned}
\|(\mathbf{x} \pm \mathbf{y})+\mathbf{x}\|^{2} & =-\|(\mathbf{x} \pm \mathbf{y})-\mathbf{x}\|^{2}+2\|\mathbf{x} \pm \mathbf{y}\|^{2}+2\|\mathbf{x}\|^{2} \\
& =-\| \pm \mathbf{y}\|^{2}+2\|\mathbf{x} \pm \mathbf{y}\|^{2}+2\|\mathbf{x}\|^{2} \\
& =-\|\mathbf{y}\|^{2}+2\|\mathbf{x} \pm \mathbf{y}\|^{2}+2\|\mathbf{x}\|^{2}
\end{aligned}
$$

Substituting this into Equation (1) gives

$$
\begin{aligned}
\langle 2 \mathbf{x}, \mathbf{y}\rangle & =\frac{1}{4}\left(-\|\mathbf{y}\|^{2}+2\|\mathbf{x}+\mathbf{y}\|^{2}+2\|\mathbf{x}\|^{2}\right)-\frac{1}{4}\left(-\|\mathbf{y}\|^{2}+2\|\mathbf{x}-\mathbf{y}\|^{2}+2\|\mathbf{x}\|^{2}\right) \\
& =\frac{2}{4}\|\mathbf{x}+\mathbf{y}\|^{2}-\frac{2}{4}\|\mathbf{x}-\mathbf{y}\|^{2}=2\langle\mathbf{x}, \mathbf{y}\rangle
\end{aligned}
$$

From this it follows that $\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle 2 \frac{1}{2} \mathbf{x}, \mathbf{y}\right\rangle=2\left\langle\frac{1}{2} \mathbf{x}, \mathbf{y}\right\rangle$. Thus $\left\langle\frac{1}{2} \mathbf{x}, \mathbf{y}\right\rangle=\frac{1}{2}\langle\mathbf{x}, \mathbf{y}\rangle$.
(d) We compute

$$
\begin{align*}
\langle\mathbf{w}+\mathbf{x}, \mathbf{y}\rangle & =\frac{1}{4}\|\mathbf{w}+\mathbf{x}+\mathbf{y}\|^{2}-\frac{1}{4}\|\mathbf{w}+\mathbf{x}-\mathbf{y}\|^{2} \\
& =\frac{1}{4}\left\|\left(\mathbf{w}+\frac{1}{2} \mathbf{y}\right)+\left(\mathbf{x}+\frac{1}{2} \mathbf{y}\right)\right\|^{2}-\frac{1}{4}\left\|\left(\mathbf{w}-\frac{1}{2} \mathbf{y}\right)+\left(\mathbf{x}-\frac{1}{2} \mathbf{y}\right)\right\|^{2} \tag{2}
\end{align*}
$$

Now, using the parallelogram identity, we have

$$
\begin{aligned}
\left\|\left(\mathbf{w} \pm \frac{1}{2} \mathbf{y}\right)+\left(\mathbf{x} \pm \frac{1}{2} \mathbf{y}\right)\right\|^{2} & =-\left\|\left(\mathbf{w} \pm \frac{1}{2} \mathbf{y}\right)-\left(\mathbf{x} \pm \frac{1}{2} \mathbf{y}\right)\right\|^{2}+2\left\|\mathbf{w} \pm \frac{1}{2} \mathbf{y}\right\|^{2}+2\left\|\mathbf{x} \pm \frac{1}{2} \mathbf{y}\right\|^{2} \\
& =-\|\mathbf{w}-\mathbf{x}\|^{2}+2\left\|\mathbf{w} \pm \frac{1}{2} \mathbf{y}\right\|^{2}+2\left\|\mathbf{x} \pm \frac{1}{2} \mathbf{y}\right\|^{2}
\end{aligned}
$$

Substituting this into Equation (2) gives

$$
\begin{aligned}
\langle\mathbf{w}+\mathbf{x}, \mathbf{y}\rangle= & \frac{1}{4}\left(-\|\mathbf{w}-\mathbf{x}\|^{2}+2\left\|\mathbf{w}+\frac{1}{2} \mathbf{y}\right\|^{2}+2\left\|\mathbf{x}+\frac{1}{2} \mathbf{y}\right\|^{2}\right) \\
& -\frac{1}{4}\left(-\|\mathbf{w}-\mathbf{x}\|^{2}+2\left\|\mathbf{w}-\frac{1}{2} \mathbf{y}\right\|^{2}+2\left\|\mathbf{x}-\frac{1}{2} \mathbf{y}\right\|^{2}\right) \\
= & \frac{2}{4}\left\|\mathbf{w}+\frac{1}{2} \mathbf{y}\right\|^{2}-\frac{2}{4}\left\|\mathbf{w}-\frac{1}{2} \mathbf{y}\right\|^{2}+\frac{2}{4}\left\|\mathbf{x}+\frac{1}{2} \mathbf{y}\right\|^{2}-\frac{2}{4}\left\|\mathbf{x}-\frac{1}{2} \mathbf{y}\right\|^{2} \\
= & 2\left\langle\mathbf{w}, \frac{1}{2} \mathbf{y}\right\rangle+2\left\langle\mathbf{x}, \frac{1}{2} \mathbf{y}\right\rangle \\
= & 2\left\langle\frac{1}{2} \mathbf{y}, \mathbf{w}\right\rangle+2\left\langle\frac{1}{2} \mathbf{y}, \mathbf{x}\right\rangle \\
= & \langle\mathbf{y}, \mathbf{w}\rangle+\langle\mathbf{y}, \mathbf{x}\rangle \\
= & \langle\mathbf{w}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle .
\end{aligned}
$$

(e) First observe that

$$
\langle\mathbf{0}, \mathbf{y}\rangle=\frac{1}{4}\|\mathbf{0}+\mathbf{y}\|^{2}-\frac{1}{4}\|\mathbf{0}-\mathbf{y}\|^{2}=\frac{1}{4}\|\mathbf{y}\|^{2}-\frac{1}{4}\|-\mathbf{y}\|^{2}=0 .
$$

Thus by the previous part we have

$$
\langle\mathbf{x}, \mathbf{y}\rangle+\langle-\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{x}+(-\mathbf{x}), \mathbf{y}\rangle=\langle\mathbf{0}, \mathbf{y}\rangle=0
$$

so that $\langle-\mathbf{x}, \mathbf{y}\rangle=-\langle\mathbf{x}, \mathbf{y}\rangle$.
(f) We will first prove $\langle n \mathbf{x}, \mathbf{y}\rangle=n\langle\mathbf{x}, \mathbf{y}\rangle$ for $n \in \mathbb{N}$ by induction on n. The base case of $n=1$ is immediate. So suppose it holds for n. Then we have by part (d) that

$$
\langle(n+1) \mathbf{x}, \mathbf{y}\rangle=\langle n \mathbf{x}+\mathbf{x}, \mathbf{y}\rangle=\langle n \mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle=n\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle=(n+1)\langle\mathbf{x}, \mathbf{y}\rangle .
$$

So by induction we have the claimed formula. Now, for $-n$, we simply apply the above and part (e). Finally, observe that

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle n \frac{1}{n} \mathbf{x}, \mathbf{y}\right\rangle=n\left\langle\frac{1}{n} \mathbf{x}, \mathbf{y}\right\rangle,
$$

so that $\frac{1}{n}\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle\frac{1}{n} \mathbf{x}, \mathbf{y}\right\rangle$.
(g) For any $q \in \mathbb{Q}$, we can write $q=\frac{n}{m}$ for $n \in \mathbb{Z}$ and $m \in \mathbb{N}$. So using part (f) twice we get

$$
\langle q \mathbf{x}, \mathbf{y}\rangle=n\left\langle\frac{1}{m} \mathbf{x}, \mathbf{y}\right\rangle=n \frac{1}{m}\langle\mathbf{x}, \mathbf{y}\rangle=q\langle\mathbf{x}, \mathbf{y}\rangle .
$$

(h) Using part (d) and (g) we have

$$
\langle p \mathbf{w}+q \mathbf{x}, \mathbf{y}\rangle=\langle p \mathbf{w}, \mathbf{y}\rangle+\langle q \mathbf{x}, \mathbf{y}\rangle=p\langle\mathbf{w}, \mathbf{y}\rangle+q\langle\mathbf{x}, \mathbf{y}\rangle .
$$

(i) First note that by the parallelogram identity that

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\frac{1}{4}\|\mathbf{x}+\mathbf{y}\|^{2}-\frac{1}{4}\left(2\|\mathbf{x}\|^{2}+2\|\mathbf{y}\|^{2}-\|\mathbf{x}+\mathbf{y}\|^{2}\right)=\frac{1}{2}\left(\|\mathbf{x}+\mathbf{y}\|^{2}-\|\mathbf{x}\|^{2}-\|\mathbf{y}\|^{2}\right) .
$$

We also have

$$
-\langle\mathbf{x}, \mathbf{y}\rangle=\frac{1}{4}\|\mathbf{x}-\mathbf{y}\|^{2}-\frac{1}{4}\left(2\|\mathbf{x}\|^{2}+2\|\mathbf{y}\|^{2}-\|\mathbf{x}-\mathbf{y}\|^{2}\right)=\frac{1}{2}\left(\|\mathbf{x}-\mathbf{y}\|^{2}-2\|\mathbf{x}\|^{2}-2\|\mathbf{y}\|^{2}\right) .
$$

Now, the triangle inequality implies

$$
\|\mathbf{x} \pm \mathbf{y}\|^{2} \leq(\|\mathbf{x}\|+\|\mathbf{y}\|)^{2}=\|\mathbf{x}\|^{2}+2\|\mathbf{x}\|\|\mathbf{y}\|+\|\mathbf{y}\|^{2}
$$

Substituting this into our earlier computations yields

$$
\pm\langle\mathbf{x}, \mathbf{y}\rangle \leq \frac{1}{2}(2\|\mathbf{x}\|\|\mathbf{y}\|)=\|\mathbf{x}\|\|\mathbf{y}\|
$$

Thus $|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
(j) Let $\alpha \in \mathbb{R}$ and let $q \in \mathbb{Q}$. Using parts (d) and (g) we have

$$
\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\langle(\alpha-q+q) \mathbf{x}, \mathbf{y}\rangle=\langle(\alpha-q) \mathbf{x}, \mathbf{y}\rangle+\langle q \mathbf{x}, \mathbf{y}\rangle=\langle(\alpha-q) \mathbf{x}, \mathbf{y}\rangle+q\langle\mathbf{x}, \mathbf{y}\rangle .
$$

Thus

$$
\langle\alpha \mathbf{x}, \mathbf{y}\rangle-\alpha\langle\mathbf{x}, \mathbf{y}\rangle=\langle(\alpha-q) \mathbf{x}, \mathbf{y}\rangle+(q-\alpha)\langle\mathbf{x}, \mathbf{y}\rangle
$$

Then using part (i) we get
$|\langle\alpha \mathbf{x}, \mathbf{y}\rangle-\alpha\langle\mathbf{x}, \mathbf{y}\rangle| \leq|\langle(\alpha-q) \mathbf{x}, \mathbf{y}\rangle|+|q-\alpha\|\langle\mathbf{x}, \mathbf{y}\rangle|\leq\|(\alpha-q) \mathbf{x}\|\|\mathbf{y}\|+|\alpha-q|\|\mathbf{x}\|\|\mathbf{y}\| \leq 2| \alpha-q \mid\| \mathbf{x}\| \| \mathbf{y} \|$, where we have used homogeneity of the norm in the last step.
(k) Let $\alpha \in \mathbb{R}$. Since \mathbb{Q} is dense there is a sequence $\left(q_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\lim _{n \rightarrow \infty} q_{n}=\alpha
$$

In particular,

$$
\lim _{n \rightarrow \infty}\left|\alpha-q_{n}\right|=|\alpha-\alpha|=0
$$

So using part (j) we see that

$$
|\langle\alpha \mathbf{x}, \mathbf{y}\rangle-\alpha\langle\mathbf{x}, \mathbf{y}\rangle|=\lim _{n \rightarrow \infty}|\langle\alpha \mathbf{x}, \mathbf{y}\rangle-\alpha\langle\mathbf{x}, \mathbf{y}\rangle| \leq \lim _{n \rightarrow \infty} 2\left|\alpha-q_{n}\right|\|\mathbf{x}\|\|\mathbf{y}\|=0
$$

Thus $\langle\alpha \mathbf{x}, \mathbf{y}\rangle-\alpha\langle\mathbf{x}, \mathbf{y}\rangle=0$ or $\langle\alpha \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{x}, \mathbf{y}\rangle$.
(l) Using parts (d) and (k) we have for any $\alpha, \beta \in \mathbb{R}$ that

$$
\langle\alpha \mathbf{w}+\beta \mathbf{x}, \mathbf{y}\rangle=\langle\alpha \mathbf{w}, \mathbf{y}\rangle+\langle\beta \mathbf{x}, \mathbf{y}\rangle=\alpha\langle\mathbf{w}, \mathbf{y}\rangle+\beta\langle\mathbf{x}, \mathbf{y}\rangle .
$$

