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Genetics



Application Genetics

[Novembre et al., Nature 2008]: Researchers analyzed genetic data from people
with European ancestry: 1,387 people at 197,146 genetic loci.
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Application Genetics

They recorded these numbers as a 1387 x 197146 matrix X.

locus 1 locus?2 --- locusj --- locus 197146
person 1 X111 X122 e Tt X1,107146
person 2 X2,1 X222
. = X
person i Xi j
person 1387 X1387,1 - “++ X1387,107146



Application Genetics

They recorded these numbers as a 1387 x 197146 matrix X.

locus 1 locus2 --- locusj --- locus 197146
person 1 X111 X1,2 X1,197146
person 2 X2,1 X222
: : : =X
person i Xi.j
person 1387 X1387,1 - “++ X1387,107146

They then analyzed this data by examining the singular values of X....
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e If you find a coin on the street, how can you determine if it is fair?

Unfair Coins:

https://izbicki.me/blog/how-to-create-an-unfair-coin-and-prove-it-with-math.html
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Probability Theory Signal through the noise

Probability Questions

e Flip a coin 100 times, how many times should it come up heads if the coin is

fair? (50)
@ Roll a 6-sided die 60 times, how times should you roll a 1 if the die is fair?
(10)
e Play 600,000 hands of poker, how many times should you get a royal flush if
the deck is fair? (<1)
e You text someone 5 times, how many minutes should it take for them to reply
if they aren’t ghosting you? (asking for a friend)

Moral: In order to know if something unexpected has happened, you first need to
know what the expected (i.e average) outcome is.

Probability theory: Provides the tools needed to compute the expected outcome.
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Random Matrix Theory Definition and Examples

A random matrix is an n x m matrix X with at least one randomly generated
entry.

Flip a coin, define x = 1 if the coin comes up heads and x = —1 if the coin comes
up tails. Roll a 6-sided die and let y be the result. Then

(i) ()

are random matrices.

o

Since the matrix is (at least partially) random, the data associated to the matrix is
potentially random as well: the entries of X, det(X), Tr(X), eigenvalues of X,
eigenvectors of X, etc.
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Suppose you collect the following data set:
(05_1)7 (2a3)7 (q,2).
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Random Matrix Theory Definition and Examples

Least Squares?

Suppose you collect the following data set:
(05_1)7 (2a3)7 (q,2).

However, all you remember about the last x-coordinate is that 3 < g < 5. You
want to find the line y = ax + b that best fits this data:

0 1 ; -1
2 1 <b>: 3
qg 1 2

Can still find the least squares solution using this random matrix:

4+q> 24¢ a 6 +2q q+5 q®>—5q+2
= ~ Yy = 5 X + 3
2+q 3 b 4 > —29+4"  q?—2q+4




Random Matrix Theory Definition and Examples

Least Squares? (continued)

_ g+5 N q>—5q+2
Yo 2q+4 T 2 —2q+4

W

v
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Random Matrix Theory

Eugene Wigner Sad McConnell
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e Goal: given an atom, try to understand the possible energy levels of electrons

e Hamiltonian linear operator that models the dynamics of the subatomic
particles (protons, electrons, neutrons), and its eigenvalues give you the
possible energy levels
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Wigner was motivated by chemistry and physics.
e Goal: given an atom, try to understand the possible energy levels of electrons

e Hamiltonian linear operator that models the dynamics of the subatomic
particles (protons, electrons, neutrons), and its eigenvalues give you the
possible energy levels

@ PROTON
NUCLEUS

NEUTRON

o —

ELECTRON

http://www.whoinventedfirst.com/who-discovered-the-atom/

e Can be computed explicitly for the hydrogen atom: 1 proton, 1 electron

e But for atoms with “heavy nuclei” (e.g uranium-238: 92 protons, 92
electrons, 146 neutrons), too complicated to solve explicitly

o Wigner’s idea: treat the Hamiltonian as a random matrix
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Random Matrix Theory Wigner's Semicircle Law

e For each n € N, let A, be an n x n matrix with all entries random and
independent of one another.

o Define X, := %(A,, + AT), which is an n x n symmetric random matrix.

o Make a histogram of #eigenvalues of X,, in each interval of length ~ %

n = 10,000



Random Matrix Theory Wigner's Semicircle Law

Semicircle Distribution

The histograms get closer and closer to the semicircle distribution:

{%\/4—# if —2<t<2
s(t) =427 .

0 otherwise

o
BN

o
-t
-
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Random Matrix Theory Wigner's Semicircle Law

Theorem (Wigner's Semicircle Law)

Let X,, n € N, be the sequence of symmetric random matrices as above. For any
interval [a, b] C R,

lim

n—o00 n

. #{eigenvalues of X, in the interval [a, b]} :/ s(t) dt.




Random Matrix Theory Wigner's Semicircle Law

Theorem (Wigner's Semicircle Law)

Let X,, n € N, be the sequence of symmetric random matrices as above. For any
interval [a, b] C R,

lim #{eigenvalues of X, in the interval [a, b]} _ /b .
n—o0 n i
That is, there exists an N € N so that for any n > N

#{eigenvalues of X, in the interval [a, b]}

. /¢—tzdt
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Vladimir Mar&enko Leonid Pastur
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Mar&enko—Pastur distribution

Fix A € (0,1] and define A+ = (1 & +v/A)2. The Mar&enko—Pastur distribution is
I/(i’)':{ 1 VA )t if A <t< AL

2T\ t
0 otherwise

A=Yz
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o Let (p(n))nen C N be a sequence satisfying

A= lim p(n) € (0,1].

n—oco N

e For each n € N, let X, be p(n) x n matrix all of whose entries are random and
independent of one another.
o Define Y, = 1X,XT, a p(n) x p(n) symmetric random matrix

o Eigenalues of Y, are % times the squares of the singular values of X,.

Theorem (The Mar¢enko—Pastur Law)

With Y,, n € N, as above, for any interval [a, b] C R,

. . . b
im #{eigenvalues of Y, in the interval [a, b]} :/ o(t) dt.
n—00 p(n) a

That is, there exists an N € N so that for any n > N

#{eigenvalues of Y, in the interval [a, b]} 1 /b VE=2)04 —t)
T 2mA t
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Researchers recorded genetic data as the matrix

locus 1 locus2 --- locusj --- locus 197146
person 1 X1 X1 - Tt X1,197146
person 2 X21 X2
. = X
person i Xi j
person 1387 X1387,1 - ° ©tt X1387,197146
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Random Matrix Theory The Maréenko-Pastur Law

Researchers recorded genetic data as the matrix

locus 1 locus2 --- locusj --- locus 197146
person 1 X1 X1 - Tt X1,197146
person 2 X21 X2
: =X

person i Xi j

person 1387 X1387,1 - ° ©tt X1387,197146

Set (n) 1,387
n:= 197,146 p(n ,
; Ai=—"=——-~0.007035

p(n) := 1,387 n 197,146

They computed eigenvalues of Y := XX T, which is a p(n) x p(n) symmetric
matrix.
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Random Matrix Theory The Maréenko-Pastur Law

e Suppose—naively—that the entries of X are random. That is, that the
nucleobases in each persons DNA were randomly assigned.

e Under our naive assumption, the Maréenko—Pastur law says that a histogram
of the eigenvalues of Y should look like the graph of the Mar&enko—Pastur
distribution v(t) with resolution A. However, the actual data did not quite
yield this: there were two outlying eigenvalues.

o Let x,y € RP(" be their unit eigenvectors. Note that p(n) = 1,387, which
was the number of people in the study.

e Thus the eigenvectors x, y assign to each person a coordinate pair: person i is
assigned the coordinate pair (x;, y;) where x; and y; are the ith entries of x
and y, respectively.

e Something pretty incredible happens when you plot these coordinate pairs...
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