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Application Genetics

[Novembre et al., Nature 2008]: Researchers analyzed genetic data from people
with European ancestry: 1,387 people at 197,146 genetic loci.

A 7→ 1
C 7→ 2
G 7→ 3
T 7→ 4
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Application Genetics

They recorded these numbers as a 1387× 197146 matrix X .

locus 1 locus 2 · · · locus j · · · locus 197146

person 1

person 2
...

person i
...

person 1387



x1,1 x1,2 · · · · · · x1,197146

x2,1 x2,2 · · ·
...

...
...

. . .

xi,j
...

. . .
...

x1387,1 · · · · · · x1387,197146


=: X

They then analyzed this data by examining the singular values of X ....
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Probability Theory
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Probability Theory Signal through the noise

What does it mean for a coin to be fair?

If you find a coin on the street, how can you determine if it is fair?

Unfair Coins:

https://izbicki.me/blog/how-to-create-an-unfair-coin-and-prove-it-with-math.html
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Probability Theory Signal through the noise

Probability Questions

Flip a coin 100 times, how many times should it come up heads if the coin is
fair?

(50)

Roll a 6-sided die 60 times, how times should you roll a 1 if the die is fair?

(10)

Play 600,000 hands of poker, how many times should you get a royal flush if
the deck is fair?

(< 1)

You text someone 5 times, how many minutes should it take for them to reply
if they aren’t ghosting you?

(asking for a friend)

Moral: In order to know if something unexpected has happened, you first need to
know what the expected (i.e average) outcome is.

.

Probability theory: Provides the tools needed to compute the expected outcome.
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Random Matrix Theory Definition and Examples

Definition

A random matrix is an n ×m matrix X with at least one randomly generated
entry.

Example

Flip a coin, define x = 1 if the coin comes up heads and x = −1 if the coin comes
up tails. Roll a 6-sided die and let y be the result. Then

A =

(
x 0
0 y

)
B =

(
1 y
y 1

)
are random matrices.

Since the matrix is (at least partially) random, the data associated to the matrix is
potentially random as well: the entries of X , det(X ), Tr(X ), eigenvalues of X ,
eigenvectors of X , etc.
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Random Matrix Theory Definition and Examples

Least Squares?

Suppose you collect the following data set:

(0,−1), (2, 3), (q, 2).

However, all you remember about the last x-coordinate is that 3 ≤ q ≤ 5.

You
want to find the line y = ax + b that best fits this data: 0 1

2 1
q 1

( a
b

)
=

 −1
3
2


Can still find the least squares solution using this random matrix:(

4 + q2 2 + q
2 + q 3

)(
a
b

)
=

(
6 + 2q

4

)

 y =
q + 5

q2 − 2q + 4
x +

q2 − 5q + 2

q2 − 2q + 4
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Random Matrix Theory Definition and Examples

Least Squares? (continued)

y =
q + 5

q2 − 2q + 4
x +

q2 − 5q + 2

q2 − 2q + 4

−1 1 2 3 4 5

−1

1

2

3
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Random Matrix Theory Wigner’s Semicircle Law
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Random Matrix Theory Wigner’s Semicircle Law

Not McConnell McConnell
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Random Matrix Theory Wigner’s Semicircle Law

Eugene Wigner Sad McConnell
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Random Matrix Theory Wigner’s Semicircle Law

Wigner was motivated by chemistry and physics.

Goal: given an atom, try to understand the possible energy levels of electrons

Hamiltonian linear operator that models the dynamics of the subatomic
particles (protons, electrons, neutrons), and its eigenvalues give you the
possible energy levels

http://www.whoinventedfirst.com/who-discovered-the-atom/

Can be computed explicitly for the hydrogen atom: 1 proton, 1 electron

But for atoms with “heavy nuclei” (e.g uranium-238: 92 protons, 92
electrons, 146 neutrons), too complicated to solve explicitly

Wigner’s idea: treat the Hamiltonian as a random matrix
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Random Matrix Theory Wigner’s Semicircle Law

For each n ∈ N, let An be an n × n matrix with all entries random and
independent of one another.

Define Xn := 1
n (An + AT

n ), which is an n × n symmetric random matrix.

Make a histogram of #eigenvalues of Xn in each interval of length ∼ 1
n .
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For each n ∈ N, let An be an n × n matrix with all entries random and
independent of one another.

Define Xn := 1
n (An + AT

n ), which is an n × n symmetric random matrix.

Make a histogram of #eigenvalues of Xn in each interval of length ∼ 1
n .

n = 20
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For each n ∈ N, let An be an n × n matrix with all entries random and
independent of one another.

Define Xn := 1
n (An + AT

n ), which is an n × n symmetric random matrix.

Make a histogram of #eigenvalues of Xn in each interval of length ∼ 1
n .
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Random Matrix Theory Wigner’s Semicircle Law

For each n ∈ N, let An be an n × n matrix with all entries random and
independent of one another.

Define Xn := 1
n (An + AT

n ), which is an n × n symmetric random matrix.

Make a histogram of #eigenvalues of Xn in each interval of length ∼ 1
n .

n = 10, 000
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Random Matrix Theory Wigner’s Semicircle Law

Semicircle Distribution

The histograms get closer and closer to the semicircle distribution:

s(t) =

{
1
2π

√
4− t2 if − 2 ≤ t ≤ 2

0 otherwise
.

-2 -1 0 1 2

1

2
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Random Matrix Theory Wigner’s Semicircle Law

Theorem (Wigner’s Semicircle Law)

Let Xn, n ∈ N, be the sequence of symmetric random matrices as above. For any
interval [a, b] ⊂ R,

lim
n→∞

#{eigenvalues of Xn in the interval [a, b]}
n

=

∫ b

a

s(t) dt.

That is, there exists an N ∈ N so that for any n ≥ N

#{eigenvalues of Xn in the interval [a, b]}
n

≈ 1

2π

∫ b

a

√
4− t2 dt.
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The Marčenko–Pastur Law
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Random Matrix Theory The Marčenko–Pastur Law

Vladimir Marčenko Leonid Pastur
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Random Matrix Theory The Marčenko–Pastur Law

Marčenko–Pastur distribution

Fix λ ∈ (0, 1] and define λ± = (1±
√
λ)2. The Marčenko–Pastur distribution is

ν(t) :=

{
1

2πλ

√
(t−λ−)(λ+−t)

t if λ− ≤ t ≤ λ+
0 otherwise

.

ṋ=½
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Random Matrix Theory The Marčenko–Pastur Law

Let (p(n))n∈N ⊂ N be a sequence satisfying

λ := lim
n→∞

p(n)

n
∈ (0, 1].

For each n ∈ N, let Xn be p(n)× n matrix all of whose entries are random and
independent of one another.

Define Yn = 1
nXnX

T
n , a p(n)× p(n) symmetric random matrix

Eigenalues of Yn are 1
n times the squares of the singular values of Xn.

Theorem (The Marčenko–Pastur Law)

With Yn, n ∈ N, as above, for any interval [a, b] ⊂ R,

lim
n→∞

#{eigenvalues of Yn in the interval [a, b]}
p(n)

=

∫ b

a

ν(t) dt.

That is, there exists an N ∈ N so that for any n ≥ N

#{eigenvalues of Yn in the interval [a, b]}
p(n)

≈ 1

2πλ

∫ b

a

√
(t − λ−)(λ+ − t)

t
dt.
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Let (p(n))n∈N ⊂ N be a sequence satisfying

λ := lim
n→∞

p(n)

n
∈ (0, 1].

For each n ∈ N, let Xn be p(n)× n matrix all of whose entries are random and
independent of one another.

Define Yn = 1
nXnX

T
n , a p(n)× p(n) symmetric random matrix

Eigenalues of Yn are 1
n times the squares of the singular values of Xn.

Theorem (The Marčenko–Pastur Law)

With Yn, n ∈ N, as above, for any interval [a, b] ⊂ R,

lim
n→∞

#{eigenvalues of Yn in the interval [a, b]}
p(n)

=

∫ b

a

ν(t) dt.

That is, there exists an N ∈ N so that for any n ≥ N

#{eigenvalues of Yn in the interval [a, b]}
p(n)

≈ 1

2πλ

∫ b

a

√
(t − λ−)(λ+ − t)

t
dt.
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Back to Genetics
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Researchers recorded genetic data as the matrix

locus 1 locus 2 · · · locus j · · · locus 197146

person 1

person 2
...

person i
...

person 1387



x1,1 x1,2 · · · · · · x1,197146

x2,1 x2,2 · · ·
...

...
...

. . .

xi,j
...

. . .
...

x1387,1 · · · · · · x1387,197146


=: X

Set
n := 197, 146

p(n) := 1, 387
λ :=

p(n)

n
=

1, 387

197, 146
≈ 0.007035

They computed eigenvalues of Y := 1
nXX

T , which is a p(n)× p(n) symmetric
matrix.
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Suppose—naively—that the entries of X are random. That is, that the
nucleobases in each persons DNA were randomly assigned.

Under our naive assumption, the Marčenko–Pastur law says that a histogram
of the eigenvalues of Y should look like the graph of the Marčenko–Pastur
distribution ν(t) with resolution λ. However, the actual data did not quite
yield this: there were two outlying eigenvalues.

Let x , y ∈ Rp(n) be their unit eigenvectors. Note that p(n) = 1, 387, which
was the number of people in the study.

Thus the eigenvectors x , y assign to each person a coordinate pair: person i is
assigned the coordinate pair (xi , yi ) where xi and yi are the ith entries of x
and y , respectively.

Something pretty incredible happens when you plot these coordinate pairs...

23 / 24



Random Matrix Theory The Marčenko–Pastur Law
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