A European application of random matrix theory

Brent Nelson

Michigan State University

Math 317H
December 5th, 2019

Genetics

[Novembre et al., Nature 2008]: Researchers analyzed genetic data from people with European ancestry: 1,387 people at 197,146 genetic loci.

They recorded these numbers as a 1387×197146 matrix X.
$\left.\begin{array}{cccccc} & \text { locus } 1 & \text { locus } 2 & \cdots & \text { locus } j \cdots & \text { locus } 197146 \\ \text { person } 1 \\ \text { person } 2 & x_{1,1} & x_{1,2} & \cdots & & \cdots \\ x_{2,1} & x_{2,2} & \cdots & & & x_{1,197146} \\ \vdots & \vdots & \vdots & \ddots & & \\ \text { person } \mathrm{i} & & & & x_{i, j} & \\ \vdots & \vdots & & & & \ddots\end{array}\right]=: X$

They recorded these numbers as a 1387×197146 matrix X.

They then analyzed this data by examining the singular values of $X \ldots$.

Probability Theory

- What does it mean for a coin to be fair?
- What does it mean for a coin to be fair?
- If you find a coin on the street, how can you determine if it is fair?
- What does it mean for a coin to be fair?
- If you find a coin on the street, how can you determine if it is fair?

Unfair Coins:

https://izbicki.me/blog/how-to-create-an-unfair-coin-and-prove-it-with-math.html

Probability Questions

- Flip a coin 100 times, how many times should it come up heads if the coin is fair?

Probability Questions

- Flip a coin 100 times, how many times should it come up heads if the coin is fair?
(50)

Probability Questions

- Flip a coin 100 times, how many times should it come up heads if the coin is fair?
(50)
- Roll a 6 -sided die 60 times, how times should you roll a 1 if the die is fair?

Probability Questions

- Flip a coin 100 times, how many times should it come up heads if the coin is fair?
(50)
- Roll a 6 -sided die 60 times, how times should you roll a 1 if the die is fair?
(10)

Probability Questions

- Flip a coin 100 times, how many times should it come up heads if the coin is fair?
- Roll a 6 -sided die 60 times, how times should you roll a 1 if the die is fair?
- Play 600,000 hands of poker, how many times should you get a royal flush if the deck is fair?

Probability Questions

- Flip a coin 100 times, how many times should it come up heads if the coin is fair?
- Roll a 6 -sided die 60 times, how times should you roll a 1 if the die is fair?
- Play 600,000 hands of poker, how many times should you get a royal flush if the deck is fair?

Probability Questions

- Flip a coin 100 times, how many times should it come up heads if the coin is fair?
- Roll a 6 -sided die 60 times, how times should you roll a 1 if the die is fair?
- Play 600,000 hands of poker, how many times should you get a royal flush if the deck is fair?
- You text someone 5 times, how many minutes should it take for them to reply if they aren't ghosting you?

Probability Questions

- Flip a coin 100 times, how many times should it come up heads if the coin is fair?
- Roll a 6 -sided die 60 times, how times should you roll a 1 if the die is fair?
- Play 600,000 hands of poker, how many times should you get a royal flush if the deck is fair?
- You text someone 5 times, how many minutes should it take for them to reply if they aren't ghosting you?

Probability Questions

- Flip a coin 100 times, how many times should it come up heads if the coin is fair?
- Roll a 6 -sided die 60 times, how times should you roll a 1 if the die is fair?
- Play 600,000 hands of poker, how many times should you get a royal flush if the deck is fair?
- You text someone 5 times, how many minutes should it take for them to reply if they aren't ghosting you? (asking for a friend)
Moral: In order to know if something unexpected has happened, you first need to know what the expected (i.e average) outcome is.

Probability Questions

- Flip a coin 100 times, how many times should it come up heads if the coin is fair?
- Roll a 6 -sided die 60 times, how times should you roll a 1 if the die is fair?
- Play 600,000 hands of poker, how many times should you get a royal flush if the deck is fair?
- You text someone 5 times, how many minutes should it take for them to reply if they aren't ghosting you? (asking for a friend)
Moral: In order to know if something unexpected has happened, you first need to know what the expected (i.e average) outcome is.

Probability theory: Provides the tools needed to compute the expected outcome.

Random Matrix Theory

Definition

A random matrix is an $n \times m$ matrix X with at least one randomly generated entry.

Definition

A random matrix is an $n \times m$ matrix X with at least one randomly generated entry.

Example

Flip a coin, define $x=1$ if the coin comes up heads and $x=-1$ if the coin comes up tails. Roll a 6 -sided die and let y be the result. Then

$$
A=\left(\begin{array}{cc}
x & 0 \\
0 & y
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & y \\
y & 1
\end{array}\right)
$$

are random matrices.

Definition

A random matrix is an $n \times m$ matrix X with at least one randomly generated entry.

Example

Flip a coin, define $x=1$ if the coin comes up heads and $x=-1$ if the coin comes up tails. Roll a 6 -sided die and let y be the result. Then

$$
A=\left(\begin{array}{cc}
x & 0 \\
0 & y
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & y \\
y & 1
\end{array}\right)
$$

are random matrices.
Since the matrix is (at least partially) random, the data associated to the matrix is potentially random as well: the entries of $X, \operatorname{det}(X), \operatorname{Tr}(X)$, eigenvalues of X, eigenvectors of X, etc.

Least Squares?

Suppose you collect the following data set:

$$
(0,-1), \quad(2,3), \quad(q, 2) .
$$

However, all you remember about the last x-coordinate is that $3 \leq q \leq 5$.

Least Squares?

Suppose you collect the following data set:

$$
(0,-1), \quad(2,3), \quad(q, 2) .
$$

However, all you remember about the last x-coordinate is that $3 \leq q \leq 5$. You want to find the line $y=a x+b$ that best fits this data:

$$
\left(\begin{array}{ll}
0 & 1 \\
2 & 1 \\
q & 1
\end{array}\right)\binom{a}{b}=\left(\begin{array}{r}
-1 \\
3 \\
2
\end{array}\right)
$$

Least Squares?

Suppose you collect the following data set:

$$
(0,-1), \quad(2,3), \quad(q, 2) .
$$

However, all you remember about the last x-coordinate is that $3 \leq q \leq 5$. You want to find the line $y=a x+b$ that best fits this data:

$$
\left(\begin{array}{ll}
0 & 1 \\
2 & 1 \\
q & 1
\end{array}\right)\binom{a}{b}=\left(\begin{array}{r}
-1 \\
3 \\
2
\end{array}\right)
$$

Can still find the least squares solution using this random matrix:

$$
\left(\begin{array}{cc}
4+q^{2} & 2+q \\
2+q & 3
\end{array}\right)\binom{a}{b}=\binom{6+2 q}{4}
$$

Least Squares?

Suppose you collect the following data set:

$$
(0,-1), \quad(2,3), \quad(q, 2) .
$$

However, all you remember about the last x-coordinate is that $3 \leq q \leq 5$. You want to find the line $y=a x+b$ that best fits this data:

$$
\left(\begin{array}{ll}
0 & 1 \\
2 & 1 \\
q & 1
\end{array}\right)\binom{a}{b}=\left(\begin{array}{r}
-1 \\
3 \\
2
\end{array}\right)
$$

Can still find the least squares solution using this random matrix:

$$
\left(\begin{array}{cc}
4+q^{2} & 2+q \\
2+q & 3
\end{array}\right)\binom{a}{b}=\binom{6+2 q}{4} \rightsquigarrow y=\frac{q+5}{q^{2}-2 q+4} x+\frac{q^{2}-5 q+2}{q^{2}-2 q+4}
$$

Least Squares? (continued)

$$
y=\frac{q+5}{q^{2}-2 q+4} x+\frac{q^{2}-5 q+2}{q^{2}-2 q+4}
$$

Not McConnell

McConnell

Eugene Wigner

Sad McConnell

Wigner was motivated by chemistry and physics.

Wigner was motivated by chemistry and physics.

- Goal: given an atom, try to understand the possible energy levels of electrons

Wigner was motivated by chemistry and physics.

- Goal: given an atom, try to understand the possible energy levels of electrons
- Hamiltonian linear operator that models the dynamics of the subatomic particles (protons, electrons, neutrons), and its eigenvalues give you the possible energy levels

http://www.whoinventedfirst.com/who-discovered-the-atom/

Wigner was motivated by chemistry and physics.

- Goal: given an atom, try to understand the possible energy levels of electrons
- Hamiltonian linear operator that models the dynamics of the subatomic particles (protons, electrons, neutrons), and its eigenvalues give you the possible energy levels

http://www.whoinventedfirst.com/who-discovered-the-atom/
- Can be computed explicitly for the hydrogen atom: 1 proton, 1 electron

Wigner was motivated by chemistry and physics.

- Goal: given an atom, try to understand the possible energy levels of electrons
- Hamiltonian linear operator that models the dynamics of the subatomic particles (protons, electrons, neutrons), and its eigenvalues give you the possible energy levels

http://www.whoinventedfirst.com/who-discovered-the-atom/
- Can be computed explicitly for the hydrogen atom: 1 proton, 1 electron
- But for atoms with "heavy nuclei" (e.g uranium-238: 92 protons, 92 electrons, 146 neutrons), too complicated to solve explicitly

Wigner was motivated by chemistry and physics.

- Goal: given an atom, try to understand the possible energy levels of electrons
- Hamiltonian linear operator that models the dynamics of the subatomic particles (protons, electrons, neutrons), and its eigenvalues give you the possible energy levels

http://www.whoinventedfirst.com/who-discovered-the-atom/
- Can be computed explicitly for the hydrogen atom: 1 proton, 1 electron
- But for atoms with "heavy nuclei" (e.g uranium-238: 92 protons, 92 electrons, 146 neutrons), too complicated to solve explicitly
- Wigner's idea: treat the Hamiltonian as a random matrix
- For each $n \in \mathbb{N}$, let A_{n} be an $n \times n$ matrix with all entries random and independent of one another.
- For each $n \in \mathbb{N}$, let A_{n} be an $n \times n$ matrix with all entries random and independent of one another.
- Define $X_{n}:=\frac{1}{n}\left(A_{n}+A_{n}^{T}\right)$, which is an $n \times n$ symmetric random matrix.
- For each $n \in \mathbb{N}$, let A_{n} be an $n \times n$ matrix with all entries random and independent of one another.
- Define $X_{n}:=\frac{1}{n}\left(A_{n}+A_{n}^{T}\right)$, which is an $n \times n$ symmetric random matrix.
- Make a histogram of \#eigenvalues of X_{n} in each interval of length $\sim \frac{1}{n}$.
- For each $n \in \mathbb{N}$, let A_{n} be an $n \times n$ matrix with all entries random and independent of one another.
- Define $X_{n}:=\frac{1}{n}\left(A_{n}+A_{n}^{T}\right)$, which is an $n \times n$ symmetric random matrix.
- Make a histogram of \#eigenvalues of X_{n} in each interval of length $\sim \frac{1}{n}$.

$$
n=20
$$

- For each $n \in \mathbb{N}$, let A_{n} be an $n \times n$ matrix with all entries random and independent of one another.
- Define $X_{n}:=\frac{1}{n}\left(A_{n}+A_{n}^{T}\right)$, which is an $n \times n$ symmetric random matrix.
- Make a histogram of \#eigenvalues of X_{n} in each interval of length $\sim \frac{1}{n}$.

- For each $n \in \mathbb{N}$, let A_{n} be an $n \times n$ matrix with all entries random and independent of one another.
- Define $X_{n}:=\frac{1}{n}\left(A_{n}+A_{n}^{T}\right)$, which is an $n \times n$ symmetric random matrix.
- Make a histogram of \#eigenvalues of X_{n} in each interval of length $\sim \frac{1}{n}$.

Semicircle Distribution

The histograms get closer and closer to the semicircle distribution:

$$
s(t)=\left\{\begin{array}{ll}
\frac{1}{2 \pi} \sqrt{4-t^{2}} & \text { if }-2 \leq t \leq 2 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Theorem (Wigner's Semicircle Law)

Let $X_{n}, n \in \mathbb{N}$, be the sequence of symmetric random matrices as above. For any interval $[a, b] \subset \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{\text { eigenvalues of } X_{n} \text { in the interval }[a, b]\right\}}{n}=\int_{a}^{b} s(t) d t
$$

Theorem (Wigner's Semicircle Law)

Let $X_{n}, n \in \mathbb{N}$, be the sequence of symmetric random matrices as above. For any interval $[a, b] \subset \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{\text { eigenvalues of } X_{n} \text { in the interval }[a, b]\right\}}{n}=\int_{a}^{b} s(t) d t
$$

That is, there exists an $N \in \mathbb{N}$ so that for any $n \geq N$

$$
\frac{\#\left\{\text { eigenvalues of } X_{n} \text { in the interval }[a, b]\right\}}{n} \approx \frac{1}{2 \pi} \int_{a}^{b} \sqrt{4-t^{2}} d t .
$$

The Marčenko-Pastur Law

Vladimir Marčenko

Leonid Pastur

Marčenko-Pastur distribution

Fix $\lambda \in(0,1]$ and define $\lambda_{ \pm}=(1 \pm \sqrt{\lambda})^{2}$. The Marčenko-Pastur distribution is

$$
\nu(t):= \begin{cases}\frac{1}{2 \pi \lambda} \frac{\sqrt{\left(t-\lambda_{-}\right)\left(\lambda_{+}-t\right)}}{t} & \text { if } \lambda_{-} \leq t \leq \lambda_{+} \\ 0 & \text { otherwise }\end{cases}
$$

- Let $(p(n))_{n \in \mathbb{N}} \subset \mathbb{N}$ be a sequence satisfying

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{p(n)}{n} \in(0,1] .
$$

- Let $(p(n))_{n \in \mathbb{N}} \subset \mathbb{N}$ be a sequence satisfying

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{p(n)}{n} \in(0,1] .
$$

- For each $n \in \mathbb{N}$, let X_{n} be $p(n) \times n$ matrix all of whose entries are random and independent of one another.
- Let $(p(n))_{n \in \mathbb{N}} \subset \mathbb{N}$ be a sequence satisfying

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{p(n)}{n} \in(0,1] .
$$

- For each $n \in \mathbb{N}$, let X_{n} be $p(n) \times n$ matrix all of whose entries are random and independent of one another.
- Define $Y_{n}=\frac{1}{n} X_{n} X_{n}^{T}$, a $p(n) \times p(n)$ symmetric random matrix
- Let $(p(n))_{n \in \mathbb{N}} \subset \mathbb{N}$ be a sequence satisfying

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{p(n)}{n} \in(0,1] .
$$

- For each $n \in \mathbb{N}$, let X_{n} be $p(n) \times n$ matrix all of whose entries are random and independent of one another.
- Define $Y_{n}=\frac{1}{n} X_{n} X_{n}^{T}$, a $p(n) \times p(n)$ symmetric random matrix
- Eigenalues of Y_{n} are $\frac{1}{n}$ times the squares of the singular values of X_{n}.
- Let $(p(n))_{n \in \mathbb{N}} \subset \mathbb{N}$ be a sequence satisfying

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{p(n)}{n} \in(0,1] .
$$

- For each $n \in \mathbb{N}$, let X_{n} be $p(n) \times n$ matrix all of whose entries are random and independent of one another.
- Define $Y_{n}=\frac{1}{n} X_{n} X_{n}^{T}$, a $p(n) \times p(n)$ symmetric random matrix
- Eigenalues of Y_{n} are $\frac{1}{n}$ times the squares of the singular values of X_{n}.

Theorem (The Marčenko-Pastur Law)

With $Y_{n}, n \in \mathbb{N}$, as above, for any interval $[a, b] \subset \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{\text { eigenvalues of } Y_{n} \text { in the interval }[a, b]\right\}}{p(n)}=\int_{a}^{b} \nu(t) d t .
$$

That is, there exists an $N \in \mathbb{N}$ so that for any $n \geq N$

$$
\frac{\#\left\{\text { eigenvalues of } Y_{n} \text { in the interval }[a, b]\right\}}{p(n)} \approx \frac{1}{2 \pi \lambda} \int_{a}^{b} \frac{\sqrt{\left(t-\lambda_{-}\right)\left(\lambda_{+}-t\right)}}{t} d t .
$$

Back to Genetics

Researchers recorded genetic data as the matrix

Researchers recorded genetic data as the matrix
locus 1 locus 2 ... locus j... locus 197146

Set

$$
\begin{aligned}
n & :=197,146 \\
p(n) & :=1,387
\end{aligned} \quad \lambda:=\frac{p(n)}{n}=\frac{1,387}{197,146} \approx 0.007035
$$

They computed eigenvalues of $Y:=\frac{1}{n} X X^{\top}$, which is a $p(n) \times p(n)$ symmetric matrix.

- Suppose-naively-that the entries of X are random. That is, that the nucleobases in each persons DNA were randomly assigned.
- Suppose-naively-that the entries of X are random. That is, that the nucleobases in each persons DNA were randomly assigned.
- Under our naive assumption, the Marčenko-Pastur law says that a histogram of the eigenvalues of Y should look like the graph of the Marčenko-Pastur distribution $\nu(t)$ with resolution λ. However, the actual data did not quite yield this: there were two outlying eigenvalues.
- Suppose-naively-that the entries of X are random. That is, that the nucleobases in each persons DNA were randomly assigned.
- Under our naive assumption, the Marčenko-Pastur law says that a histogram of the eigenvalues of Y should look like the graph of the Marčenko-Pastur distribution $\nu(t)$ with resolution λ. However, the actual data did not quite yield this: there were two outlying eigenvalues.
- Let $x, y \in \mathbb{R}^{p(n)}$ be their unit eigenvectors. Note that $p(n)=1,387$, which was the number of people in the study.
- Suppose-naively-that the entries of X are random. That is, that the nucleobases in each persons DNA were randomly assigned.
- Under our naive assumption, the Marčenko-Pastur law says that a histogram of the eigenvalues of Y should look like the graph of the Marčenko-Pastur distribution $\nu(t)$ with resolution λ. However, the actual data did not quite yield this: there were two outlying eigenvalues.
- Let $x, y \in \mathbb{R}^{p(n)}$ be their unit eigenvectors. Note that $p(n)=1,387$, which was the number of people in the study.
- Thus the eigenvectors x, y assign to each person a coordinate pair: person i is assigned the coordinate pair $\left(x_{i}, y_{i}\right)$ where x_{i} and y_{i} are the i th entries of x and y, respectively.
- Suppose-naively-that the entries of X are random. That is, that the nucleobases in each persons DNA were randomly assigned.
- Under our naive assumption, the Marčenko-Pastur law says that a histogram of the eigenvalues of Y should look like the graph of the Marčenko-Pastur distribution $\nu(t)$ with resolution λ. However, the actual data did not quite yield this: there were two outlying eigenvalues.
- Let $x, y \in \mathbb{R}^{p(n)}$ be their unit eigenvectors. Note that $p(n)=1,387$, which was the number of people in the study.
- Thus the eigenvectors x, y assign to each person a coordinate pair: person i is assigned the coordinate pair $\left(x_{i}, y_{i}\right)$ where x_{i} and y_{i} are the i th entries of x and y, respectively.
- Something pretty incredible happens when you plot these coordinate pairs...

