A SEQUENCE WITH NO LIMIT

In the metric space (\mathbb{R}, d), where $d(x, y)=|x-y|$, we consider the following sequence:

$$
x_{n}:= \begin{cases}1 & \text { if } n \text { is odd } \\ \frac{1}{n} & \text { if } n \text { is even }\end{cases}
$$

We claim that this sequence has no limit. Let $x \in \mathbb{R}$. We must show that there exists an $\epsilon>0$ such that for all $N \in \mathbb{N}$ there exists $n \geq N$ such that $d\left(x_{n}, x\right) \geq \epsilon$. We claim that $\epsilon=\frac{1}{2}$ works. Let $N \in \mathbb{N}$. We will produce our $n \geq N$ in two ways depending on how x compares to $\frac{1}{2}$.

Case 1: $x \leq \frac{1}{2}$. In this case, we have $d(1, x) \geq \frac{1}{2}$. Thus we let n be the first odd integer larger than N, so that $x_{n}=1$ and we have $d\left(x_{n}, x\right)=d(1, x) \geq \frac{1}{2}$.

Case 2: $x>\frac{1}{2}$. Then $r:=x-\frac{1}{2}>0$. We let n be an even integer satisfying $n \geq \max \left\{N, \frac{1}{r}\right.$. Then $\frac{1}{n} \leq r$ and $-\frac{1}{n} \geq-r$. Thus

$$
d\left(x_{n}, x\right)=\left|\frac{1}{n}-x\right|=x-\frac{1}{n} \geq x-r=\frac{1}{2}
$$

Thus $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ does not converge to x. Since $x \in \mathbb{R}$ was arbitrary, this sequence has no limit.

