LIMIT SUPERIOR AND LIMIT INFERIOR

Throughout this note, $\left(x_{n}\right)_{n \in \mathbb{N}}$ will be a bounded sequence in \mathbb{R}.
Recall that we defined the limit superior and limit inferior in class as follows:

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} x_{n} & :=\lim _{k \rightarrow \infty} \sup \left\{x_{n}: n \geq k\right\} \\
\liminf _{n \rightarrow \infty} x_{n} & :=\lim _{k \rightarrow \infty} \inf \left\{x_{n}: n \geq k\right\} .
\end{aligned}
$$

However, Rosenlicht provides different definitions in Exercise 18 of Chapter III. To differentiate between the version we defined in class and the book version, we will adopt the following notation for the book's versions:

$$
\begin{aligned}
& \varlimsup_{n \rightarrow \infty} x_{n}:=\sup \left\{y \in \mathbb{R}: x_{n}>y \text { for infinitely many } n \in \mathbb{N}\right\} \\
& \underline{\lim _{n \rightarrow \infty}} x_{n}:=\inf \left\{y \in \mathbb{R}: x_{n}<y \text { for infinitely many } n \in \mathbb{N}\right\} \text {. }
\end{aligned}
$$

Our hope is that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} x_{n} & =\varlimsup_{n \rightarrow \infty} x_{n} \\
\liminf _{n \rightarrow \infty} x_{n} & ={\underset{n \rightarrow \infty}{\lim } x_{n} .}^{2} .
\end{aligned}
$$

We shall prove the first equality, with the second equality holding by a similar argument.
First we establish some notation. For $k \in \mathbb{N}$, denote $A_{k}:=\sup \left\{x_{n}: n \geq k\right\}$. Also, let

$$
S:=\left\{y \in \mathbb{R}: x_{n}>y \text { for infinitely many } n \in \mathbb{N}\right\}
$$

Given $y \in S$ and any $k \geq \mathbb{N}$, there exists $n \geq k$ such that $x_{n}>y$. Indeed, since there are infinitely many $x_{n}>y$, one of them must have an index satisfying $n \geq k$. And when $n \geq k$ we have

$$
y<x_{n} \leq A_{k}
$$

This means that for each $k \in \mathbb{N}, A_{k}$ is an upper bound for S. Consequently,

$$
\varlimsup_{n \rightarrow \infty} x_{n}=\sup (S) \leq A_{k} \quad \forall k \in \mathbb{N}
$$

and so this inequality also holds when we take the limit as $k \rightarrow \infty$ on the right-hand side:

$$
\varlimsup_{n \rightarrow \infty} x_{n} \leq \lim _{k \rightarrow \infty} A_{k}=\limsup _{n \rightarrow \infty} x_{n}
$$

To see the other inequality, we will show that for all $\epsilon>0$

$$
\limsup _{n \rightarrow \infty} x_{n}-\epsilon \in S
$$

To do so, for each fixed $\epsilon>0$ we must find an infinite number of sequence elements x_{n} which are strictly greater than the above quantity. Fix $\epsilon>0$, then for any $k \in \mathbb{N}$, since A_{k} is the supremum of the set $\left\{x_{n}: n \geq k\right\}$, we know there exists $n \geq k$ such that

$$
A_{k}-\epsilon<x_{n} \leq A_{k}
$$

Since A_{k} is a decreasing sequence, this in particular implies

$$
x_{n}>A_{k}-\epsilon \geq \lim _{k \rightarrow \infty} A_{k}-\epsilon=\limsup _{n \rightarrow \infty} x_{n}-\epsilon
$$

When $k=1$, denote the subscript n we obtain in this way by n_{1}. When $k=n_{1}+1$, denote the subscript n we obtain in this way by n_{2}. Note that $n_{2} \geq k=n_{1}+1>n_{1}$. Iterating this process (i.e. by induction) we obtain a strictly increasing sequence of subscripts $n_{1}<n_{2}<\cdots$ such that

$$
x_{n_{\ell}}>\limsup _{n \rightarrow \infty} x_{n}-\epsilon \quad \forall \ell \in \mathbb{N} \text {. }
$$

Hence there are infinitely many sequence elements strictly greater than the number $\lim \sup _{n \rightarrow \infty} x_{n}-\epsilon$, which implies $\lim \sup _{n \rightarrow \infty} x_{n}-\epsilon \in S$. Consequently,

$$
\limsup _{n \rightarrow \infty} x_{n}-\epsilon \leq \sup (S)=\varlimsup_{n \rightarrow \infty} x_{n}
$$

or

$$
\limsup _{n \rightarrow \infty} x_{n} \leq \varlimsup_{n \rightarrow \infty} x_{n}+\epsilon
$$

Since $\epsilon>0$ was arbitrary, we in fact have

$$
\limsup _{n \rightarrow \infty} x_{n} \leq \varlimsup_{n \rightarrow \infty} x_{n}
$$

In conjunction with the previous inequality, we have the desired equality.

