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Spin systems!

Consider infinite planar lattice, associate Cd to
each vertex or edge
For each finite region ⇤, have tensor product
Hilbert space

N
⇤Cd , algebra of operators

A(⇤) :=
N

⇤Md(C)
Get UHF quasilocal algebra by taking inductive
limit: A :=

N
Md(C)
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Nets of Projections

⇤

Definition
A net of projections is an assignment of a
projection p⇤ 2 A(⇤) to each rectangle ⇤
satisfying that if ⇤ ✓ �, then p�  p⇤.
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What is Topological Order?

⇤ ⌧ �

If ⇤ ⌧ �, then

p�A(⇤)p� = Cp�

(Bravyi-Hastings-Michalakis ’10)
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But can we do better?

⇤ b �

If ⇤ b �, then:

p�A(⇤)p� = B(I )p�, where
I := @⇤ \ @�, and

for x 2 B(I ) and �0 � �, xp�0 = 0
implies x = 0.

(Jones-Naaijkens-Penneys-W. ’23)
Can take inductive limit of net of algebras
B(I ) (boundary algebras) to get an AF
C⇤-algebra!
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Example: Kitaev’s Quantum Double Model

Let G be a finite group. We associate
C|G | = span {|gi|g 2 G} to each edge.
We have left translation and right translation
operators Lg and Rg acting on each C|G |

tensorand, as well as projections Pg onto
span{|gi}.
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Details of the Model

s

p

We define As to be the operator

As :=
X

gh=`k

s
Pg

Ph

Pk
P`

,

define B
(g)
p to be the operator

B
(g)
p := Rg�1 Lg

Rg�1

Lg

p ,

and define Bp := 1
|G |

P
g2G B

(g)
p .
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Local Hamiltonians and Ground State

Note that As and Bp are commuting projections!
For a rectangle ⇤, we have a local Hamiltonian

H⇤ :=
X

s✓⇤

(I � As) +
X

p✓⇤

(I � Bp).

The projection onto the ground state space is

p⇤ :=
Y

s✓⇤

As

Y

p✓�

Bp.

These projections satisfy the topological order axioms!
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What are the boundary algebras?

Rg�1

Lg

Rg�1

D
(g)
p

p

Pg
A
(g)
`

⇤

B(I ) := C⇤
n
A
(g1)
` ,D(g2)

p

o

⇠= EndHilb(G)

0

@
M

g2G
Cg

1

A
⌦n

P

h�1k`=g
P`

Ph

Pk

Rg D
(g)
`

A
(g)
s

⇤

B(I ) := C⇤
n
A
(g1)
s ,D(g2)

`

o

⇠= EndRep(G)

0

@
M

�2Irr(Rep(G))

�

1

A
⌦n
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Can I get a less categorical description?

For rough case:

B(I ) ⇠= EndHilb(G)

0

@
M

g2G
Cg

1

A
⌦n

⇠=
M

g2G
M|G |n�1(C).

For smooth case:

B(I ) ⇠= EndRep(G)

0

@
M

�2Irr(Rep(G))

�

1

A
⌦n

=

(
T :

⇣
C|G |

⌘⌦n
!

⇣
C|G |

⌘⌦n
�����

"
T ,

nO

i=1

Lg

#
= 0 8g 2 G

)
.

These algebras are very di↵erent—inductive limits have di↵erent
K-theory!
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inductive limit is

(dimof
M1.

I
-

wherea nonabelian
-



The canonical state

We get a canonical state  : A ! C given by

p�xp� =  (x)p�

for x 2 A(⇤) and � � ⇤. This is the unique translation-invariant
ground state for the quantum double model (Naaijkens ’12).
Can extend  to state on B := lim�!B(I ).
For both rough and smooth boundaries,  is a trace on B, so von
Neumann completion is the hyperfinite II1 factor!
Gives an independent proof of Ogata’s 2022 result that cone
algebras are type II for this model!
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