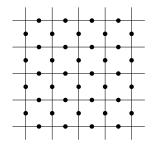
BOUNDARY ALGEBRAS AND KITAEV'S QUANTUM DOUBLE MODEL

Daniel Wallick

The Ohio State University

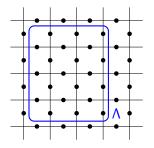
Joint with Shugi Wei Chian Yeong Chunh, and David Penneys

Spin systems!



Consider infinite planar lattice, associate \mathbb{C}^d to each vertex or edge For each finite region Λ , have tensor product Hilbert space $\bigotimes_{\Lambda} \mathbb{C}^d$, algebra of operators $\mathfrak{A}(\Lambda) := \bigotimes_{\Lambda} M_d(\mathbb{C})$ Get UHF quasilocal algebra by taking inductive limit: $\mathfrak{A} := \bigotimes M_d(\mathbb{C})$

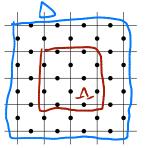
NETS OF PROJECTIONS



DEFINITION

A net of projections is an assignment of a projection $p_{\Lambda} \in \mathfrak{A}(\Lambda)$ to each rectangle Λ satisfying that if $\Lambda \subseteq \Delta$, then $p_{\Delta} \leq p_{\Lambda}$.

WHAT IS TOPOLOGICAL ORDER?



If $\Lambda \ll \Delta,$ then

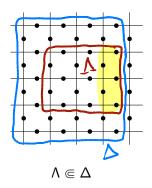
$$p_{\Delta}\mathfrak{A}(\Lambda)p_{\Delta}=\mathbb{C}p_{\Delta}$$

(Bravyi-Hastings-Michalakis '10)

 $\Lambda \ll \Delta$

BUT CAN WE DO BETTER?

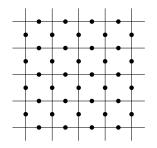
lf



$$\Lambda \subseteq \Delta$$
, then:
 $p_{\Delta}\mathfrak{A}(\Lambda)p_{\Delta} = \mathfrak{B}(I)p_{\Delta}$, where
 $I := \partial \Lambda \cap \partial \Delta$, and
for $x \in \mathfrak{B}(I)$ and $\Delta' \supset \Delta$, $xp_{\Delta'} = 0$
implies $x = 0$.

(Jones-Naaijkens-Penneys-W. '23) Can take inductive limit of net of algebras $\mathfrak{B}(I)$ (boundary algebras) to get an AF C*-algebra!

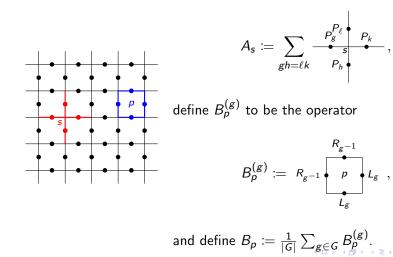
EXAMPLE: KITAEV'S QUANTUM DOUBLE MODEL



Let G be a finite group. We associate $\mathbb{C}^{|G|} = \operatorname{span} \{|g\rangle|g \in G\}$ to each edge. We have left translation and right translation operators L_g and R_g acting on each $\mathbb{C}^{|G|}$ tensorand, as well as projections P_g onto $\operatorname{span}\{|g\rangle\}$.

DETAILS OF THE MODEL

We define A_s to be the operator



LOCAL HAMILTONIANS AND GROUND STATE

Note that A_s and B_p are commuting projections! For a rectangle Λ , we have a local Hamiltonian

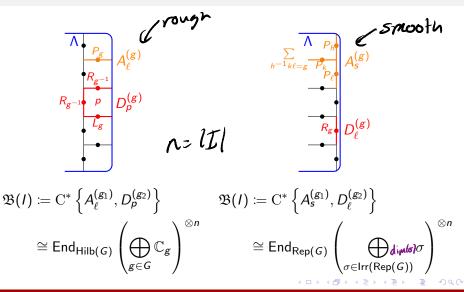
$$H_{\Lambda} \coloneqq \sum_{s \subseteq \Lambda} (I - A_s) + \sum_{p \subseteq \Lambda} (I - B_p).$$

The projection onto the ground state space is

$$p_{\Lambda} := \prod_{s \subseteq \Lambda} A_s \prod_{p \subseteq A_s} B_p.$$

These projections satisfy the topological order axioms! (Naaijtens (12)

WHAT ARE THE BOUNDARY ALGEBRAS?



The Ohio State University

CAN I GET A LESS CATEGORICAL DESCRIPTION?

For rough case:

$$\mathfrak{B}(I) \cong \operatorname{End}_{\operatorname{Hilb}(G)} \left(\bigoplus_{g \in G} \mathbb{C}_g \right)^{\otimes n} \cong \bigoplus_{g \in G} M_{|G|^{n-1}}(\mathbb{C}).$$

BOUNDARY ALGEBRAS AND KITAEV'S QUANTUM DOUBLE MODEI

K-theor

The Ohio State University

10

The canonical state

We get a canonical state $\psi\colon \mathfrak{A}\to \mathbb{C}$ given by

$$p_{\Delta} x p_{\Delta} = \psi(x) p_{\Delta}$$

for $x \in \mathfrak{A}(\Lambda)$ and $\Delta \gg \Lambda$. This is the unique translation-invariant ground state for the quantum double model (Naaijkens '12). Can extend ψ to state on $\mathfrak{B} := \lim_{t \to \infty} \mathfrak{B}(I)$. For both rough and smooth boundaries, ψ is a trace on \mathfrak{B} , so von Neumann completion is the hyperfinite II₁ factor! Gives an independent proof of Ogata's 2022 result that cone algebras are type II for this model!