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K-homology

• A dual (genealized homology) theory to K-theory generalizing
topological K-homology

• A contravariant functor from separable C∗-algebras to Z/2Z graded
abelian groups.

• Kasparov (analytic) picture: K-homology is built out of
“generalized Fredholm (elliptic) operators,” called Fredholm
Modules



Fredholm Modules

Definition

Let A be a C∗-algebra. An (ungraded) Fredholm module over A is a
triple (H, ρ,F ) where:

• H is a separable Hilbert space

• ρ : A → B(H) is a representation
• F ∈ B(H) satisfies:

1 (F 2 − 1)ρ(a) ∈ K (H) for each a ∈ A
2 (F − F ∗)ρ(A) ∈ K (H) for each a ∈ A
3 [F , ρ(a)] ∈ K (H) for each a ∈ A.

• A graded Fredholm module is a Fredholm module equipped with a
Z/2Z grading for H := H+ ⊕H−, where ρ is a representation by even
(grading-preserving) operators, and F is an odd (grading-reversing)
operator.

• Ungraded Fredholm modules generate K 1(A), graded Fredholm
modules generate K 0(A).
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K-homology pairs with K-theory

Definition

Let (H, ρ,F ) be an ungraded Fredholm module over A, u a unitary in

Mk(A), Pk = 1⊗ 1+F
2 ∈ B(Ck ⊗ H), (H, ρ,

[
0 V
U 0

]
) a graded Fredholm

module over A, and p a projection in Mk(A). Then:

⟨[u], [H, ρ,F ]⟩ := Fred-Index(Pk(1⊗ ρ)uPk − (1− Pk))

gives a bilinear pairing:

Index : K1(A)× K 1(A) → Z and

⟨[p], [H, ρ,

[
0 V
U 0

]
]⟩ := Fred-Index((1⊗ ρ)(p)(1⊗ U)(1⊗ ρ)(p))

gives a bilinear pairing:

Index : K0(A)× K 0(A) → Z



Schatten Classes

Definition

Let H be separable Hilbert space and T ∈ K(H). The n−th singular

value, sn(T ), of T is the n-th eigenvalue of |T | = (T ∗T )
1
2 when ordered

from largest to smallest.

Definition

The Schatten p-class Lp(H) is given by

Lp(H) = {T ∈ K(H)|(sn(T ))n∈N ∈ ℓp(N)}

For example:

• L1(H) - Trace Class Operators

• L2(H) - Hilbert-Schmidt Operators
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Summability

Definition

A Fredholm module (H, ρ,F ) is p-summable over A if there is a dense
*-subalgebra A ⊆ A such that, for all a ∈ A :

(F − F ∗)ρ(a) ∈ L2p(H) (F 2 − 1)ρ(a),∈ L2p(H), and [F , ρ(a)] ∈ Lp(H).

If such a p < ∞ exists, we say (H, ρ,F ) is finitely summable.

• If a class in K ∗(A) can be represented by a finitely summable
representative, cyclic cohomology gives us a more computible formula
for the index pairing.

• (Rave) For any C∗-algebra A, any odd Fredholm module that is
finitely summable on all of A represents [0] in K 1(A).
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The Unbounded Picture

Definition (Unbounded Fredholm module )

Let A be a C∗-algebra. An Unbounded Fredholm module (H, ρ,D) over
A is a triple (H, ρ,D) where the operator F is replaced by a suitable
unbounded self-adjoint operator D. (A graded version exists as well)

Definition (Baaj, Julg)

The bounded transform maps the unbounded cycle (H, ρ,D) to
(H, ρ, D

(1+D2)
1
2
) using the functional calculus for unbounded self-adjoint

operators.

There is a related notion of summability for unbounded cycles

Proposition (Baaj,Julg)

The bounded transform maps a p-summable unbounded cycle to a cycle
that is p-summable on a suitable subalgebra
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Bounded and unbounded

Proposition (Kasparov, Connes, Folklore)

Let M be smooth compact n−manifold. Then every class in K ∗(C (M))
can be represented by an unbounded cycle that is p-summable on C∞(M),
for every p > n.

Proposition (Connes)

C*-algebras that do not admit a trace (e.g. purely infinite) do not admit
any non-trivial finitely summable unbounded cycles.

• Yet, there are purely infinite C∗-algebras such that every K-homology
class can be represented by a finitely summable Fredholm module
with a uniform bound on the degree of summability.

• This reflects that an unbounded cycle encodes the geometry of the
manifold, while the bounded cycle only encodes the “conformal
geometry” and the notion of length is lost.
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Uniform Summability

Definition

A C∗-algebra A has uniformly p-summable K-homology if there is a
dense *-subalgebra A ⊆ A such that every class in K ∗(A) can be
represented by a Fredholm module that is p-summable on A.



Known Examples of Uniform Summability

Known Noncommutative Examples:
C∗-Algebra subalgebra p > Auts.

AF algebras: ∪nAn 0 Rave

A = ∪nAn

Aθ
∑

am,nU
mV n 2 Connes

am,n ∈ S(Z2)

Γ hyperbolic: Lip(∂Γ, d)⋊alg Γ dimH(∂Γ, d) Emerson
C (∂Γ)⋊ Γ Nica

OA C∗[S1, S2, . . . ,Sn] 0 Goffeng
Mesland

Ruelle Algebras: Lipc(Gs(Gu))⋊α,alg. Z C·h(φ) Gerontogiannis
Sφ(Uφ)⋊α Z



Example failing uniform summability

Theorem (Goffeng-Mesland)

There is a class in K 1(⊕n∈NC (S2n−1)) that does not admit a finitely
summable representative on any dense subalgebra.



Generalizing

• The quintissential example of a noncommutative manifold is the
irrational rotation algebra, Aθ

∼= C (S1)⋊ Z.
• Aθ

∼= C (S1)⋊ Z was shown to have uniformly p > 2 summable
K-homology

• I am interested in generalizing this result to other crossed products, by
generalizing both the space being acted on and the group acting on it.



Generalizing the group

(In Progress)

Let Γ be a countable discrete group that satisfies the strong Baum-Connes
Conjecture (there exists a γ element and it equals 1) and such that EΓ
can be chosen to be a Γ-proper, Γ-cocompact manifold. Then if M is a
smooth, compact manifold and Γ acts on M via diffeomorphisms, then all
the K-homology classes of C (M)⋊ Γ can be represented by finitely
summable Fredholm modules with a uniform bound on the degree of
summability.

• Note, that Aθ fits into this picture since EZ ∼= R.
• Another class of examples in this framework include when Γ is the

fundamental group of a flat manifold
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Generalizing the space

(In Progress)

Let X be a Cantor set and φ : X → X a homeomorphism inducing the
automorphism α : C (X ) → C (X ). Then, every class in K 1(C (X )⋊α Z)
can be represented by an unbounded finitely summable cycle on
Lip(X )⋊alg Z, and the degree of summability can be chosen arbitrarily
small but greater than 1.

• Because we are working with a Z action we can utilize the
Pimsner-Voiculescu sequence. We also benefit from the Cantor Set
having nice K-theory (and thus K-homology)

• K 0 seems to depend more on the action.
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Further Directions

• (In progress) If X is a finite CW-complex of dimension n, then C (X )
has uniformly p > n summable K-homology by unbounded cycles on
the algebra of functions whose restriction to each cell is smooth.

• Extend to broader classes of crossed-products by relaxing restrictions
on EΓ.

• K 0 for Cantor minimal system

• The subalgebra is often a challenge

• The name of the game is finding nice representatives for KK elements
(i.e. we know how to represent the Kasparov product, the Kasparov
product produces finitely summable classes, and we know what
happens with the subalgebra)

• The unbounded picture is often helpful, but, as we have seen, it is
limiting
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Questions?

Thank you!!


