Schreier's Formula for some Free Probability Invariants arXiv:2307.13867

Aldo Garcia Guinto

Michigan State University

August 17th, 2023

The Nielsen-Schreier Theorem

If F is a free group, then any $H \leq F$ is a free group. In particular, if $F \cong \mathbb{F}_n$ for $n \in \mathbb{N}$ and $[F : H] < \infty$, then $H \cong \mathbb{F}_k$ where

k = 1 + [F : H](n - 1).

The Nielsen-Schreier Theorem

If F is a free group, then any $H \leq F$ is a free group. In particular, if $F \cong \mathbb{F}_n$ for $n \in \mathbb{N}$ and $[F : H] < \infty$, then $H \cong \mathbb{F}_k$ where

$$k = 1 + [F : H](n - 1).$$

One expects given a finite index inclusion $M_0 \subset M_1$, for any generating set S_0 for M_0 there exists a generating set S_1 for M_1 so that

$$\delta^{\star}(S_1) - 1 = [M_1 : M_0]^{-1}(\delta^{\star}(S_0) - 1).$$

The Nielsen-Schreier Theorem

If F is a free group, then any $H \leq F$ is a free group. In particular, if $F \cong \mathbb{F}_n$ for $n \in \mathbb{N}$ and $[F : H] < \infty$, then $H \cong \mathbb{F}_k$ where

$$k = 1 + [F : H](n - 1).$$

One expects given a finite index inclusion $M_0 \subset M_1$, for any generating set S_0 for M_0 there exists a generating set S_1 for M_1 so that

$$\delta^{\star}(S_1) - 1 = [M_1 : M_0]^{-1}(\delta^{\star}(S_0) - 1).$$

Theorem [Shlyakhtenko 2022]

For subfactors of the form $M_0 \subset M_1 = M_0 \rtimes G$ with G a finite abelian group, one has for a given $\varepsilon > 0$ the existence of a generating sets S_0 for M_0 and S_1 for M_1 for which

$$\delta^{\star}(S_1) - 1 \leq |\mathcal{G}|^{-1}(\delta^{\star}(S_0) - 1) + \varepsilon.$$

Free Probabilistic Invariants

• It is known that given a finite generating set $X = X^*$ of tracial von Neumann algebra (M, τ) , one has

 $\delta_0(X) \leq \delta^*(X) \leq \delta^*(X)$

Free Probabilistic Invariants

• It is known that given a finite generating set $X = X^*$ of tracial von Neumann algebra (M, τ) , one has

$$\delta_0(X) \leq \delta^*(X) \leq \delta^*(X)$$

• Recently, due to MIP*=RE, it is possible to for the left most inequality to be strict inequality

Free Probabilistic Invariants

• It is known that given a finite generating set $X = X^*$ of tracial von Neumann algebra (M, τ) , one has

$$\delta_0(X) \leq \delta^*(X) \leq \delta^*(X)$$

- Recently, due to MIP*=RE, it is possible to for the left most inequality to be strict inequality
- It is known that when M is embedded in the ultrapower of the hyperfinite II₁ factor, then we have

$$\dim \overline{\operatorname{\mathsf{Der}}_c(A,\tau)} \leq \delta_0(X) \leq \delta^*(X) \leq \delta^*(X) \leq \Delta(A,\tau),$$

where $A = \mathbb{C}\langle X \rangle$.

• $\mathsf{Der}(\mathsf{A},\tau)$ the vector space of derivations $d:\mathsf{A}\to\mathsf{L}^2(\mathsf{A}\otimes\mathsf{A}^\circ,\tau\otimes\tau^\circ)$

- $\mathsf{Der}(\mathsf{A},\tau)$ the vector space of derivations $d:\mathsf{A}\to\mathsf{L}^2(\mathsf{A}\otimes\mathsf{A}^\circ,\tau\otimes\tau^\circ)$
- For B be a *-subalgebra of A, we have the following subspace

$$\mathsf{Der}(B \subset A, \tau) := \{ d \in \mathsf{Der}(A, \tau) : d|_B \equiv 0 \}$$

- $\mathsf{Der}(\mathsf{A},\tau)$ the vector space of derivations $d:\mathsf{A}\to\mathsf{L}^2(\mathsf{A}\otimes\mathsf{A}^\circ,\tau\otimes\tau^\circ)$
- For B be a *-subalgebra of A, we have the following subspace

$$\mathsf{Der}(B \subset A, \tau) := \{ d \in \mathsf{Der}(A, \tau) : d|_B \equiv 0 \}$$

• For $m \in (A \otimes A^{\circ})''$ and $d \in \text{Der}(A, \tau)$, we have $d \cdot m \in \text{Der}(A, \tau)$ defined as $[d \cdot m](a) = d(a)m$,

and so $\mathsf{Der}(\mathsf{A},\tau)$ and $\mathsf{Der}(\mathsf{B}\subset\mathsf{A},\tau)$ are right $(\mathsf{A}\otimes\mathsf{A}^\circ)''$ -module

• $G \stackrel{\alpha}{\frown} (M, \tau)$ is a trace-preserving action of a finite group G and $M \rtimes_{\alpha} G$ is the crossed product

Results

- $G \stackrel{\alpha}{\frown} (M, \tau)$ is a trace-preserving action of a finite group G and $M \rtimes_{\alpha} G$ is the crossed product
- A is globally invariant under α and define

$$A\rtimes_{\alpha}^{\mathsf{alg}} G := \mathbb{C}\langle A, \{u_g : g \in G\}\rangle,\$$

where $\{u_g : g \in G\}$ is the unitary implementation of α

Results

- $G \stackrel{\alpha}{\sim} (M, \tau)$ is a trace-preserving action of a finite group G and $M \rtimes_{\alpha} G$ is the crossed product
- A is globally invariant under α and define

$$A \rtimes_{\alpha}^{\mathsf{alg}} G := \mathbb{C}\langle A, \{u_g : g \in G\}\rangle,$$

where $\{u_g : g \in G\}$ is the unitary implementation of α

Theorem [GG. 2023]

Let $G \stackrel{\alpha}{\frown} (M, \tau)$ be a trace-preserving action of a finite group G on a tracial von Neumann algebra and let $A \subset M$ be a finitely generated unital *-subalgebra which is globally invariant under α . Then we have the following $(A \otimes A^{\circ})''$ - isomorphism

$$\mathsf{Der}(\mathbb{C}[G] \subset A \rtimes^{\mathsf{alg}}_{\alpha} G, \tau) \to \bigoplus_{g \in G} (\mathsf{Der}(A, \tau))_{1 \otimes \alpha_{g^{-1}}}.$$

Results cont.

Theorem [Charlesworth + Nelson 2022]

Let (M, τ) be a tracial von Neumann algebra with a finitely generated unital *-subalgebra $A \subset M$. For a finite dimensional unital *-subalgebra $B \subset A$, one has

 $\dim \operatorname{Der}(A,\tau)_{(A\otimes A^\circ)^{\prime\prime}} = \dim \operatorname{Der}(B,\tau)_{(B\otimes B^\circ)^{\prime\prime}} + \dim \operatorname{Der}(B\subset A,\tau)_{(A\otimes A^\circ)^{\prime\prime}}.$

Results cont.

Theorem [Charlesworth + Nelson 2022]

Let (M, τ) be a tracial von Neumann algebra with a finitely generated unital *-subalgebra $A \subset M$. For a finite dimensional unital *-subalgebra $B \subset A$, one has

 $\dim \operatorname{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}} = \dim \operatorname{Der}(B,\tau)_{(B\otimes B^{\circ})^{\prime\prime}} + \dim \operatorname{Der}(B\subset A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}.$

In the case of the crossed product,

 $\dim \mathrm{Der}(A \rtimes^{\mathrm{alg}}_{\alpha} G, \tau) = \dim \mathrm{Der}(\mathbb{C}[G], \tau) + \dim \mathrm{Der}(\mathbb{C}[G] \subset A \rtimes^{\mathrm{alg}} G, \tau)_{((A \rtimes^{\mathrm{alg}} G) \otimes (A \rtimes^{\mathrm{alg}} G)^{\circ})''}$

Results cont.

Theorem [Charlesworth + Nelson 2022]

Let (M, τ) be a tracial von Neumann algebra with a finitely generated unital *-subalgebra $A \subset M$. For a finite dimensional unital *-subalgebra $B \subset A$, one has

 $\dim \operatorname{Der}(A,\tau)_{(A\otimes A^\circ)^{\prime\prime}} = \dim \operatorname{Der}(B,\tau)_{(B\otimes B^\circ)^{\prime\prime}} + \dim \operatorname{Der}(B\subset A,\tau)_{(A\otimes A^\circ)^{\prime\prime}}.$

In the case of the crossed product,

 $\dim \mathrm{Der}(A \rtimes^{\mathrm{alg}}_{\alpha} \mathcal{G}, \tau) = \dim \mathrm{Der}(\mathbb{C}[\mathcal{G}], \tau) + \dim \mathrm{Der}(\mathbb{C}[\mathcal{G}] \subset A \rtimes^{\mathrm{alg}} \mathcal{G}, \tau)_{((A \rtimes^{\mathrm{alg}}_{\alpha} \mathcal{G}) \otimes (A \rtimes^{\mathrm{alg}}_{\alpha} \mathcal{G})^{\circ})''}$

Corollary [GG. 2023]

$$\dim \operatorname{Der}(A \rtimes_{\alpha}^{\operatorname{alg}} G, \tau)_{((A \rtimes_{\alpha}^{\operatorname{alg}} G) \otimes (A \rtimes_{\alpha}^{\operatorname{alg}} G)^{\circ})''} - 1$$

$$= \frac{1}{[(A \rtimes_{\alpha}^{\operatorname{alg}} G)'' : A'']} (\dim \operatorname{Der}(A, \tau)_{(A \otimes A^{\circ})''} - 1)$$

$$= \frac{1}{|G|} (\dim \operatorname{Der}(A, \tau)_{(A \otimes A^{\circ})''} - 1)$$

Theorem B [GG. 2023]

Let $G \stackrel{\alpha}{\frown} (M, \tau)$ be a trace-preserving action of a finite group G on a tracial von Neumann algebra and let $A \subset M$ be a finitely generated unital *-subalgebra which is globally invariant under α . Then

$$\dim \overline{\operatorname{Der}_{c}(\mathbb{C}[G] \subset A \rtimes_{\alpha}^{\operatorname{alg}} G, \tau)}_{(A \rtimes_{\alpha}^{\operatorname{alg}} G) \otimes (A \rtimes_{\alpha}^{\operatorname{alg}} G)^{\circ})^{\prime\prime}} = \frac{1}{|G|} \dim \overline{\operatorname{Der}_{c}(A, \tau)}_{(A \otimes A^{\circ})^{\prime\prime}}.$$

Furthermore, we have

$$\dim \overline{\operatorname{\mathsf{Der}}_c(A\rtimes^{\operatorname{alg}}_{\alpha}G,\tau)}_{((A\rtimes^{\operatorname{alg}}_{\alpha}G)\otimes (A\rtimes^{\operatorname{alg}}_{\alpha}G)^\circ)''}-1=\frac{1}{|G|}(\dim \overline{\operatorname{\mathsf{Der}}_c(A,\tau)}_{(A\otimes A^\circ)''}-1).$$

Theorem C [GG. 2023]

Let $G \stackrel{\alpha}{\frown} (M, \tau)$ be a trace-preserving action of a finite abelian group G on a tracial von Neumann algebra and let $A \subset M$ be a finitely generated unital *-subalgebra which is globally invariant under α . Then

$$\Delta(\mathbb{C}[G] \subset A \rtimes^{\mathsf{alg}}_{\alpha} G, \tau) = \frac{1}{|G|} \Delta(A, \tau).$$

Furthermore, we have

$$\Delta(A\rtimes^{\mathsf{alg}}_{\alpha}G,\tau)-1=rac{1}{|G|}(\Delta(A,\tau)-1).$$

Theorem C [GG. 2023]

Let $G \stackrel{\alpha}{\frown} (M, \tau)$ be a trace-preserving action of a finite abelian group G on a tracial von Neumann algebra and let $A \subset M$ be a finitely generated unital *-subalgebra which is globally invariant under α . Then

$$\Delta(\mathbb{C}[G] \subset A \rtimes^{\mathsf{alg}}_{\alpha} G, \tau) = rac{1}{|G|} \Delta(A, \tau).$$

Furthermore, we have

$$\Delta(A\rtimes^{\mathsf{alg}}_{\alpha}G,\tau)-1=rac{1}{|G|}(\Delta(A,\tau)-1).$$

Corollary [GG. 2023]

Let $G \stackrel{\alpha}{\sim} (M, \tau)$ be a trace-preserving action of a finite abelian group G on a tracial von Neumann algebra and let $A \subset M$ be a finitely generated unital *-subalgebra which is globally invariant under α . If we have dim $\text{Der}_c(A, \tau)_{(A \otimes A^\circ)''} = \Delta(A, \tau)$ and A'' can be embedded in the ultrapower of the hyperfinite II₁ factor, then for any generating set Y of $A \rtimes_{\alpha}^{a/g} G$, one has

$$\dim \operatorname{Der}_{c}(A\rtimes^{\operatorname{alg}}_{\alpha},\tau)_{(A\rtimes^{\operatorname{alg}}_{\alpha}G)\otimes (A\rtimes^{\operatorname{alg}}_{\alpha}G)^{\circ})^{\prime\prime}}=\delta_{0}(Y)=\delta^{*}(Y)=\delta^{*}(Y)=\Delta(A\rtimes^{\operatorname{alg}}_{\alpha}G,\tau).$$