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New hyperfinite subfactors with infinite depth

Motivation

1 What are all hyperfinite subfactors N ⊂ M with small index?

2 What is {[M : N], N ⊂ M hyperfinite, N ′ ∩M = C}?

Current landscape:

[M : N] ≤ 4: ADE classification

4 < [M : N]: Completely classified finite depth up to index
5.25. (Small index classification)

4 < [M : N] < 5: There are only 5 finite depth subfactors.

Conjecture

Every index of a hyperfinite finite depth irreducible subfactor is the
index of a hyperfinite irreducible A∞ subfactor.
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Commuting squares

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

A1,0
K
⊂ A1,1

⊂ A1,2 ⊂ · · · ⊂ A1,∞

⊂G ⊂L

∪ ∪

A0,0
H
⊂ A0,1

⊂ A0,2 ⊂ · · · ⊂ A0,∞

We like these because:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Lots of examples constructed in [Sch13].



New hyperfinite subfactors with infinite depth

Commuting squares

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

A1,0
K
⊂ A1,1 ⊂ A1,2

⊂ · · · ⊂ A1,∞

⊂G ⊂L ∪

∪

A0,0
H
⊂ A0,1 ⊂ A0,2

⊂ · · · ⊂ A0,∞

We like these because:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Lots of examples constructed in [Sch13].



New hyperfinite subfactors with infinite depth

Commuting squares

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

A1,0
K
⊂ A1,1 ⊂ A1,2 ⊂ · · · ⊂ A1,∞

⊂G ⊂L ∪ ∪

A0,0
H
⊂ A0,1 ⊂ A0,2 ⊂ · · · ⊂ A0,∞

We like these because:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Lots of examples constructed in [Sch13].



New hyperfinite subfactors with infinite depth

Commuting squares

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

A1,0
K
⊂ A1,1 ⊂ A1,2 ⊂ · · · ⊂ A1,∞

⊂G ⊂L ∪ ∪

A0,0
H
⊂ A0,1 ⊂ A0,2 ⊂ · · · ⊂ A0,∞

We like these because:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Lots of examples constructed in [Sch13].



New hyperfinite subfactors with infinite depth

Commuting squares

EA1,0EA0,1 = EA0,0 (Commuting square)

GK = HL and G tH = KLt (non-degenerate)

A1,0
K
⊂ A1,1 ⊂ A1,2 ⊂ · · · ⊂ A1,∞

⊂G ⊂L ∪ ∪

A0,0
H
⊂ A0,1 ⊂ A0,2 ⊂ · · · ⊂ A0,∞

We like these because:

[A1,∞ : A0,∞] = ∥G∥2 = ∥L∥2

Always hyperfinite

Irreducible if G (or L) satisfy Wenzl’s criterion

Lots of examples constructed in [Sch13].



New hyperfinite subfactors with infinite depth

Embedding theorem

Using Ocneanu’s compactness, some facts about Pimsner-Popa
basis and loop algebra formulas from [JP11] we prove the following:

Theorem

Let P• be the subfactor planar algebra associated to A0,∞ ⊂ A1,∞
and GPA(G )• the graph planar algebra associated to the Bratelli
diagram of A0,0 ⊂ A1,0. Then P• embeds into GPA(G )•.
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Fusion graphs and embeddings

Another embedding theorem:

Theorem (GMPPS’18)

Suppose P• is a finite depth subfactor planar algebra. Let C denote
the unitary multifusion category of projections in P•, with
distinguished object X = id1,+ ∈ P1,+, and the standard unitary
pivotal structure with respect to X . There is an equivalence
between:

1 Planar algebra embeddings P• → GPA(G )•, where GPA(G )• is
the graph planar algebra associated to a finite connected
bipartite graph G , and

2 indecomposable finitely semisimple pivotal left C-module C ∗

categories M whose fusion graph with respect to X is G .
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Main Idea

Let N ⊂ M be a finite depth hyperfinite subfactor with unitary
multifusion category C and {Aij , i , j = 0, 1} a commuting square.

If G isn’t a fusion graph for any CM, then A0,∞ ⊂ A1,∞ isn’t
isomorphic to N ⊂ M.

We know a lot about the left C-module C ∗ categories M when C
comes from:

[Pet10]: Haagerup subfactor (3 graphs)

[GMP+18]: Extended Haagerup subfactor (4 graphs)

[GS16] & [GIS18]: Asaeda-Haagerup subfactor (14 graphs)
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Fusion graphs for Asaeda-Haagerup

Principal graph Dual principal graph
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Double brooms

Large double broom - ∥ · ∥2 = 5+
√

17
2

Medium double broom - ∥ · ∥2 = 3 +
√

3

Small double broom - ∥ · ∥2 = 5
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Bi-unitary connections

A1,0
K
⊂ A1,1

⊂G c.s ⊂G
A0,0

H
⊂ A0,1

⇔
Existence of a unitary u
satisfying the bi-unitary
condition

That is u =
⊕

(p,s) u
(p,s) and v =

⊕
(q,r) v

(q,r) such that

u(p,s) =
(
u
(p,s)
q,r

)
q,r

v (q,r) =
(
v
(q,r)
p,s

)
p,s

v
(q,r)
p,s =

√
λ(p)η(s)
λ(q)η(r)(u

(p,s)
q,r )t
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Main result

Theorem

If G is one of the double brooms, there exist H and K for which we
can construct a bi-unitary connection.

In particular, we have constructed an irreducible hyperfinite
subfactor with infinite depth and index 5+

√
17

2 (the same as
Asaeda-Haagerup), by classification it has to have trivial standard
invariant.

Remark

Unlike the commuting squares in [Sch13], K is never a polynomial
in G tG .
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Another approach

In [Kaw23] it is proven that given a finite depth subfactor
N ⊂ M, there are only countably many non-equivalent
commuting squares associated to it.

By classification of small index subfactors we have finitely
many finite depth subfactors at the indices 5+

√
17

2 , 3 +
√

3,
5+

√
21

2 , 5 and 3 +
√

5.
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More connections!

Let G = S(i , i , j , j), the 4-star with two pairs of legs of equal
length. It’s been proved in [Sch13] that there exists bi-unitary
connections for inclusions of the form:

A1,0
Gt

⊂ A1,1
⊂G ⊂G t

A0,0
G
⊂ A0,1

We proved there exists a 1-parameter family of bi-unitary
connections for all i , j!
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Indices of S(i , i , j , j)

j
i

1 2 3 4 · · · ∞

1 4
2 5+

√
17

2 5
3 3 +

√
3 5.1249 3 +

√
5

4 5+
√

21
2 5.1642 5.2703 7+

√
13

2
...

...
...

...
...

. . .
∞ 2 + 2

√
2 5.1844 5.2870 5.3184 16

3

Hence we have infinite depth at 5+
√

17
2 , 3 +

√
3, 5+

√
21

2 , 5 and
3 +

√
5. All but the last must have A∞ standard invariant.
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Future work

Can we construct a hyperfinite A∞ subfactor with index
4.3772 . . . (Extended Haagerup index)?

Are the A∞ subfactors obtained from the Large double broom
and S(1, 1, 2, 2) the same?

Are all the infinite depth subfactors coming from a
1-parameter family of connections the same?
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