New hyperfinite subfactors with infinite depth

Julio Cáceres

Vanderbilt University
August 17, 2023

Joint work with Dietmar Bisch

Motivation

1 What are all hyperfinite subfactors $N \subset M$ with small index?
2 What is $\left\{[M: N], N \subset M\right.$ hyperfinite, $\left.N^{\prime} \cap M=\mathbb{C}\right\}$?

Motivation

1 What are all hyperfinite subfactors $N \subset M$ with small index?
2 What is $\left\{[M: N], N \subset M\right.$ hyperfinite, $\left.N^{\prime} \cap M=\mathbb{C}\right\}$?
Current landscape:
■ $[M: N] \leq 4:$ ADE classification
■ $4<[M: N]$: Completely classified finite depth up to index 5.25. (Small index classification)

Motivation

1 What are all hyperfinite subfactors $N \subset M$ with small index?
2 What is $\left\{[M: N], N \subset M\right.$ hyperfinite, $\left.N^{\prime} \cap M=\mathbb{C}\right\}$?
Current landscape:

- $[M: N] \leq 4:$ ADE classification

■ $4<[M: N]$: Completely classified finite depth up to index 5.25. (Small index classification)

■ $4<[M: N]<5$: There are only 5 finite depth subfactors.

Motivation

1 What are all hyperfinite subfactors $N \subset M$ with small index?
2 What is $\left\{[M: N], N \subset M\right.$ hyperfinite, $\left.N^{\prime} \cap M=\mathbb{C}\right\}$?
Current landscape:

- $[M: N] \leq 4:$ ADE classification

■ $4<[M: N]$: Completely classified finite depth up to index 5.25. (Small index classification)

■ $4<[M: N]<5$: There are only 5 finite depth subfactors.

Conjecture

Every index of a hyperfinite finite depth irreducible subfactor is the index of a hyperfinite irreducible A_{∞} subfactor.

Commuting squares

■ $E_{A_{1,0}} E_{A_{0,1}}=E_{A_{0,0}}$ (Commuting square)

- $G K=H L$ and $G^{t} H=K L^{t}$ (non-degenerate)

$$
\begin{array}{lll}
A_{1,0} & \stackrel{\mathrm{~K}}{\subset} & A_{1,1} \\
\cup_{G} & & \cup_{L} \\
A_{0,0} & \stackrel{H}{\subset} & A_{0,1}
\end{array}
$$

Commuting squares

■ $E_{A_{1,0}} E_{A_{0,1}}=E_{A_{0,0}}$ (Commuting square)

- $G K=H L$ and $G^{t} H=K L^{t}$ (non-degenerate)

$$
\begin{array}{lcccc}
A_{1,0} & \stackrel{K}{\subset} & A_{1,1} & \subset & A_{1,2} \\
\cup_{G} & & \cup \cup_{L} & & \cup \\
A_{0,0} & \stackrel{H}{\subset} & A_{0,1} & \subset & A_{0,2}
\end{array}
$$

Commuting squares

■ $E_{A_{1,0}} E_{A_{0,1}}=E_{A_{0,0}}$ (Commuting square)

- $G K=H L$ and $G^{t} H=K L^{t}$ (non-degenerate)

$$
\begin{array}{lcccccccc}
A_{1,0} & \stackrel{K}{\subset} & A_{1,1} & \subset & A_{1,2} & \subset & \cdots & \subset & A_{1, \infty} \\
\cup G & & \cup & & \cup & & & & \cup \\
\cup_{0,0} & \stackrel{H}{\subset} & A_{0,1} & \subset & A_{0,2} & \subset & \cdots & \subset & A_{0, \infty}
\end{array}
$$

Commuting squares

- $E_{A_{1,0}} E_{A_{0,1}}=E_{A_{0,0}}$ (Commuting square)
- $G K=H L$ and $G^{t} H=K L^{t}$ (non-degenerate)

$$
\begin{array}{lcccccccc}
A_{1,0} & \stackrel{K}{\subset} & A_{1,1} & \subset & A_{1,2} & \subset & \cdots & \subset & A_{1, \infty} \\
\cup G & & \cup & & \cup & & & & \cup \\
\cup_{0,0} & \stackrel{H}{\subset} & A_{0,1} & \subset & A_{0,2} & \subset & \cdots & \subset & A_{0, \infty}
\end{array}
$$

We like these because:
■ $\left[A_{1, \infty}: A_{0, \infty}\right]=\|G\|^{2}=\|L\|^{2}$

- Always hyperfinite
- Irreducible if G (or L) satisfy Wenzl's criterion

Commuting squares

- $E_{A_{1,0}} E_{A_{0,1}}=E_{A_{0,0}}$ (Commuting square)
- $G K=H L$ and $G^{t} H=K L^{t}$ (non-degenerate)

$$
\begin{array}{lcccccccc}
A_{1,0} & \stackrel{K}{\subset} & A_{1,1} & \subset & A_{1,2} & \subset & \cdots & \subset & A_{1, \infty} \\
\cup_{G} & & \cup \cup_{L} & & \cup & & & & \cup \\
A_{0,0} & \stackrel{H}{\subset} & A_{0,1} & \subset & A_{0,2} & \subset & \cdots & \subset & A_{0, \infty}
\end{array}
$$

We like these because:

- $\left[A_{1, \infty}: A_{0, \infty}\right]=\|G\|^{2}=\|L\|^{2}$
- Always hyperfinite
- Irreducible if G (or L) satisfy Wenzl's criterion

Lots of examples constructed in [Sch13].

Embedding theorem

Using Ocneanu's compactness, some facts about Pimsner-Popa basis and loop algebra formulas from [JP11] we prove the following:

Theorem

Let P_{\bullet} be the subfactor planar algebra associated to $A_{0, \infty} \subset A_{1, \infty}$ and $\operatorname{GPA}(G)$. the graph planar algebra associated to the Bratelli diagram of $A_{0,0} \subset A_{1,0}$. Then P_{\bullet} embeds into $\operatorname{GPA}(G)$.

Fusion graphs and embeddings

Another embedding theorem:

Theorem (GMPPS'18)

Suppose P_{\bullet} is a finite depth subfactor planar algebra. Let \mathcal{C} denote the unitary multifusion category of projections in P_{\bullet}, with distinguished object $X=\mathrm{id}_{1,+} \in P_{1,+}$, and the standard unitary pivotal structure with respect to X. There is an equivalence between:
1 Planar algebra embeddings $P_{\bullet} \rightarrow \operatorname{GPA}(G)_{\bullet}$, where $\operatorname{GPA}(G)_{\bullet}$ is the graph planar algebra associated to a finite connected bipartite graph G, and
$\mathbf{2}$ indecomposable finitely semisimple pivotal left \mathcal{C}-module C^{*} categories \mathcal{M} whose fusion graph with respect to X is G.

Main Idea

Let $N \subset M$ be a finite depth hyperfinite subfactor with unitary multifusion category \mathcal{C} and $\left\{A_{i j}, i, j=0,1\right\}$ a commuting square.

If G isn't a fusion graph for any ${ }_{\mathcal{C}} \mathcal{M}$, then $A_{0, \infty} \subset A_{1, \infty}$ isn't isomorphic to $N \subset M$.

Main Idea

Let $N \subset M$ be a finite depth hyperfinite subfactor with unitary multifusion category \mathcal{C} and $\left\{A_{i j}, i, j=0,1\right\}$ a commuting square.
If G isn't a fusion graph for any ${ }_{\mathcal{C}} \mathcal{M}$, then $A_{0, \infty} \subset A_{1, \infty}$ isn't isomorphic to $N \subset M$.

We know a lot about the left \mathcal{C}-module C^{*} categories \mathcal{M} when \mathcal{C} comes from:

- [Pet10]: Haagerup subfactor (3 graphs)
- [GMP ${ }^{+}$18]: Extended Haagerup subfactor (4 graphs)
- [GS16] \& [GIS18]: Asaeda-Haagerup subfactor (14 graphs)

Fusion graphs for Asaeda-Haagerup

Principal graph

Dual principal graph

Double brooms

Large double broom - $\|\cdot\|^{2}=\frac{5+\sqrt{17}}{2}$

Double brooms

Large double broom - $\|\cdot\|^{2}=\frac{5+\sqrt{17}}{2}$

Medium double broom $-\|\cdot\|^{2}=3+\sqrt{3}$

Small double broom - $\|\cdot\|^{2}=5$

Bi-unitary connections

$$
\begin{array}{lllll}
A_{1,0} & \stackrel{\text { K }}{\subset} & A_{1,1} \\
\cup & & \begin{array}{l}
\text { Existence of a unitary } u \\
\cup_{G}
\end{array} & \text { C.s } & \cup_{G} \Leftrightarrow
\end{array} \begin{aligned}
& \text { satisfying the bi-unitary } \\
& A_{0,0}
\end{aligned} \stackrel{\mathrm{H}}{\subset} \quad A_{0,1} \quad l \begin{aligned}
& \text { condition }
\end{aligned}
$$

Bi-unitary connections

$$
\begin{array}{lll}
A_{1,0} & \stackrel{K}{\subset} & A_{1,1} \\
U_{G} & \text { c.s } & \cup_{G} \Leftrightarrow \begin{array}{l}
\text { Existence of a unitary } u \\
A_{0,0}
\end{array} \stackrel{H}{\subset}
\end{array} A_{0,1} \Leftrightarrow \begin{aligned}
& \text { satisfying the bi-unitary } \\
& \text { condition }
\end{aligned}
$$

That is $u=\bigoplus_{(p, s)} u^{(p, s)}$ and $v=\bigoplus_{(q, r)} v^{(q, r)}$ such that

- $u^{(p, s)}=\left(u_{q, r}^{(p, s)}\right)_{q, r}$
- $v^{(q, r)}=\left(v_{p, s}^{(q, r)}\right)_{p, s}$
- $v_{p, s}^{(q, r)}=\sqrt{\frac{\lambda(p) \eta(s)}{\lambda(q) \eta(r)}}\left(u_{q, r}^{(p, s)}\right)^{t}$

Main result

Theorem
If G is one of the double brooms, there exist H and K for which we can construct a bi-unitary connection.

Main result

Theorem

If G is one of the double brooms, there exist H and K for which we can construct a bi-unitary connection.

In particular, we have constructed an irreducible hyperfinite subfactor with infinite depth and index $\frac{5+\sqrt{17}}{2}$ (the same as Asaeda-Haagerup), by classification it has to have trivial standard invariant.

Remark

Unlike the commuting squares in [Sch13], K is never a polynomial in $G^{t} G$.

Another approach

- In [Kaw23] it is proven that given a finite depth subfactor $N \subset M$, there are only countably many non-equivalent commuting squares associated to it.
- By classification of small index subfactors we have finitely many finite depth subfactors at the indices $\frac{5+\sqrt{17}}{2}, 3+\sqrt{3}$, $\frac{5+\sqrt{21}}{2}, 5$ and $3+\sqrt{5}$.

More connections!

Let $G=S(i, i, j, j)$, the 4 -star with two pairs of legs of equal length. It's been proved in [Sch13] that there exists bi-unitary connections for inclusions of the form:

$$
\begin{array}{lll}
A_{1,0} & \stackrel{G^{t}}{\subset} & A_{1,1} \\
\cup_{G} & & \cup_{G} \\
A_{0,0} & \stackrel{G}{\subset} & A_{0,1}
\end{array}
$$

More connections!

Let $G=S(i, i, j, j)$, the 4 -star with two pairs of legs of equal length. It's been proved in [Sch13] that there exists bi-unitary connections for inclusions of the form:

$$
\begin{array}{lll}
A_{1,0} & \subset & \mathrm{G}^{t} \\
\cup_{G} & & A_{1,1} \\
A_{0,0} & \stackrel{G}{\subset} & \cup_{G} \\
A_{0,1}
\end{array}
$$

We proved there exists a 1-parameter family of bi-unitary connections for all i, j !

Indices of $S(i, i, j, j)$

j^{i}	1	2	3	4	\cdots	∞
1	4					
2	$\frac{5+\sqrt{17}}{2}$	5				
3	$3+\sqrt{3}$	5.1249	$3+\sqrt{5}$			
4	$\frac{5+\sqrt{21}}{2}$	5.1642	5.2703	$\frac{7+\sqrt{13}}{2}$		
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	
∞	$2+2 \sqrt{2}$	5.1844	5.2870	5.3184		$\frac{16}{3}$

Hence we have infinite depth at $\frac{5+\sqrt{17}}{2}, 3+\sqrt{3}, \frac{5+\sqrt{21}}{2}, 5$ and $3+\sqrt{5}$. All but the last must have A_{∞} standard invariant.

Future work

- Can we construct a hyperfinite A_{∞} subfactor with index 4.3772... (Extended Haagerup index)?
- Are the A_{∞} subfactors obtained from the Large double broom and $S(1,1,2,2)$ the same?
- Are all the infinite depth subfactors coming from a 1 -parameter family of connections the same?

References I

Pinhas Grossman, Masaki Izumi, and Noah Snyder.
The asaeda-haagerup fusion categories.
Journal für die reine und angewandte Mathematik (Crelles Journal), 2018(743):261-305, 2018.

R Pinhas Grossman, Scott Morrison, David Penneys, Emily Peters, and Noah Snyder.

The extended Haagerup fusion categories. arXiv preprint arXiv:1810.06076, 2018.

References II

Rinhas Grossman and Noah Snyder.
The brauer-picard group of the asaeda-haagerup fusion categories.

Transactions of the American Mathematical Society, 368(4):2289-2331, 2016.

雷 Vaughan FR Jones and David Penneys.
The embedding theorem for finite depth subfactor planar algebras.

Quantum Topology, 2(3):301-337, 2011.

References III

國 Yasuyuki Kawahigashi.
A characterization of a finite-dimensional commuting square producing a subfactor of finite depth.

International Mathematics Research Notices, 2023(10):8419-8433, 2023.

易
Emily Peters.
A planar algebra construction of the Haagerup subfactor. International Journal of Mathematics, 21(08):987-1045, 2010.

References IV

圊 John Kehlet Schou.
Commuting squares and index for subfactors. arXiv preprint arXiv:1304.5907, 2013.

