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Chapter 1

Von Neumann Algebras

Lecture Preview: In the first leture, we will cover the Bicommutant Theorem (Theorem 1.2.6) in detail.
To prepare for this, you should familiarize yourself with the strong and weak operator topologies (Defini-
tion 1.1.2), and the commutant (Definition 1.2.1). The second lecture will focus on the structure of group
von Neumann algebras (Section 1.3.3).

1.1 Strong and Weak Operator Topologies

Let H be a Hilbert space. There is a natural (metrizable) topology on B(H) given by the operator norm.
Studying this topology amounts to studying C∗-algebras. To study von Neumann algebras, we will need to
consider two new topologies on B(H). There will be several others later on that are also important, but
these first two will suffice to define a von Neumann algebra.

The formal definitions of these topologies are given below, but from an analytic perspective it is much
more important to understand what it means for a net to converge in these topologies. Let (xi)i∈I ⊂ B(H)
be a net and let x ∈ B(H). Then (xi)i∈I converges to x in the strong operator topology (SOT ) if

lim
i→∞

‖(x− xi)ξ‖ = 0 ∀ξ ∈ H,

and (xi)i∈I converges to x in the weak operator topology (WOT ) if

lim
i→∞

〈(x− xi)ξ, η〉 = 0 ∀ξ, η ∈ H.

Viewing H as a metric space under its norm, SOT convergence can be thought of as “pointwise convergence.”
Compare this to convergence under the operator norm, which should be thought of as “uniform convergence.”

Remark 1.1.1. Strong operator topology convergence and weak operator topology convergence are often
referred to in the literature as strong convergence and weak convergence, respectively, but in these notes we
will typically avoid this terminology.

Definition 1.1.2. The strong operator topology (SOT) on B(H) is the topology generated by the basis
consisting of sets of the form

U(x; ξ1, . . . , ξn; ε) := {y ∈ B(H) : ‖(x− y)ξj‖ < ε, j = 1, . . . , n},

for x ∈ B(H), ξ1, . . . , ξn ∈ H, and ε > 0.
The weak operator topology (WOT) on B(H) is the topology generated by the basis consisting of

sets of the form

U(x; ξ1, . . . , ξn; η1, . . . , ηn; ε) := {y ∈ B(H) : | 〈(x− y)ξj , ηj〉 | < ε, j = 1, . . . , n},

for x ∈ B(H), ξ1, . . . , ξn, η1, . . . , ηn ∈ H, and ε > 0.
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Operator norm convergence implies SOT convergence, which in turn implies WOT convergence (Exer-
cise 1.1.1), but the converses are not true. Here are some simple counter-examples:

Example 1.1.3. Let m be the Lebesgue measure on R. For a measurable subset S ⊂ R, let the character-
istic function 1S act on B(L2(R,m)) by pointwise multiplication. Then (1[−n,n])n∈N SOT-converges to the
identity, but not in operator norm. Indeed, for any f ∈ L2(R,m) and any ε, there exists N ∈ N so that(∫

R\[−N,N ]

|f |2 dm

)1/2

< ε.

Thus, for any n ≥ N we have

∥∥(1− 1[−n,n])f
∥∥

2
=

(∫
R\[−n,n]

|f |2 dm

)1/2

< ε.

Thus this sequence of operators SOT-converges to 1. However, 1− 1[−n,n] = 1[−n,n]c is a projection and so
‖1[−n,n] − 1‖ = 1 for all n. �

Example 1.1.4. Consider the following unitary operator on `2(Z):

(Uξ)(n) := ξ(n+ 1) ξ ∈ `2.

For n ∈ N, let xn := Un. Then we claim that (xn)n∈N WOT-converges to the zero operator but does not
SOT-converge. Indeed, fix ξ, η ∈ `2(Z). Let ε > 0, then there exists N ∈ N sufficiently large so that∑

n≥N

|ξ(n)|2
1/2

< ε

( ∑
n<−N

|η(n)|2
)1/2

< ε

Then for m ≥ 2N we have

| 〈xmξ, η〉 | ≤
∑
n∈Z
|ξ(n+m)||η(n)|

=
∑
n<−N

|ξ(n+m)||η(n)|+
∑

n≥m−N

|ξ(n)||η(n−m)|

≤ ‖ξ‖ε+ ε‖η‖.

Thus (xn)n∈N WOT-converges to zero. However, since U is a unitary,

‖xnξ‖ = ‖Unξ‖ = ‖ξ‖ ∀ξ ∈ `2(Z),

thus (xn)n∈N does not SOT-converge to zero. �

You will explore how these topologies interact with the ∗-algebra structure of B(H) in the exercises, but
let us summarize things here. First, addition and scalar multiplication are both continuous with respect
to both the SOT and WOT (see Exercise 1.1.5). Taking adjoints is continuous with respect to the WOT
but not the SOT (see Exercises 1.1.6 and 1.1.7), though it is SOT continuous on normal operators (see
Exercise 1.1.8). Finally, multiplication is not continuous with respect to either the WOT or the SOT, but
on bounded subsets it is SOT continuous (see Exercises 1.1.10 and 1.1.11).

We leave the proof of the next proposition as an exercise (see Exercise 1.1.12).

Proposition 1.1.5. Let {pi : i ∈ I} ⊂ B(H) be a set of pairwise orthogonal projections. If F is the collection
of finite subsets of I ordered by inclusion, then then net

(∑
i∈F pi

)
F∈F

converges in the SOT to a projection

which we denote by
∑
i∈I pi.
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Exercises

1.1.1. Show that if a net (xi)i∈I ⊂ B(H) converges in operator norm to some x ∈ B(H), then it converges
in the strong operator topology to x. Show that if a net (xi)i∈I ⊂ B(H) converges in the strong operator
topology to some x ∈ B(H), then it converges in the weak operator topology to x.

1.1.2. Suppose (xi)i∈I ⊂ B(H) converges to x ∈ B(H) in the strong operator topology. Show that

‖x‖ ≤ lim sup
i→∞

‖xi‖.

1.1.3. Show that (xi)∈I ⊂ B(H) converges to x ∈ B(H) in the strong operator topology if and only if
((x− xi)∗(x− xi))i∈I converges to zero in the weak operator topology.

1.1.4. Let (X,Ω, µ) be a σ-finite measure space and let f ∈ L∞(X,µ). Show that a net (fi)i∈I ⊂ L∞(X,µ)
converges to f in the WOT as pointwise multiplication operators in B(L2(X,µ)) if and only if the net
converges to f as elements of the dual space L1(X,µ)∗.

1.1.5. Let (xi)i∈I , (yi)i∈I ⊂ B(H) be nets indexed by the same directed set and let x, y ∈ B(H).

(a) Suppose (xi)i∈I and (yi)∈I converge to x and y, respectively, in the SOT. Show that for any α ∈ C,
the net (αxi + yi)i∈I converges to αx+ y in the SOT.

(b) Prove the corresponding statement for the WOT.

1.1.6. If (xi)i∈I ⊂ B(H) converges to x ∈ B(H) in the WOT, show that (x∗i )i∈I converges to x∗ in the
WOT.

1.1.7. Consider the shift operator S on `2(N):

S(x1, x2, . . .) = (0, x1, x2, . . .).

Show that ((S∗)n)n∈N converges to zero in the SOT, but (Sn)n∈N does not.

1.1.8. 1 In this exercise you will show that taking adjoints of normal operators is continuous with respect
to the strong operator topology.

(a) Show that y ∈ B(H) is normal if and only if ‖yξ‖ = ‖y∗ξ‖ for all ξ ∈ H.

(b) Suppose (xi)i∈I ⊂ B(H) is a net of normal operators converging to a normal operator x ∈ B(H) in
the strong operator topology. Show that (x∗i )i∈I converges to x∗ in the strong operator topology.

1.1.9. Consider the operator Sn ∈ B(`2(N)) defined by

Snej :=


ej+1 if 1 ≤ j ≤ n− 1

e1 if j = n

0 otherwise

(a) Determine a formula for S∗n and show that Sn is normal.

(b) Show that (Sn)n∈N converges in the strong operator topology to the shift operator S ∈ B(`2(N)), but
(S∗n)n∈N does not converge to S∗.

(c) Reconcile the previous part with Exercise 1.1.8.

1.1.10. Let (xi)i∈I , (yi)i∈I ⊂ B(H) be nets indexed by the same directed set that converge in the strong
operator topology. Show that if supi∈I ‖xi‖ <∞, then (xiyi)i∈I converges in the strong operator topology.

1.1.11. Find an example of bounded nets (xi)i∈I , (yi)i∈I ⊂ B(H) converging to x, y ∈ B(H), respectively,
in the WOT but such that (xiyi)i∈I does not converge to xy in the WOT. [Hint: consider Example 1.1.4.]

1.1.12. Prove Proposition 1.1.5: For each i ∈ I let Ki := piH and define

K := span
⋃
i∈I
Ki.

Letting p ∈ B(H) be the projection onto K, show that the net (
∑
i∈F pi)F∈F converges in the SOT to p.

1Thanks to Lydia de Wolf for pointing an error in a previous version of this exercise.
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1.2 Bicommutant Theorem

Definition 1.2.1. Let H be a Hilbert space. For x, y ∈ B(H), the commutator of x and y is denoted

[x, y] := xy − yx.

For a subset X ⊂ B(H), the commutant of X, denoted X ′, is the set

X ′ := {y ∈ B(H) : [x, y] = 0 ∀x ∈ X}.

The double commutant of X is the set
X ′′ := (X ′)′

If X ⊂ Y ⊂ B(H) is an intermediate subset, we call X ′ ∩ Y the relative commutant of X in Y .

Observe that, regardless of the structure of X, X ′ is always a unital algebra. If X is closed under taking
adjoints, then X ′ is a ∗-algebra. It also easily checked (algebraically) that:

X ⊂ X ′′ = (X ′′)′′ = · · ·
X ′ = (X ′)′′ = · · ·

Note that inclusions are reversed under the commutant: X ⊂ Y implies Y ′ ⊂ X ′. Remarkably, the purely
algebraic definition of the commutant has analytic implications. This culminates in The Bicommutant
Theorem (Theorem 1.2.6).

Example 1.2.2. Let H be a Hilbert space. If 1 ∈ B(H) is the identity operator, then for any α ∈ C and
any x ∈ B(H) one has [x, α1] = 0. Consequently, {C1}′ = B(H).

Conversely, one also has B(H)′ = C1, which you will show in Exercise 1.2.1. As a special case of this,
consider H = Cn so that B(H) = Mn(C). To see that Mn(C)′ = C1, consider the matrices Ei,j ∈ Mn(C)
for i, j = 1, . . . , n, where Ei,j is the matrix with a one in the (i, j)-entry and zeros elsewhere. Note that
Ei,jEk,` = δj=kEi,`. Also, observe that that for any A = (Ai,j)

n
i,j=1 ∈Mn(C),

Ei,iAEj,j = Ai,jEi,j

Thus if A ∈Mn(C)′, then
Ai,jEi,j = Ei,iAEj,j = Ei,iEj,jA = δi=jEi,jA.

This implies Ai,j = 0 unless i = j; that is, A is diagonal. We also have for any i, j = 1, . . . , n

Ai,iEi,i = Ei,iAEi,i = Ei,jEj,iAEi,i = Ei,jAEj,i = Ei,jEj,jAEj,jEj,i = Aj,jEi,jEj,jEj,i = Aj,jEi,i.

So all the diagonal entries of A agree and so A = A1,11 ∈ C1. �

Example 1.2.3. For (X,Ω, µ) a σ-finite measure space, view L∞(X,µ) ⊂ B(L2(X,µ)) where f ∈ L∞(X,µ)
acts by pointwise multiplication. Then L∞(X,µ)′ = L∞(X,µ), which you will show in Exercise 1.2.3. As
a special case of this, consider N equipped with the counting measure. For n ∈ N, let en ∈ `2(N) be the
function defined by en(k) = δn=k. Note that en ∈ `∞(N) as well, and that for f ∈ `2(N) one has

[enf ](k) = en(k)f(k) = δn=kf(n) = [f(n)en](k),

that is: enf = f(n)en. Now, if T ∈ `∞(N)′ and f ∈ `2(N) we have

[T (f)](n) = en(n)[T (f)](n) = [enT (f)](n) = [T (enf)](n) = f(n)[T (en)](n).

So if we define g : N→ C by g(n) := [T (en)](n), then T (f) = gf . Also note that

|g(n)| = |[T (en)](n)| ≤ ‖T (en)‖2 ≤ ‖T‖‖en‖2 ≤ ‖T‖.

Thus g ∈ `∞(N). �
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Definition 1.2.4. Let K ⊂ H be a subspace. For x ∈ B(H), we say K is invariant for x if xK ⊂ K. We
say K is reducing for x if it is invariant for x and x∗. For a subset X ⊂ B(H), we say K is invariant (resp.
reducing) for X if it is invariant (resp. reducing) for all x ∈ X.

Note that if X is closed under taking adjoints, then a subspace is invariant for X if and only if it is
reducing for X.

Lemma 1.2.5. Let M ⊂ B(H) be a ∗-subalgebra. Let K ⊂ H be a closed subspace with p ∈ B(H) the
projection onto K. Then K is reducing for M if and only if p ∈M ′.

Proof. Assume K is reducing M . Let x ∈M and ξ ∈ K. Then xξ ∈ K so that

xpξ = xξ = pxξ.

If η ∈ K⊥, we have
〈xη, ξ〉 = 〈η, x∗ξ〉 = 0,

since x∗ξ ∈ K. Thus xη ∈ K⊥ and so xpη = 0 = pxη. It follows that xp = px so that p ∈M ′.
Conversely, suppose p ∈M ′. Let x ∈M and ξ ∈ K. Then for η ∈ K⊥ we have

0 = 〈xξ, pη〉 = 〈pxξ, η〉 = 〈xpξ, η〉 = 〈xξ, η〉 .

Thus xξ ∈ (K⊥)⊥ = K. Hence MK ⊂ K so that K is reducing for M .

We have the following theorem due to von Neumann from 1929.

Theorem 1.2.6 (The Bicommutant Theorem). For a unital ∗-subalgebra M ⊂ B(H), one has

M
SOT

= M
WOT

= M ′′

Proof. We will show the following series of inclusions:

M
SOT ⊂MWOT ⊂M ′′ ⊂MSOT

.

The first inclusion follows the fact that SOT-convergence implies WOT-convergence.

Now, suppose x ∈ MWOT
, say with a net (xi)i∈I ⊂ M converging to x in the WOT. Let y ∈ M ′, then

for any ξ, η ∈ H we have

〈xyξ, η〉 = lim
i→∞

〈xiyξ, η〉 = lim
i→∞

〈yxiξ, η〉 = 〈yxξ, η〉 .

Since ξ, η ∈ H were arbitrary, we have xy = yx and thus x ∈M ′′.
Finally, suppose x ∈M ′′. Note that to show x ∈MSOT

, it suffices to show for all n ∈ N, ξ1, . . . , ξn ∈ H,
and ε > 0 that there exists y ∈M with

‖(x− y)ξj‖ < ε j = 1, . . . , n.

Fix n ∈ N, ξ1, . . . , ξn ∈ H, and ε > 0. For y ∈M , define π(y) ∈ B(H⊕n) by

π(y)(η1, . . . , ηn) := (yη1, . . . , yηn).

If you view H⊕n as column vectors over H of height n, then π(y) corresponds to the matrix y 0
. . .

0 y

 .

With this perspective, one can show that π(M)′ consists of matrices of the form a1,1 · · · a1,n

...
. . .

...
an,1 · · · an,n


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where ai,j ∈ M ′ for i, j = 1, . . . , n, and that π(x) commutes with all such matrices since x ∈ M ′′ (see
Exercise 1.2.6).

Now, let S denote the closure of the subspace {π(y)(ξ1, . . . , ξn) : y ∈ M} ⊂ H⊕n. Then S is reducing
for π(M), and so if p ∈ B(H⊕n) is the projection onto S, then Lemma 1.2.5 implies p ∈ π(M)′ and so
pπ(x) = π(x)p. Note that 1 ∈M implies (ξ1, . . . , ξn) ∈ S. Thus we have

π(x)(ξ1, . . . , ξn) = π(x)p(ξ1, . . . , ξn) = pπ(x)(ξ1, . . . , ξn) ∈ S.

The definition of S then implies there exists y ∈M with

‖π(x)(ξ1, . . . , ξn)− π(y)(ξ1, . . . , ξn)‖ < ε.

Unpacking our notation, we see that

‖π(x)(ξ1, . . . , ξn)− π(y)(ξ1, . . . , ξn)‖ = ‖((x− y)ξ1, . . . , (x− y)ξn)‖ =

 n∑
j=1

‖(x− y)ξj‖2
1/2

.

Combining this with the previous inequality yields ‖(x− y)ξj‖ < ε for each j = 1, . . . , n.

The double commutant is given by a purely algebraic definition, whereas the SOT and WOT closures
are purely analytic. Their equality in the above theorem tells us the following objects lie in the confluence
of algebra and analysis:

Definition 1.2.7. We say a unital ∗-subalgebra 1 ∈ M ⊂ B(H) is a von Neumann algebra if M = M ′′

(equivalently, M = M
SOT

or M = M
WOT

).

Recall from Example 1.2.2 that B(H)′ = C1 and that C1′ = B(H). Hence B(H)′′ = B(H) and C1′′ = C1
are examples of von Neumann algebras. Another example is L∞(X,µ) for a σ-finite measure space (X,Ω, µ),
since

L∞(X,µ)′′ = L∞(X,µ)′ = L∞(X,µ)

by Example 1.2.3. We will explore these and other examples in greater detail in the next section, but first
we must define a few related concepts.

From the observation following Definition 1.2.1, we see that for M a von Neumann algebra, M ′ is also a
von Neumann algebra. Consequently, so is M ∩M ′ we which we give a name to here:

Definition 1.2.8. For M a von Neumann algebra, the center of M , denoted Z(M), is the von Neumann
subalgebra M ∩M ′. If Z(M) = C1, we say M is a factor. If Z(M) = M , we say M is abelian.

For a Hilbert space H, B(H) is a factor by Example 1.2.2, while for a σ-finite measure space (X,Ω, µ),
L∞(X,µ) is abelian. There are examples where C1 ( Z(M) ( M , so factors and abelian von Neumann
algebras only represent the two extremes on how much commutativity a von Neumann algebra permits.

We conclude by presenting a notion of what it means for two von Neumann algebras to be isomorphic.

Definition 1.2.9. We say two von Neumann algebras M1 ⊂ B(H1) and M2 ⊂ B(H2) are spatially
isomorphic if there exists a unitary operator U : H1 → H2 such that UM1U

∗ = M2. In this case we call
M1 3 x 7→ UxU∗ ∈M2 a spatial isomorphism.

Exercises

1.2.1. Let H be a Hilbert space. Given ξ, η ∈ H, recall that the rank one operator ξ ⊗ η̄ ∈ B(H) is defined
by

(ξ ⊗ η̄)(ζ) := 〈ζ, η〉 ξ.

(a) Show that x ∈ B(H) commutes with ξ ⊗ η̄ if and only if there exists λ ∈ C with ξ ∈ ker(x − λ) and
η ∈ ker(x∗ − λ̄).

(b) Show that FR(H)′ = C and that B(H)′ = C.
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1.2.2. For (X,Ω, µ) a σ-finite measure space and f ∈ L∞(X,µ), show that

L2(X,µ) 3 g 7→ fg

defines a bounded linear operator on L2(X,µ) with norm equal to ‖f‖∞.
[Hint: for ε > 0 consider {x ∈ X : |f(x)| ≥ ‖f‖∞ − ε}.]

1.2.3. For (X,Ω, µ) a σ-finite measure space, view L∞(X,µ) ⊂ B(L2(X,µ)) where f ∈ L∞(X,µ) acts by
pointwise multiplication. Then L∞(X,µ)′ = L∞(X,µ). [Hint: first consider the case when µ is finite.]

1.2.4. Let H be a Hilbert space, K ⊂ H a closed subspace, and p ∈ B(H) the projection onto K.

(a) Show that K is invariant for x ∈ B(H) if and only if pxp = xp.

(b) Show that K is reducing for x ∈ B(H) if and only if xp = px.

1.2.5. Let H be a Hilbert space and fix n ∈ N. For all T ∈ B(H⊕n), show that there exist Ti,j ∈ B(H) for
i, j = 1, . . . , n such that

T (ξ1, . . . , ξn) =

 T1,1 · · · T1,n

...
. . .

...
Tn,1 · · · Tn,n


 ξ1

...
ξn


(In the above we are not distinguishing between row and column vectors.) Thus B(H⊕n) can be identified
with n× n matrices with entries in B(H).

1.2.6. For x ∈ B(H) and A = (Ai,j)
n
i,j=1 ∈Mn(C), define x⊗A ∈ B(H⊕n) by

x⊗A :=

 A1,1x · · · A1,nx
...

. . .
...

An,1x · · · An,nx

 .

Let X ⊂ B(H), and for each i, j = 1, . . . , n let Ei,j ∈Mn(C) be the matrix with a one in the (i, j)-entry and
zeros elsewhere.

(a) Show that

{x⊗ In : x ∈ X}′ =


n∑

i,j=1

yi,j ⊗ Ei,j : yi,j ∈ X ′ i, j = 1, . . . , n

 .

(b) Show that 
n∑

i,j=1

yi,j ⊗ Ei,j : yi,j ∈ X ′ i, j = 1, . . . , n


′

= {x ∈ ⊗In : x ∈ X ′′}.

1.2.7. Let π : M1 →M2 be a spatial isomorphism.

(a) Show that π is an isometric ∗-isomorphism.

(b) Show that π is SOT and WOT continuous.

(c) Show that M ′1 is spatially isomorphic to M ′2.

1.2.8. Let H1, . . . ,Hn be Hilbert spaces, and for each j = 1, . . . , n define πj : B(Hj) → B(H1 ⊕ · · · ⊕ Hn)
by

πj(x)(ξ1, . . . , ξn) = (0, . . . , 0, xξj , 0, . . . , 0) (ξ1, . . . , ξn) ∈ H1 ⊕ · · · ⊕ Hn.

(You can also think of πj(x) as an n× n matrix with x in the (j, j)-entry and zeros elsewhere).

(a) Show that πj is an isometric ∗-homomorphism for each j = 1, . . . , n.
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(b) Let Mj ⊂ B(Hj) be a von Neumann algebra for each j = 1, . . . , n. Show that

M1 ⊕ · · · ⊕Mn =


n∑
j=1

πj(xj) : xj ∈Mj , j = 1, . . . , n


is a von Neumann algebra. (It is called the direct sum of M1, . . . ,Mn.)

(c) Show that Z(M1 ⊕ · · · ⊕Mn) = Z(M1)⊕ · · · ⊕ Z(Mn).

(d) Show that M1 ⊕ · · · ⊕Mn is not a factor for n ≥ 2.

1.2.9. Show that a von Neumann algebra M is abelian if and only if M ⊂M ′.

1.2.10. An abelian von Neumann algebra A ⊂ B(H) is called maximal abelian if A ⊂ B ⊂ B(H) for
another abelian von Neumann algebra B implies A = B. Show that an abelian von Neumann algebra A is
maximal abelian if and only if A′ = A.

1.3 First Examples

1.3.1 B(H) and Matrix Algebras

For any Hilbert space H, we saw above that B(H) is always a von Neumann algebra and a factor. In
particular, if H is finite dimensional with d := dim(H), then B(H) is simply the matrix algebra Md(C).
Though an elementary example, Md(C) will eventually inform a great deal of our intuition about von
Neumann algebras. We highlight a few important features below.

As factors, matrix algebras are as noncommutative as a von Neumann algebra can be. They also contain
a lot of projections. For each pair i, j = 1, . . . , d let Ei,j ∈Md(C) be the matrix with a one in the (i, j)-entry
and zeros elsewhere. Then Ei,i is projection for each i = 1, . . . , n and so is any sum of these matrices (see
also Exercise 1.3.1).

Recall that the unnormalized trace on Md(C) is a linear functional Tr: Md(C)→ C defined as

Tr(A) =

d∑
i=1

Ai,i.

The trace is invariant under cyclic permutation: Tr(AB) = Tr(BA) for all A,B ∈ Md(C). In fact, up to
a scalar, it is the unique linear functional on Md(C) with this property (see Exercise 1.3.2). Note that if
{e1, . . . , ed} is the standard basis for Cd, then

Tr(A) =

d∑
i=1

〈Aei, ei〉 .

In fact, the standard basis in the above formula can be replaced with any orthonormal basis {f1, . . . , fd}
for Cd. This is because if U is the unitary matrix whose columns are f1, . . . , fd, then Uei = fi for each
i = 1, . . . , d. Consequently

d∑
i=1

〈Afi, fi〉 =

d∑
i=1

〈AUei, Uei〉 =

d∑
i=1

〈U∗AUei, ei〉 = Tr(U∗AU) = Tr(AUU∗) = Tr(A).

One can even define a trace for B(H) when H is infinite dimensional, but it will only be well-defined on the
trace-class operators, which we revisit in Section 3.1.
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1.3.2 Measure Spaces

For (X,Ω, µ) a σ-finite measure space, we saw above that L∞(X,µ) ⊂ B(L2(X,µ)) is an abelian von
Neumann algebra. In fact, it is maximal abelian in the sense that if L∞(X,µ) ⊂ A ⊂ B(H) for an abelian
von Neumann algebra A, then A = L∞(X,µ) (see Exercises 1.2.3 and 1.2.10). As with matrix algebras,
L∞(X,µ) will also eventually inform a great deal of our intuition. Indeed, it turns out that all abelian von
Neumann algebras are of this form and we will see a partial proof of this in Section 2.2.

Despite the fact that L∞(X,µ) and Md(C) are radically different in terms of commutativity, there are still
important similarities. L∞(X,µ) also has an abundence of projections. Indeed, for any measurable E ⊂ X,
1E ∈ L∞(X,µ) is a projection. In fact any projection in L∞(X,µ) is of this form (see Exercise 1.3.3).
Consequently, the linear span of projections is exactly the set of µ-measurable simple functions, which we
know from measure theory are ‖ · ‖∞ norm dense in L∞(X,µ). Using Exercise 1.2.2, we can then deduce
that the linear span of projections is actually operator norm dense in L∞(X,µ). Additionally, when µ is a
finite measure, L∞(X,µ) ⊂ L1(X,µ) and so

L∞(X,µ) 3 f 7→
∫
X

f dµ

is a natural linear functional on this von Neumann algebra, similar to the trace on Md(C).

1.3.3 Group von Neumann Algebras

Let Γ be a countable discrete group, which we can use to define a Hilbert space `2(Γ). Consider the left
regular representation λ : Γ→ B(H):

[λ(g)ξ](h) = ξ(g−1h) ξ ∈ `2(Γ), h ∈ Γ

Equivalently, if for g ∈ Γ we let δg ∈ `2(Γ) be the function δg(h) = δg=h, then λ(g)δh = δgh for all h ∈ Γ. The
operators λ(g) are in fact unitary operators with λ(g)∗ = λ(g−1), and in particular if e ∈ Γ is the identity
then λ(e) = 1. Denote C[λ(Γ)] := spanλ(Γ), which we note is a unital ∗-subalgebra of B(`2(Γ)).

Definition 1.3.1. The group von Neumann algebra for Γ is L(Γ) := C[λ(Γ)]′′.

These von Neumann algebras can be abelian, factors, or something in between. If Γ is an abelian group,
then C[λ(Γ)] and consequently L(Γ) are abelian. To understand when L(Γ) is a factor, we require a definition:

Definition 1.3.2. We say that Γ is an infinite conjugacy class (i.c.c.) group if the conjugacy class
{h−1gh : h ∈ h ∈ Γ} is infinite for all g ∈ Γ \ {e}.

Example 1.3.3. ,

(1) For n ∈ N, the free group with n generators, Fn = 〈a1, . . . , an〉, is an i.c.c. group.

(2) Let S∞ denote the group of bijections π : N → N such that π(n) = n for all but finitely many n ∈ N.
This group can be viewed as the union of all permutation groups Sn, n ∈ N, where Sn ↪→ Sn+1 by
fixing n+ 1. Then S∞ is an i.c.c. group.

(3) Any finite or abelian group is not an i.c.c. group. �

You will show in Exercise 1.3.7 that L(Γ) is a factor if and only if Γ is an i.c.c. group.
As with our previous examples, L(Γ) admits a natural linear functional τ : L(Γ)→ C defined by

τ(x) = 〈xδe, δe〉 .

Since τ(λ(g)) = δg=e, τ encodes the group relations; that is, g1g2 · · · gn = e for g1, . . . , gn ∈ Γ if and only if
τ(λ(g1) · · ·λ(gn)) = 1. Also, like the trace on Md(C), τ is invariant under cyclic permutations: τ(xy) = τ(yx)
for all x, y ∈ L(Γ) (see Exercise 1.3.8). Because if this we call τ the trace on L(Γ).

In constructing the group von Neumann algebra, one could instead use the right regular representation:

[ρ(g)ξ](h) = ξ(hg) ξ ∈ `2(Γ), h ∈ Γ,
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in which case one denotes by R(Γ) := C[ρ(Γ)]′′. There is a very natural relationship between L(Γ) and
R(Γ) (see Theorem 1.3.7), but in order to witness it we require some additional terminology. Recall that for
ξ, η ∈ `2(Γ) their convolution is defined by

(ξ ∗ η)(g) =
∑
h∈Γ

ξ(h)η(h−1g).

From the Cauchy–Scwarz inequality, we have |(ξ ∗ η)(g)| ≤ ‖ξ‖2‖η‖2 for all g ∈ Γ. So ξ ∗ η ∈ `∞(G) with
‖ξ ∗ η‖∞ ≤ ‖ξ‖2‖η‖2.

Definition 1.3.4. We say ξ ∈ `2(Γ) is a left (resp. right) convolver if ξ ∗ η ∈ `2(Γ) (resp. η ∗ ξ ∈ `2(Γ))
for all η ∈ `2(Γ). Denote the linear operator η 7→ ξ ∗ η (resp. η 7→ η ∗ ξ) by λ(ξ) (resp. ρ(ξ)). Denote
LC(Γ) := {λ(ξ) : ξ is a left convolver} and RC(Γ) := {ρ(ξ) : ξ is a right convolver}.

Observe that λ(δg) = λ(g) and ρ(δg) = ρ(g). We claim that λ(ξ) is bounded for any left convolver ξ. By
the Closed Graph Theorem, it suffices to show that if (ηn)n∈N ⊂ `2(Γ) satisfies ηn → 0 and λ(ξ)(ηn) → ζ,
then ζ = 0. Since the ‖ · ‖2 norm dominates the ‖ · ‖∞ norm, we see

‖ζ‖∞ = lim
n→∞

‖λ(ξ)(ηn)‖∞ = lim
n→∞

‖ξ ∗ ηn‖∞ ≤ lim sup
n→∞

‖ξ‖2‖ηn‖2 = 0.

Thus ζ = 0 and so λ(ξ) is bounded. A similar argument shows that ρ(ξ) is bounded for any right convolver.
Hence LC(Γ), RC(Γ) ⊂ B(`2(Γ)).

Lemma 1.3.5. ξ ∈ `2(Γ) is left (resp. right) convolver if and only if there exists c > 0 so that ‖ξ∗κ‖2 ≤ c‖κ‖2
(resp. ‖κ ∗ ξ‖2 ≤ c‖κ‖2) for all finitely supported κ ∈ `2(Γ).

Proof. We will consider only left convolvers, since the proof for right convolvers is similar. The “only if”
direction follows from the discussion preceding the lemma, where c = ‖λ(ξ)‖.

Conversely, define for finitely supported κ ∈ `2(Γ) define xκ := ξ ∗ κ. The hypothesis implies that x can
be extended to a bounded operator on `2(Γ), which we also denote by x. Fix η ∈ `2(Γ). Given ε > 0 there
is a finite subset F ⊂ Γ satisfying ∑

g∈Γ\F

|η(g)|2 < ε2.

In other words, if κ := η1F , then ‖η − κ‖2 < ε. Since κ is finitely supported, we have xκ = ξ ∗ κ and so we
estimate

‖ξ ∗ η − xη‖∞ ≤ ‖ξ ∗ η − xκ‖∞ + ‖x(κ− η)‖∞
≤ ‖ξ ∗ (η − κ)‖∞ + ‖x(κ− η)‖2
≤ ‖ξ‖2‖η − κ‖2 + ‖x‖‖κ− ξ‖2 < (‖ξ‖2 + ‖x‖)ε.

Since ε was arbitrary, we have ξ ∗ η = xη ∈ `2(Γ). Hence ξ is a left convolver.

Proposition 1.3.6. LC(Γ) and RC(Γ) are von Neumann algebras.

Proof. We will only consider LC(Γ), the proof for RC(Γ) being similar. We also leave checking that LC(Γ)
is a unital ∗-algebra as an exercise (see Exercise 1.3.9). By the Bicommutant Theorem, it suffices to show
LC(Γ) is SOT closed. Let (ξi)i∈I ⊂ `2(Γ) be a net of left convolvers such that (λ(ξi))i∈I converges to some
x ∈ B(`2(Γ)) in the SOT. Observe that λ(ξi)δe = ξi, so if we set ξ := xδe then ξi = λ(ξi)δe → xδe = ξ.
Using this and the SOT convergence of (λ(ξi))i∈I to x, we have for any η ∈ `2(Γ) that

‖ξ ∗ η − xη‖∞ ≤ ‖ξ ∗ η − ξi ∗ η‖∞ + ‖ξi ∗ η − xη‖∞ ≤ ‖ξ − ξi‖2‖η‖2 + ‖(λ(ξi)− x)η‖2 → 0.

Thus ξ ∗ η = xη ∈ `2(Γ), which implies ξ is a left convolver and that λ(ξ) = x. Hence x ∈ LC(Γ) and LC(Γ)
is SOT closed.

Theorem 1.3.7. R(Γ) = L(Γ)′ and L(Γ) = R(Γ)′.
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Proof. We begin by showing

L(Γ) ⊂ LC(Γ) ⊂ RC(Γ)′ ⊂ R(Γ)′ ⊂ LC(Γ).

For any g ∈ Γ, λ(g) = λ(δg) ∈ LC(Γ). Hence L(Γ) ⊂ LC(Γ)′′ = LC(Γ) by Proposition 1.3.6, which gives the
first inclusion. Note that a symmetric argument implies R(Γ) ⊂ RC(Γ), and so taking commutants yields
the third inclusion. The second inclusion follows from Exercise 1.3.10. Let x ∈ R(Γ)′ and set ξ := xδe. Then
for any g ∈ Γ we have

xδg = x(ρ(g)δe) = ρ(g)(xδe) = ρ(g)ξ = ξ ∗ δg,
where the last equality follows from a direct computation. Consequently, for any finitely supported κ ∈ `2(Γ)
we have ‖ξ ∗ κ‖2 = ‖xκ‖2 ≤ ‖x‖‖κ‖2. Lemma 1.3.5 therefore implies that ξ is a left convolver. The above
computation shows xδg = ξ ∗ δg = λ(ξ)δg, and since such vectors densely span `2(Γ) we have x = λ(ξ). This
gives the last inclusion.

The inclusions established above show, LC(Γ) = RC(Γ)′ = R(Γ)′. A symmetric argument yields
RC(Γ) = LC(Γ)′ = L(Γ)′. Using the Bicommutant Theorem, these equalities imply

R(Γ) = (R(Γ)′)′ = LC(Γ)′ = L(Γ)′.

Taking commutants then gives R(Γ)′ = L(Γ).

Remark 1.3.8. If G is a locally compact group (e.g. R), it is still possible to define L(G) using the left
regular representation of G on L2(G,µ), where µ the left-invariant Haar measure on G. However, in the
mini-courses we will restrict ourselves to the discrete case.

Group von Neumann algebras remain far from fully understood. On the one hand, by a deep result of
Alain Connes, all amenable i.c.c. groups yield the same group von Neumann algebra. This von Neumann
algebra (which we will define by other means in a later chapter) is called the hyperfinite II1 factor, but we
will not have time in the mini-course to delve into Connes’ proof.

On the other hand, the famous Free Group Factor Isomorphism Problem, which is still open, asks whether or
not L(Fn) ∼= L(Fm) for n 6= m, where Fk is the free group with k generators. A very active area of research
in von Neumann algebras is focused on how much of Γ is “rememebered” by L(Γ). The best results to date
have relied on a collection of techniques known as Popa’s deformation/ridigity theory.

Exercises

1.3.1. Consider the following 2× 2 matrices:(
1 0
0 0

)
,

(
0 0
0 1

)
,

1√
2

(
1 1
1 1

)
,

1√
2

(
1 −i
i 1

)
.

Show that they are all projections and that their span is all of M2(C). Can you find 9 projections in M3(C)
that span?
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1.3.2. Suppose ϕ : Md(C)→ C is a linear functional satisfying ϕ(AB) = ϕ(BA) for all A,B ∈Md(C). Show
that ϕ = ϕ(1) 1

nTr. [Hint: show that ϕ(Ei,j) = 0 for i 6= j and that ϕ(Ei,i) does not depend on i = 1, . . . , n.]

1.3.3. For f ∈ L∞(X,µ) ⊂ B(L2(X,µ)), show that f is a projection if and only if f = 1E for some
measurable E ⊂ X. [Hint: show that µ{x ∈ X : f(x) 6∈ {0, 1}} = 0.]

1.3.4. Let Γ be a discrete group with left regular representation λ : Γ→ B(`2Γ). For g ∈ Γ, show that λ(g)
is a unitary operator with λ(g)∗ = λ(g−1).

1.3.5. Verify the claims in Example 1.3.3.

1.3.6. Let Γ be an infinite countable discrete group. Let (gn)n∈N ⊂ Γ be a sequence that never repeats.
Show that the sequence of unitaries (λ(gn))n∈N converges to zero in the WOT.

1.3.7. Let Γ be a countable discrete group.

(a) For x ∈ L(Γ) and g ∈ Γ, show that
Γ 3 h 7→

〈
xδg−1h, δh

〉
is a constant map.

(b) Denote the value of the constant map in the previous part by cg(x). Show that

xδe =
∑
g∈Γ

cg(x)δg,

and hence
∑
g |cg(x)|2 <∞.

(c) For x ∈ Z(L(Γ)), show that cg(x) = ch−1gh(x) for all g, h ∈ Γ, and that cg(x) = 0 whenever
{h−1gh : h ∈ Γ} is infinite.

(d) Prove that L(Γ) is a factor if and only if Γ is an i.c.c. group.

1.3.8. Let Γ be a countable discrete group and let τ be the trace on L(Γ).

(a) Show that τ(λ(g)λ(h)) = τ(λ(h)λ(g)) for all g, h ∈ Γ.

(b) Show that τ is WOT continuous.

(c) Prove that τ(xy) = τ(yx) for all x, y ∈ L(Γ).

1.3.9. Let Γ be a countable discrete group. In this exercise, you will show that LC(Γ) and RC(Γ) are
∗-algebras.

(a) Show that 1 = λ(e) ∈ LC(Γ) ∩RC(Γ) where e ∈ Γ is the identity.

(b) If ξ, η ∈ `2(Γ) are left (resp.) convolvers, show that ξ ∗ η is a left (resp.) convolver.

(c) For λ(ξ), λ(η) ∈ LC(Γ), show that λ(ξ)λ(η) = λ(ξ ∗ η) ∈ LC(Γ).

(d) For ρ(ξ), ρ(η) ∈ RC(Γ), show that ρ(ξ)ρ(η) = ρ(ξ ∗ η) ∈ RC(Γ).

1.3.10. For a left convolver ξ and a right convolver η, show that λ(ξ)ρ(η) = ρ(η)λ(ξ).
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Chapter 2

Borel Functional Calculus and
Abelian von Neumann Algebras

Let H be a Hilbert space and let x ∈ B(H) be a normal operator: [x, x∗] = 0. This implies that C[x, x∗]—
the set of polynomials in x, x∗, and 1—is an abelian ∗-algebra and consequently its norm-closure, which we
denote by C∗(x), is an abelian C∗-algebra. The Gelfand transform then yields an isometric ∗-isomorphism

Γ: C∗(x)→ C(σ(x)).

This gives us a way to apply continuous functions on σ(x) to the operator x: for f ∈ C(σ(x)) define
f(x) := Γ−1(f). Since it is an isometric ∗-isomorphism, this definition respects the ∗-algebra structure and
norm of C(σ(x)):

(f + g)(x) = f(x) + g(x) (f · g)(x) = f(x)g(x) ‖f(x)‖ = ‖f‖∞.

We call this the continuous functional calculus. In this chapter, we will extend this functional calculus to
bounded Borel functions on σ(x). While f(x) ∈ C∗(x) when f is continuous, it may not be the case if f is
only assumed to be bounded and Borel. However, we do always have f(x) ∈W ∗(x), where

W ∗(x) := C[x, x∗]′′

is the von Neumann algebra generated by x. Recall from the Bicommutant Theorem that W ∗(x) is equiv-
alent to both the SOT and WOT closures of C[x, x∗], and since norm-convergence implies SOT and WOT
convergence we have C∗(x) ⊂W ∗(x).

At the end of the chapter, we will then use the Borel functional calculus to produce a (partial) classification
of abelian von Neumann algebras.

Lecture Preview: In the first lecture, we will prove the Borel Functional Calculus (Theorem 2.1.3) in detail.
You should familiarize yourself with the following proof ingredients ahead of time: the Riesz Representation
Theorem (see [Theorem 2.16, GOALS Prerequisite Notes]), Proposition 2.1.1, and Lemma 2.1.2. In the
second lecture, we will give the classification of abelian von Neumann algebras (Theorem 2.2.6). It is
important to be comfortablw with Definitions 2.2.1 and 2.2.3 and Corollary 2.2.5. You might also find
Examples 2.2.8 and 2.2.9 illuminating.

2.1 Borel Functional Calculus

We will use Borel measures to extend from continuous functions to bounded Borel functions. Since σ(x) for
x ∈ B(H) is a compact subset of C, C(σ(x)) falls under the scope of the Riesz Representation Theorem (see
[Theorem 2.16, GOALS Prerequisite Notes]), which gives us easy access to Borel measures, as seen in the
following proposition.
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Proposition 2.1.1. Let x ∈ B(H) be a normal operator. For any ξ, η ∈ H, there exists a unique regular
Borel measure µξ,η ∈M(σ(x)) satisfying ‖µξ,η‖ ≤ ‖ξ‖‖η‖ and

〈f(x)ξ, η〉 =

∫
σ(x)

f dµξ,η ∀f ∈ C(σ(x)). (2.1)

Moreover, we have µξ,η = µη,ξ for all ξ, η ∈ H and

µαξ1+ξ2,η = αµξ1,η + µξ2,η ∀α ∈ C, ξ1, ξ2, η ∈ H
µξ,βη1+η2

= β̄µξ,η1
+ µξ,η2

∀β ∈ C, ξ, η1, η2 ∈ H.

Proof. Observe that for f ∈ C(σ(x))

| 〈f(x)ξ, η〉 | ≤ ‖f(x)‖‖ξ‖‖η‖ = ‖f‖∞‖ξ‖‖η‖.

Thus f 7→ 〈f(x)ξ, η〉 is a bounded linear functional on C(σ(x)) with norm at most ‖ξ‖‖η‖. The Riesz
Representation Theorem implies there exists µξ,η ∈ M(σ(x)) satisfying ‖µξ,η‖ ≤ ‖ξ‖‖η‖ and (2.1). Since
M(σ(x)) = C(σ(x))∗, this measure is uniquely determined by (2.1). Using this uniqueness, one obtains
the remaining properties via the conjugate symmetry, linearity, and conjugate linearity (respectively) of the
inner product.

For a locally compact Hausdorff space X we denote by B(X) the collection of bounded Borel measurable
functions f : X → C, which we equip with the supremum norm ‖f‖∞. Any f ∈ B(X) is integrable with
respect to any µ ∈ M(X). In particular, for any Borel measurable subset S ⊂ X, we have 1S ∈ B(X) and
for any µ ∈M(X) we have

µ(S) =

∫
X

1S dµ.

In the context of the above proposition, any reasonable definition of f(x) ∈ B(H) for f ∈ B(σ(x)) should
satisfy

〈f(x)ξ, η〉 =

∫
σ(x)

f dµξ,η.

The above discussion tells us we can already make sense of the right-hand side, and the following lemma
tells us precisely how to produce f(x) ∈ B(H) satisfying the above equation.

Lemma 2.1.2. Let H be a Hilbert space and suppose q : H×H → C is linear in the first coordinate, conjugate
linear in the second coordinate, and there exists C > 0 such that |q(ξ, η)| ≤ C‖ξ‖‖η‖ for all ξ, η ∈ H. Then
there exists a unique x ∈ B(H) satisfying

〈xξ, η〉 = q(ξ, η) ∀ξ, η ∈ H,

and ‖x‖ ≤ C.

We leave the proof as an exercise (see Exercise 2.1.2), but remark that it is similar to the proof of
[Theorem 1.36, GOALS Prerequisite Notes]. The map q is called a bounded sesquilinear form, and the above
lemma is sometimes called the Riesz Representation Theorem (for Bounded Sesquilinear Forms).

Theorem 2.1.3 (Borel Functional Calculus). Let x ∈ B(H) be a normal operator. There exists a contractive
∗-homomorphism

B(σ(x)) 3 f 7→ f(x) ∈W ∗(x).

In particular, for f ∈ C(σ(x)) the operator f(x) is the same operator given by the continuous functional
calculus.

Proof. Fix f ∈ B(σ(x)). For ξ, η ∈ H define

q(ξ, η) :=

∫
σ(x)

f dµξ,η,
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where µξ,η is as in Proposition 2.1.1. The same proposition implies q is linear in the first coordinate, conjugate
linear in the second coordinate, and satisfies

|q(ξ, η)| ≤
∫
σ(x)

|f | d|µξ,η| ≤ ‖f‖∞‖µξ,η‖ ≤ ‖f‖∞‖ξ‖‖η‖.

Thus Lemma 2.1.2 implies there exists y ∈ B(H) with ‖y‖ ≤ ‖f‖∞ and

〈yξ, η〉 = q(ξ, η) =

∫
σ(x)

f dµξ,η ∀ξ, η ∈ H.

Define f(x) := y.
Thus B(σ(x)) 3 f 7→ f(x) is contractive. For all ξ, η ∈ H we have

〈(f + g)(x)ξ, η〉 =

∫
σ(x)

f + g dµξ,η =

∫
σ(x)

f dµξ,η +

∫
σ(x)

g dµξ,η

= 〈f(x)ξ, η〉+ 〈g(x)ξ, η〉 = 〈(f(x) + g(x))ξ, η〉 ,

which implies (f + g)(x) = f(x) + g(x). It is similarly shown that (fg)(x) = f(x)g(x) and f̄(x) = f(x)∗. So
f 7→ f(x) is a contractive ∗-homomorphism. Note that—by construction—if f ∈ C(σ(x)) then f(x) agrees
with the operator given by the continuous functional calculus.

It remains to show that this ∗-homomorphism is valued in W ∗(x) = C[x, x∗]′′. Observe that for y ∈
C[x, x∗]′, f ∈ C(σ(x)), and ξ, η ∈ H we have

0 = 〈(yf(x)− f(x)y)ξ, η〉 = 〈f(x)ξ, y∗η〉 − 〈f(x)yξ, η〉 =

∫
σ(x)

f dµξ,y∗η −
∫
σ(x)

f dµyξ,η.

Since f ∈ C(σ(x)) was arbitrary and µξ,y∗η, µyξ,η ∈ M(σ(x)) = C(σ(x))∗, we must have µξ,y∗η = µyξ,η.
Consequently, for f ∈ B(σ(x)) we have

〈(yf(x)− f(x)y)ξ, η〉 =

∫
σ(x)

f dµξ,y∗η −
∫
σ(x)

f dµyξ,η = 0

for all y ∈ C[x, x∗]′ and all ξ, η ∈ H. It follows that yf(x) − f(x)y = 0 for all y ∈ C[x, x∗]′ so that
f(x) ∈ C[x, x∗]′′ = W ∗(x).

For x ∈ B(H) normal, let S ⊂ σ(x) be Borel measurable. Then 1S ∈ B(σ(x)) and 1S = 1S = 12
S imply

1S(x) = 1S(x)∗ = 1S(x)2; that is, 1S(x) is a projection. Consequently, if f ∈ B(σ(x)) is a simple function,
then f(x) is a linear combination of projections. From this we can deduce that projections are ubiquitious
in von Neumann algebras:

Corollary 2.1.4. A von Neumann algebra is the norm closure of the span of its projections.

Proof. Let M ⊂ B(H) be a von Neumann algebra, and let x ∈ M . By considering the real and imaginary
parts of x (Re (x) = 1

2 (x + x∗) and Im (x) = i
2 (x∗ − x)) we may assume x is self-adjoint. In particular,

x is normal and hence f(x) ∈ W ∗(x) ⊂ M for all f ∈ B(σ(x)) by the Borel functional calculus. Thus the
discussion preceding the statement of the corollary implies that approximating the identity function on σ(x)
uniformly by simple functions gives, via the Borel functional calculus, a uniform approximation of x by linear
combinations of projections in M .

Contrast this result with the fact that there exist C∗-algebras with no non-trivial projections. Indeed,
if X is compact Hausdorff space, and X is connected, then C(X) has exactly two projections: 0 and 1.
Non-commutative examples exist as well.

It is not true in general that the ∗-homomorphism in the Borel functional calculus is injective. For
example, if there exists a subset S ∈ σ(x) such that µξ,η(S) = 0 for all ξ, η ∈ H then we will have
f(x) = g(x) so long as f and g agree on σ(x) \ S. This concept is explored further in Exercise 2.1.4.
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Exercises

2.1.1. Let x ∈ B(H) be normal. For ξ ∈ H, let µξ,ξ be as in Proposition 2.1.1. Show that µξ,ξ is a positive
measure.

2.1.2. Prove Lemma 2.1.2: First fix ξ ∈ H and show for all η ∈ H that q(ξ, η) = 〈ξ1, η〉 for some ξ1 ∈ H.
Then show that x(ξ) := ξ1 defines a bounded operator x ∈ B(H).

2.1.3. Let x ∈ B(H) be a normal operator and let Ω be the Borel σ-algebra on σ(x).

(a) Show that 1∅ = 0 and 1σ(x) = 1.

(b) Show that 1S∩T = 1S1T for all S, T ∈ Ω.

(c) Let {Sn ∈ Ω : n ∈ N} be a collection of pairwise disjoint subsets and let S :=
⋃∞
n=1 Sn. Show that

1S =

∞∑
n=1

1Sn ,

where series is the SOT-limit of the net of partial sums (see Proposition 1.1.5).

(The map S 7→ 1S is called a projection valued measure.)

2.1.4. Let x ∈ B(H) be a normal operator. We say a Borel measurable subset S ⊂ σ(x) is x-null if
1S(x) = 0. For f ∈ B(σ(x)), define

x.im(f) := {z ∈ C : for all ε > 0, {w ∈ σ(x) : |f(w)− z| ≤ ε} is not x-null}.

and
‖f‖∞,x := sup

z∈x.im(f)

|z|.

(a) Show that S is x-null if and only if µξ,η(S) = 0 for all ξ, η ∈ H.

(b) Show that f(x) = 0 if and only if ‖f‖∞,x = 0.

(c) Show that ‖f(x)‖ = ‖f‖∞,x.

(d) Show that σ(f(x)) ⊂ x.im(f).

2.2 Abelian von Neumann Algebras

In this section we will prove that abelian von Neumann algebras are of the form L∞(X,µ) for some mea-
sure space (X,Ω, µ). This result often inspires the following platitude: “Von Neumann algebras are non-
commutative measure spaces.” Nevertheless, this perspective is quite helpful in developing one’s intuition
for von Neumann algebras, and by the end of GOALS you will probably be like
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For the sake of simplicity, we will restrict ourselves the case when the Hilbert space contains a cyclic vector.

Definition 2.2.1. Let A ⊂ B(H) be a subalgebra. A vector ξ ∈ H is said to be cyclic for A if the subspace
Aξ is dense in H.

To motivate this definition, suppose x ∈ B(H) is normal and ξ0 ∈ H is cyclic for C[x, x∗]. Let µ := µξ0,ξ0
be as in Proposition 2.1.1. Note that µ is a positive measure (see Exercise 2.1.1). For any a, b ∈ C[x, x∗] and
any S ⊂ σ(x) have

µaξ0,bξ0(S) =

∫
σ(x)

1S dµaξ0,bξ0 = 〈1S(x)aξ0, bξ0〉 = 〈(b∗1S(x)a)ξ0, ξ0〉 =

∫
σ(x)

q̄1Sp dµ

where p and q are polynomials such that p(x, x∗) = a and q(x, x∗) = b. Thus if µ(S) = 0, then the above
computation implies µaξ0,bξ0(S) = 0. That is, µaξ0,bξ0 � µ. Furthermore, since ξ0 is cyclic for C[x, x∗], given
any ξ, η ∈ H and any ε > 0 we can find a, b ∈ C[x, x∗] so that ‖aξ0 − ξ‖, ‖bξ0 − η‖ < ε. Proposition 2.1.1
implies

‖µξ,η − µaξ0,bξ0‖ ≤ ‖µξ−aξ0,η‖+ ‖µaξ0,η−bξ0‖ < ε‖η‖+ ‖aξ0‖ε < ε(‖η‖+ ‖ξ‖+ ε),

and it follows that µξ,η � µ. One consequence of this is that 1S(x) = 0 for S ⊂ σ(x) Borel if and only if µ(S)
(see Exercise 2.1.4.(a)). Another consequence (which we will prove below) is that W ∗(x) can be identified
with L∞(σ(x), µ), where a bounded Borel function f ∈ L∞(σ(x), µ) is identified with f(x).

Example 2.2.2. Let Γ be a discrete group and let λ, ρ : Γ → B(`2(Γ)) be the left and right regular repre-
sentations. Define algebras A := spanλ(Γ) and B := spanρ(Γ) Then δe ∈ `2(Γ) is cyclic for both A and B
since λ(g)δe = δg = ρ(g)δe for all g ∈ Γ. Moreover since A and B commute, if a ∈ A and aδe = 0 then a = 0.
Indeed, for any b ∈ B we have

abξ0 = baξ0 = 0.

Since Bξ0 is dense in H, it must be that a = 0. �

The previous example highlights a related concept:

Definition 2.2.3. Let A ⊂ B(H) be a subalgebra. A vector ξ ∈ H is said to be separating for A if xξ = 0
for x ∈ A implies x = 0.

The observation we made in Example 2.2.2 is an instance of a more general fact.

Proposition 2.2.4. Let A ⊂ B(H) be a subalgebra. If ξ ∈ H is cyclic for A, then it is separating for its
commutant A′. If A is a unital ∗-subalgebra and ξ is separating for A′, then ξ is cyclic for A. Consequently,
for a von Neumann algebra M ⊂ B(H), a vector is cyclic (resp. separating) for M if and only if it is
separating (resp. cyclic) for M ′.
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Proof. Let ξ ∈ H be cylic for A and suppose y ∈ A′ is such that yξ = 0. Then for all x ∈ A we have

yxξ = xyξ = 0.

Since ξ is cyclic for A, {xξ : x ∈ A} is dense in H. Thus y = 0, and so ξ is separating for A′.
Now suppose A is a unital ∗-subalgebra and ξ is separating for A′. Let p ∈ B(H) be the projection onto

K := (Aξ)⊥. To see that ξ is cyclic for A it suffices to show p = 0. Indeed, p = 0 is equivalent to K = {0}
and therefore

Aξ = ((Aξ)⊥)⊥ = K⊥ = {0}⊥ = H

(see [Exercise 1.18, GOALS Prerequisite Notes]). Now, for x1, x2 ∈ A and η ∈ K we have

〈x1η, x2ξ〉 = 〈η, x∗1x2ξ〉 = 0,

since x∗1x2 ∈ A. Thus x1η ∈ K, and hence AK ⊂ K. That is, K is reducing for A and so Lemma 1.2.5 implies
p ∈ A′. Note that ξ ∈ Aξ since A is unital, and hence pξ = 0. Since ξ is separating for A′, this implies p = 0.
The final observations follow from M being a unital ∗-subalgebra and M = (M ′)′.

Corollary 2.2.5. If A ⊂ B(H) is an abelian algebra, then every cyclic vector for A is also separating for
A.

Proof. If ξ ∈ H is cyclic for A, then by the proposition it is separating for A′. In particular, it is separating
for A ⊂ A′.

Recall that for a an abelian C∗-algebra A, the Gelfand transform gives an isometric ∗-isomorphism

Γ: A→ C0(σ(A)),

where σ(A) is a locally compact Hausdorff space formed by the spectrum of A: the set of all ∗-homomorphims
from A to C. In particular, if A is unital then σ(A) is compact and the image of the Gelfand transform is
C(σ(A)).

Theorem 2.2.6. Let A ⊂ B(H) be an abelian von Neumann algebra with a cyclic vector ξ0 ∈ H. For any
SOT dense unital C∗-subalgebra A0 ⊂ A, there exists a positive regular Borel measure µ ∈M(σ(A0)) and a
spatial isomorphism

Γ∗ : A→ L∞(σ(A0), µ)

satisfying

〈xξ0, ξ0〉 =

∫
σ(A0)

Γ∗(x) dµ ∀x ∈ A.

Moreover, Γ∗ extends the Gelfand transform Γ: A0 → C(σ(A0)).

Proof. Let Γ : A0 → C(σ(A0)) be the Gelfand transform. Define φ : A → C by φ(x) = 〈xξ0, ξ0〉 for x ∈ A.
For f ∈ C(σ(A0)) we have

|φ(Γ−1(f))| = |
〈
Γ−1(f)ξ0, ξ0

〉
| ≤ ‖Γ−1(f)‖‖ξ0‖2 = ‖f‖∞‖ξ0‖2.

Thus φ ◦ Γ−1 ∈ C(σ(A0))∗, and so the Riesz Representation Theorem implies there exists a regular Borel
measure µ ∈M(σ(A0)) so that

φ ◦ Γ−1(f) =

∫
σ(A0)

f dµ.

Observe that for a positive function f ∈ C(σ(A0)), we have∫
σ(A0)

f dµ =

∫
σ(A0)

√
f

2
dµ = φ ◦ Γ−1(

√
f

2
)) =

〈
Γ−1(

√
f

2
)ξ0, ξ0

〉
=
∥∥∥Γ−1(

√
f)ξ0

∥∥∥2

≥ 0.

Hence µ is a positive measure.
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Define U0 : A0ξ0 → C(σ(A0)) ⊂ L2(σ(A0), µ) by

U0(xξ0) = Γ(x) x ∈ A0.

Since ξ0 is separating for A by Corollary 2.2.5, this is well-defined. Moreover, for x, y ∈ A0

〈U0(xξ0), U0(yξ0)〉L2(σ(A0),µ) =

∫
σ(A0)

Γ(x)Γ(y) dµ =

∫
σ(A0)

Γ(y∗x) dµ = φ(y∗x) = 〈y∗xξ0, ξ0〉 = 〈xξ0, yξ0〉 .

Thus U0 is an isometry on A0ξ0. Note that ξ0 is cyclic for A0 because it is cyclic for A and A0 is SOT
dense in A. Hence A0ξ0 is dense in H and so we can extend U0 to an isometry U : H → L2(σ(A0), µ). Since
C(σ(A0)) is dense in L2(σ(A0), µ), U is surjective and hence a unitary.

Define a spatial isomorphism Γ∗ : A→ B(L2(σ(A0), µ)) via Γ∗(x) = UxU∗. For x ∈ A0 and g ∈ C(σ(A0))
we have

Γ∗(x)g = UxU∗g = Ux
(
Γ−1(g)ξ0

)
= UΓ−1(Γ(x)g)ξ0 = Γ(x)g.

By the density of C(σ(A0)) ⊂ L2(σ(A0), µ), it follows that Γ∗(x) = Γ(x) (where we are viewing Γ(x ∈
B(L2(σ(A0), µ)) as a pointwise multiplication operator). Thus Γ∗ extends the Gelfand transform.

Finally, towards proving Γ∗(A) = L∞(σ(A0), µ) we first observe L∞(σ(A0), µ) = Γ∗(A0)
WOT

. Indeed,

Γ∗(A0) = Γ(A0) = C(σ(A0)) ⊂ L∞(σ(A0), µ),

so that Γ∗(A0)
WOT

= C(σ(A0)
WOT

. Recall that by Exercise 1.1.4, the WOT on L∞(σ(A0), µ) corresponds
to the weak* topology induced by L1(σ(A0), µ)∗ = L∞(σ(A0), µ), and C(σ(A0)) is dense in this topology
by Exercise 2.2.2. Thus

Γ∗(A0)
WOT

= C(σ(A0)
WOT

= L∞(σ(A0), µ).

Hence, to finish the proof it suffices to prove the following inclusions:

Γ∗(A0)
WOT

⊂ Γ∗(A) ⊂ Γ∗(A0)
WOT

.

To see the first inclusion, suppose (Γ∗(xi))i∈I ⊂ Γ∗(A0) WOT-converges to some T ∈ B(L2(σ(A0), µ)). Then
for all ξ, η ∈ H we have

〈U∗TUξ, η〉 = 〈TUξ, Uη〉 = lim
i→∞

〈UxiU∗Uξ, Uη〉 = lim
i→∞

〈xiξ, η〉 .

Thus (xi)i∈I WOT-converges to U∗TU ∈ B(H). Since A = A0
W0T

, x := U∗TU ∈ A and Γ∗(x) = UxU∗ = T .
So the first inclusion holds. To see the second inclusion, observe that if (xi)i∈I ∈ A is a net WOT-converging
to x ∈ A, then for any f, g ∈ L2(σ(A0), µ) we have

〈(Γ∗(x)− Γ∗(xi))f, g〉L2(σ(A0),µ) = 〈U(x− xi)U∗f, g〉L2(σ(A0),µ) = 〈(x− xi)U∗f, U∗g〉 → 0.

Since A0
WOT

= A (by the Bicommutant Theorem), this implies Γ∗(A) = Γ∗(A0
WOT

) ⊂ Γ∗(A0)
WOT

.

Remark 2.2.7. Observe that if we take A0 = A in the proof of the previous theorem, then it follows that

L∞(σ(A), µ) = Γ∗(A) = Γ(A) = C(σ(A)).

That is, the µ-measurable essentially bounded functions coincide with the continuous functions on σ(A). This
should be taken as an indication that the spectrum of a commutative C∗-algebra A is strange when A is
also a von Neumann algebra. Indeed, these are Stonean spaces and are examples of extremally disconnected
spaces.

Let us explore Theorem 2.2.6 when A = W ∗(x) for x ∈ B(H) a normal operator and relate it to the
Borel functional calculus. A natural choice for A0 is C∗(x) (the unital C∗-algebra generated by x), which
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is SOT dense in W ∗(x) because C[x, x∗] ⊂ C∗(x) is SOT dense. Recall that in this case, σ(C∗(x)) = σ(x).
Suppose ξ0 ∈ H is a cyclic vector for W ∗(x), and let µ ∈M(σ(x)) be as in Theorem 2.2.6. Note that since∫

σ(x)

f dµ = 〈f(x)ξ0, ξ0〉 ∀f ∈ C(σ(x)),

we have µ = µξ0,ξ0 where µξ0,ξ0 is defined as in Proposition 2.1.1. Now, since µ is a Borel measure,
L∞(σ(x), µ) = B(σ(x))/ ∼ where the equivalence relation is µ-almost everywhere equivalence. We claim
that for f ∈ B(σ(x)) with [f ] ∈ L∞(X,µ), the operator f(x) defined by the Borel functional calculus equals
(Γ∗)−1([f ]) where Γ∗ is as in Theorem 2.2.6. Indeed, for all g ∈ C(σ(x)) we have〈

(f(x)− (Γ∗)−1([f ]))ξ0, g(x)ξ0
〉

=

∫
σ(x)

fḡ dµξ0,ξ0 −
∫
σ(x)

[f ]ḡ dµ =

∫
σ(x)

(f − [f ])ḡ dµ = 0.

The above computation implies (f(x)− (Γ∗)−1([f ]))ξ0 = 0 because ξ0 is cyclic for C∗(x) = Γ−1(C(σ(x)) (by
virtue of C∗(x) being SOT dense in W ∗(x)). But ξ0 is separating for W ∗(x) by Corollary 2.2.5, so we have
f(x) = (Γ∗)−s([f ]) as claimed. All of which is to say, when A = W ∗(x) and A0 = C∗(x) the ∗-isomorphism
in Theorem 2.2.6 respects the Borel functional calculus.

Theorem 2.2.6 also allows us to better understand group von Neumann algebras for commutative groups.
We consider a few examples below.

Example 2.2.8. For n ∈ N with n ≥ 2, let

Γ := Z/nZ = {0, 1, 2, . . . , n− 1}.

Since Γ is an abelian group, L(Γ) is an abelian von Neumann algebra and from Example 2.2.2 we know that
δ0 is a cyclic vector for L(Γ). Let x ∈ L(Γ) be the unitary operator corresponding to the group generator
1 ∈ Z/nZ, so that L(Γ) = W ∗(x). Since xx∗ = 1 = x∗x (i.e. x is normal), from the above discussion we
know

L(Γ) ∼= L∞(σ(x), µ)

for a regular Borel measure µ ∈ M(σ(x)). Observe that the matrix representation of x with respect to the
basis δ0, δ1, . . . , δn−1 is the permutation matrix

0 · · · 0 1
1 0 0

. . .
...

0 1 0

 .

So [Example 3.15.(1), GOALS Prerequisite Notes] implies σ(x) is the set of eigenvalues of the above matrix:
{exp( 2πik

n ) : k = 0, 1, . . . , n − 1} (Exercise: confirm this). Denote ζk = exp( 2πik
n ) for k = 0, 1, . . . , n − 1,

then

ek :=
1√
n

(
δ0 + ζ−1

k δ1 + · · ·+ ζ
−(n−1)
k δn−1

)
is a unit eigenvector of x with eigenvalue ζk. Since z1{ζk}(z) = ζk1{ζk}(z) for z ∈ C, the Borel functional
calculus implies x1{ζk}(x) = ζk1{ζk}(x). That is, 1{ζk}(x) is the projection onto the ζk eigenspace. As this
space is spanned by the unit vector ek, we have 1{ζk}(x) = ek ⊗ ek. Thus we have

µ({ζk}) =

∫
σ(x)

1{ζk} dµ =
〈
1{ζk}(x)δ0, δ0

〉
= 〈ek ⊗ ekδ0, δ0〉 = 〈〈δ0, ek〉 ek, δ0〉 = | 〈δ0, ek〉 |2 =

1

n
.

Hence µ is the uniform probability distribution on {ζk : k = 0, 1, . . . , n− 1}. �

Example 2.2.9. Consider the abelian von Neumann algebra L(Z). As in the previous example, δ0 ∈ `2(Z) is
a cyclic vector for L(Z). Let x ∈ L(Z) be the unitary operator corresponding to 1 ∈ Z, so that L(Z) = W ∗(x).
Let

T = {ζ ∈ C : |ζ| = 1},
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then Z and T are Pontryagin duals to each other via

Z× T 3 (n, ζ) 7→ ζn.

This duality allows us to define a unitary U : `2(Z)→ L2(T,m) (where m is the normalized Lebesgue measure
on T) via

[U(ξ)](ζ) =
∑
n∈Z

ξ(n)ζn ξ ∈ `2(Z), ζ ∈ T.

If f : L∞(T,m) is the identity function f(ζ) = ζ, we have

[Uxξ](ζ) =
∑
n∈Z

[xξ](n)ζn =
∑
n∈Z

ξ(n− 1)ζn = ζ
∑
n∈Z

ξ(n− 1)ζn−1f(z)[Uξ](ζ).

Hence UxU∗ = f . Using an argument similar to the on Theorem 2.2.6, one then obtains L(Z) ∼= L∞(T,m).
We leave the details for you to check in Exercise 2.2.3. �

Exercises

2.2.1. Let H be a Hilbert space and let p ∈ B(H) be a non-trivial projection: p 6= 0 and p 6= 1. Show that
the algebra A := pB(H)p has no cyclic vectors.

2.2.2. Let X be a compact Hausdorff space and let µ ∈ M(X) be a positive regular Borel measure. Show
that C(X) is weak* dense in L∞(X,µ) by showing that if f ∈ L1(X,µ) satisfies∫

X

fg dµ = 0 ∀g ∈ C(X)

then f = 0.

2.2.3. Fill in the remaining details of Example 2.2.9: first show that UL(Z)U∗ = C[f, f̄ ]
WOT

= C[f, f̄ ]
wk∗

,
then argue that C[f, f̄ ] (i.e. the set of polynomials) is weak* dense in L∞(T,m) = L1(T,m)∗.

2.2.4. Let Γ be a discrete abelian group and let Γ̂ be its Pontryagin dual group, which is a compact abelian
group and hence has a finite Haar measure µ. Show that L(Γ) ∼= L∞(Γ̂, µ).
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Chapter 3

The Predual

Let (X,Ω, µ) be a σ-finite measure space. We saw in Exercise 1.1.4 that the weak operator topology on
L∞(X,µ) as a von Neumann algebra in B(L2(X,µ)) is precisely the weak* topology induced by L∞(X,µ) =
L1(X,µ)∗. In this chapter, we will show that in fact for any von Neumann algebra M ⊂ B(H), there
exists a Banach space M∗ whose dual is M : M = (M∗)

∗. We call this Banach space M∗ the predual of M .
However, the weak* topology induced by this duality is not quite the weak operator topology but rather
a finer topology called the σ-weak operator topology (σ-WOT ). The duality relation M = (M∗)

∗ ends up
being so important to the structure of a von Neumann algebra that the σ-WOT is considered the natural
topology on a von Neumann algebra and maps on a von Neumann algebra that are σ-WOT continuous are
declared to be normal (see Definition 3.3.1).

In the next section, we will consider the case when M = B(H). In this case, the role of the predual
B(H)∗ is played by the trace class operators L1(B(H)). In fact, the analogy with L∞(X,µ) = L1(X,µ)∗

was precisely the impetus for the notation “L1(B(H)).” Moreover, the case of B(H) is crucial to understand
because from it stems the definitions of the σ-WOT and the predual for a general von Neumann algebra,
which will appear in Sections 3.2 and 3.3. We conclude the chapter with an important result called the
Kaplansky Density Theorem.

Lecture Preview: Section 3.1 contains detailed but technical proofs of the properties we stated for trace
class operators on the first day of GOALS. For our purposes, we only need Theorem 3.1.10 (which says
K(H)∗ = L1(B(H))) and Theorem 3.1.12 (which says L1(B(H))∗ = B(H)), and consequently we recommend
that you skip the details in Section 3.1 for now. In the first lecture we will introduce the so-called σ-topologies
B(H) (see Definition 3.2.2) and compare them to the SOT and WOT as well as the weak* topology induced
by B(H) = L1(B(H))∗. In the second lecture, we will define the predual of a von Neumann algebra and
explore the weak* topology induced by M = (M∗)

∗. Time permitting, we will discuss the Kaplansky Density
Theorem (see Theorem 3.4.6), however we also recommend that you skip the details for now.

3.1 Trace Class Operators

Before we can formally treat the trace class operatoras, we need to establish the polar decomposition of an
operator. Recall that for x ∈ B(H), we denote |x| = (x∗x)

1
2 .

Theorem 3.1.1. Let x ∈ B(H). Then there exists a partial isometry v ∈ W ∗(x) so that x = v|x|. Also
ker(v) = ker(|x|), and v∗v and vv∗ are the projections onto ran(|x|) and ran(x), respectively. This decompo-
sition is unique in that if x = wy for y ≥ 0 and w a partial isometry with ker(w) = ker(y), then w = v and
y = |x|.

Proof. Define v0 : ran(|x|) → ran(x) by v0(|x|ξ) = xξ, for ξ ∈ H. Exercise 3.1.1 implies v0 is well-defined
and can be extended to an isometry v : ran(|x|)→ ran(x). Extend v to a bounded operator on H by defining

v be zero on ran(|x|)
⊥

= ker(|x|). Then v a partial isometry with ker(v) = ker(|x|) and ran(v) = ran(x).
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This implies v∗v is the projection onto ker(v)⊥ = ker(|x|)⊥ = ran(|x|), and vv∗ is the projection onto
ran(v) = ran(x). By definition we have v|x| = x.

To see that v ∈W ∗(x), suppose y ∈W ∗(x)′. Then for all ξ ∈ H we have

yv|x|ξ = yxξ = xyξ = v|x|yξ = vy|x|ξ.

Consequently, yv = vy on ran(|x|). For ξ ∈ ran(|x|)
⊥

= ker(|x|), note that yξ ∈ ker(|x|) since y commutes
with |x| (by virtue of |x| ∈ C∗(x) ⊂W ∗(x)). Since ker(|x|) = ker(v) we therefore have yvξ = 0 = vyξ. Thus
vy = vy on all of H and so v ∈W ∗(x)′′ = W ∗(x).

Suppose x = wy for some y ≥ 0 and w a partial isometry with ker(w) = ker(y). Then

ker(w)⊥ = ker(y)⊥ = ran(y).

Thus w∗wy = y since w∗w is the projection onto ker(w)⊥. Consequently,

|x|2 = x∗x = yw∗wy = y2,

which implies |x| = y by the uniqueness of the square root. Thus

(w − v)|x|ξ = wyxi− v|x|ξ = xξ − xξ = 0

for all ξ ∈ H. Since ker(w) = ker(y) = ker(|x|), this implies w = v.

Corollary 3.1.2. Let x ∈ B(H) with polar decomposition x = v|x|. Then |x∗| = v|x|v∗ and x∗ = v∗|x∗|.

Proof. Observe that v|x|v∗ is positive with

(v|x|v∗)(v|x|v∗) = v|x|v∗v|x|v∗ = v|x|2v∗ = vxx∗v∗ = xx∗.

By the uniqueness of the square root, we have v|x|v∗ = (xx∗)1/2 = |x∗|. From this we further deduce

v∗|x∗| = v∗v|x|v∗ = |x|v∗ = (v|x|)∗ = x∗.

Now, recall that x ∈ B(H) is a trace class operator if

‖x‖1 = Tr(|x|) =
∑
ξ∈E

〈|x|ξ, ξ〉 <∞,

where E ⊂ H is any orthornomal basis. In this section we will make good on our promise of proofs for results
stated on Day 1 (see [Theorem 7.25, Day 1 Lectures]). We will make use of the following, which appeared
as Exercises 7.52 and 7.54 in the Day 1 lectures.

Proposition 3.1.3. Let H be a Hilbert space.

(i) For positive x ∈ B(H),

Tr(x) =
∑
ξ∈E

〈xξ, ξ〉

does not depend on the choice of orthonormal basis E ⊂ H.

(ii) For x ∈ B(H), Tr(x∗x) = Tr(xx∗).

In order to show that we can define Tr(x) for any x ∈ L1(B(H)), we need the following lemma.

Lemma 3.1.4. For x ∈ B(H),

| 〈xξ, ξ〉 | ≤
〈

1

2
(|x|+ |x∗|)ξ, ξ

〉
∀ξ ∈ H.
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Proof. Let x = v|x| be the polar decomposition and recall from Corollary 3.1.2 that |x∗| = v|x|v∗. For ξ ∈ H
and λ ∈ C, observe that

0 ≤ 〈|x|(ξ − λv∗ξ), (ξ − λv∗ξ)〉 = 〈|x|ξ, ξ〉 − λ̄ 〈|x|ξ, v∗ξ〉 − λ 〈|x|v∗ξ, ξ〉+ |λ|2 〈|x|v∗ξ, |x|v∗ξ〉
= 〈|x|ξ, ξ〉 − λ̄ 〈v|x|ξ, ξ〉 − λ 〈ξ, v|x|ξ〉+ |λ|2 〈v|x|v∗ξ, ξ〉
= 〈|x|ξ, ξ〉 − 2Re λ̄ 〈xξ, ξ〉+ |λ|2 〈|x∗|ξ, ξ〉 .

Setting λ := 〈xξ,ξ〉
|〈xξ,ξ〉| yields

0 ≤ 〈|x|ξ, ξ〉 − 2| 〈xξ, ξ〉 |+ 〈|x∗|ξ, ξ〉 ,
and a bit of algebra produces the desired inequality.

Proposition 3.1.5. Let x ∈ L1(B(H)). Then x∗ ∈ L1(B(H)) with ‖x∗‖1 = ‖x‖1. Also, for any orthonormal
basis E ⊂ H the series ∑

ξ∈E

〈xξ, ξ〉

converges absolutely and its value is independent of the choice of orthonormal basis.

Proof. Let x = v|x| be the polar decomposition. Using Corollary 3.1.2 and Proposition 3.1.3.(ii) we have

‖x∗‖1 = Tr(|x∗|) = Tr(v|x|v∗) = Tr((v|x|1/2)(v|x|1/2)∗) = Tr((v|x|1/2)∗(v|x|1/2)) = Tr(|x|1/2v∗v|x|1/2).

Recall from Theorem 3.1.1 that v∗v is the projection onto ran(|x|). Since

ran(|x|) = ker(|x|)⊥ = ker(|x|1/2)⊥ = ran(|x|1/2),

we have therefore have v∗v|x|1/2 = |x|1/2. Thus we can continue our previous computation with

‖x∗‖1 = Tr(|x|1/2v∗v|x|1/2) = Tr(|x|) = ‖x‖1.

Now, let E ⊂ H be an orthonormal basis. Using Lemma 3.1.4 and the first part of the proof we have∑
ξ∈E

| 〈xξ, ξ〉 | ≤
∑
ξ∈E

〈
1

2
(|x|+ |x∗|)ξ, ξ

〉
=

1

2
Tr(|x|) +

1

2
Tr(|x∗|) =

1

2
‖x‖1 +

1

2
‖x∗‖1 = ‖x‖1 <∞.

So the series converges absolutely. Towards showing that the value of the series does not depend on E , we
will express x as a linear combination of positive operators trace class operators. The identity

x = v|x| = 1

4

3∑
k=0

ik(v + ik)|x|(v + ik)∗

follows by expanding the right-hand side. Note that each

(v + ik)|x|(v + ik)∗ =
(

(v + ik)|x|1/2
)(

(v + ik)|x|1/2
)∗

is positive. Before we show they are trace class, let’s see why this finishes the proof. If (v+ ik)|x|(v+ ik)∗ ∈
L1(B(H)) for each k, then 1

4

∑
ikTr((v+ ik)|x|(v+ ik)∗) is defined and by Proposition 3.1.3.(i) this quantity

is independent of the choice of orthonormal basis. Consequently,

1

4

3∑
k=0

ikTr((v + ik)|x|(v + ik)∗) =
1

4

3∑
k=0

ik
∑
ξ∈E

〈
(v + ik)|x|(v + ik)∗)ξ, ξ

〉
=
∑
ξ∈E

〈xξ, ξ〉

is also independent of the choice of orthonormal basis.
Now, Proposition 3.1.3.(ii) tells us that (v + ik)|x|(v + ik)∗ =

(
(v + ik)|x|1/2

) (
(v + ik)|x|1/2

)∗
is trace

class if and only if
(
(v + ik)|x|1/2

)∗ (
(v + ik)|x|1/2

)
= |x|1/2(v + ik)∗(v + ik)|x|1/2 is trace class. Since

|x|1/2(v + ik)∗(v + ik)|x|1/2 ≤ ‖(v + ik)∗(v + ik)‖|x|1/21|x|1/2 = ‖v + ik‖2|x| ≤ 4|x|,
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we have
Tr(|x|1/2(v + ik)∗(v + ik)|x|1/2) ≤ Tr(4|x|) = 4Tr(|x|) <∞.

(If 0 ≤ a ≤ b are bounded operators, then 〈aξ, ξ〉 ≤ 〈bξ, ξ〉 for all ξ ∈ H implies Tr(a) ≤ Tr(b).) Thus each
(v + ik)|x|(v + ik)∗ is positive and trace class.

The previous proposition enables us to make the following definition:

Definition 3.1.6. For x ∈ L1(B(H)), the trace of x is the quantity

Tr(x) :=
∑
ξ∈E

〈xξ, ξ〉

where E ⊂ H is any orthonormal basis for H.

Note that in the proof of Proposition 3.1.5, it was shown that |Tr(x)| ≤ ‖x‖1.

Theorem 3.1.7. Let x ∈ L1(B(H)). Then for any a, b ∈ B(H), axb ∈ L1(B(H)) with ‖axb‖1 ≤ ‖a‖‖x‖1‖b‖
and |Tr(axb)| ≤ ‖a‖‖x‖1‖b‖. Moreover, Tr(ax) = Tr(xa) for all a ∈ B(H).

Proof. The second claim follows from the first claim and the observation preceding the statement of the
theorem. Now, let x = v|x| and axb = w|axb| be the polar decompositions. For an orthonormal basis E ⊂ H
we estimate∑

ξ∈E

〈|axb|ξ, ξ〉 =
∑
ξ∈E

〈w∗av|x|bξ, ξ〉 =
∑
ξ∈E

〈
|x|1/2bξ, |x|1/2v∗a∗wξ

〉
≤
∑
ξ∈E

‖|x|1/2bξ‖‖|x|1/2v∗a∗wξ‖,

by the Cauchy–Schwarz inequality. Using the Cauchy–Schwarz inequality on `2(E) followed by Exercise 3.1.10
we can continue our estimate with

∑
ξ∈E

〈|axb|ξ, ξ〉 ≤

∑
ξ∈E

‖|x|1/2bξ‖2
1/2∑

ξ∈E

‖|x|1/2v∗a∗wξ‖2
1/2

≤
(
‖x‖1‖v∗a∗w‖2

)1/2 (‖x‖1‖b‖2)1/2 .
Since v and w are partial isometries, we have ‖v∗a∗w‖ ≤ ‖v∗‖‖a∗‖‖w‖ ≤ ‖a∗‖ = ‖a‖. Hence the above
estimate yields ‖axb‖1 ≤ ‖a‖‖x‖1‖b‖.

For the final claim, any a ∈ B(H) can be written as a linear combination of four unitaries by Exercise 3.1.7.
Thus it suffices show Tr(ux) = Tr(xu) for a unitary u ∈ B(H). In this case we have

Tr(ux) =
∑
ξ∈E

〈uxξ, ξ〉 =
∑
ξ∈E

〈xξ, u∗ξ〉 =
∑
ξ∈E

〈xuu∗ξ, u∗ξ〉 =
∑
ξ∈E

〈(xu)u∗ξ, u∗ξ〉 .

Noting that {u∗ξ : ξ ∈ E} is an orthonormal basis, we see that the above equals Tr(xu) since the trace is
independent of the choice of orthonormal basis.

Theorem 3.1.8. The map ‖ · ‖1 is a norm on L1(B(H)) that makes it into a Banach space. The finite rank
operators FR(H) are dense in L1(B(H)) with respect this norm, and ‖x‖ ≤ ‖x‖1 for all x ∈ L1(B(H)).

Proof. To show that ‖·‖1 is a norm, it suffices to show it satisfies the triangle inequality. For x, y ∈ L1(B(H))
let x+y = w|x+y| be the polar decomposition. Then |x+y| = w∗(x+y) = w∗x+w∗y, and by Theorem 3.1.7
we have

Tr(|x+ y|) = Tr(w∗x+ w∗y) ≤ |Tr(w∗x)|+ |Tr(w∗y)| ≤ ‖w∗‖‖x‖1 + ‖w∗‖‖y‖1 ≤ ‖x‖1 + ‖y‖1,

where the last inequality follows from the fact that w is a partial isometry. This shows that x+y ∈ L1(B(H))
with ‖x+ y‖1 ≤ ‖x‖1 + ‖y‖1, and so ‖ · ‖1 is a norm on L1(B(H)).

We next show that ‖ · ‖1 dominates the operator norm. For x ∈ L1(BH)), since ‖xξ‖ = ‖|x|ξ‖ for all
ξ ∈ H and |x| is positive, we have

‖x‖ = ‖|x|‖ = sup
‖ξ‖=1

〈|x|ξ, ξ〉 .
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Let ε > 0 and let ξ0 ∈ H be a unit vector such that 〈|x|ξ0, ξ0〉 ≥ ‖x‖− ε. Let E ⊂ H be an orthornomal basis
with ξ0 ∈ E . Then

‖x‖1 = Tr(|x|) =
∑
ξ∈E

〈|x|ξ, ξ〉 ≥ 〈|x|ξ0, ξ0〉 ≥ ‖x‖ − ε.

Letting ε tend to zero yields ‖x‖ ≤ ‖x‖1.
Now we will show that FR(H) is dense in L1(B(H)). Fix x ∈ L1(B(H)) and an orthonormal basis

E ⊂ H, and let ε > 0. Since ‖x‖1 <∞, we can find a finite subset F ⊂ E so that∑
ξ∈E\F

〈|x|ξ, ξ〉 < ε.

Let p ∈ FR(H) be the projection onto spanF . Then xp ∈ FR(H) and if x = v|x| and x − xp = w|x − xp|
are the polar decompositions then we have

|x− xp| = w∗(x− xp) = w∗x(1− p) = w∗v|x|(1− p).

Thus we estimate

‖x− xp‖1 =
∑
ξ∈E

〈|x− xp|ξ, ξ〉 =
∑
ξ∈E\F

〈w∗v|x|ξ, ξ〉 =
∑
ξ∈E\F

〈
|x|1/2ξ, |x|1/2v∗wξ

〉

≤
∑
ξ∈E\F

‖|x|1/2ξ‖‖|x|1/2v∗wξ‖ ≤

 ∑
ξ∈E\F

‖|x|1/2ξ‖2
1/2 ∑

ξ∈E\F

‖|x|1/2v∗wξ‖2
1/2

.

Observe that by our choice of F the first factor in the last expression satisfies ∑
ξ∈E\F

‖|x|1/2ξ‖2
1/2

=

 ∑
ξ∈E\F

〈|x|ξ, ξ〉

1/2

< ε1/2.

While the second factor we can estimate using Exercise 3.1.10: ∑
ξ∈E\F

‖|x|1/2v∗wξ‖2
1/2

≤

∑
ξ∈E

‖|x|1/2v∗wξ‖2
1/2

≤ (‖x‖1‖v∗w‖)1/2 ≤ ‖x‖1/21 .

Putting this together yields ‖x− xp‖1 ≤ ε1/2‖x‖1/21 . Hence FR(H) is dense in L1(B(H)).
Finally, to see that L1(B(H)) is a Banach space (i.e. complete) suppose (xn)n∈N ⊂ L1(B(H)) is a Cauchy

sequence with respect to the ‖ · ‖1 norm. Since ‖xn − xm‖ ≤ ‖xn − xm‖1, this sequence is Cauchy with
respect to the operator norm and so it converges in operator norm to some x ∈ B(H). Let x = v|x| be
the polar decomposition and note that |x| = v∗x is the norm limit of (v∗xn)n∈N. This in conjunction with
Lemma 3.1.4 yields for any ξ ∈ H

〈|x|ξ, ξ〉 = lim
n→∞

| 〈v∗xnξ, ξ〉 | ≤ lim sup
n→∞

〈
1

2
(|v∗xn|+ |x∗nv|)ξ, ξ

〉
.

So if E ⊂ H is an orthonormal basis, then for any finite subset F ⊂ E we have∑
ξ∈F

〈|x|ξ, ξ〉 ≤
∑
ξ∈F

lim sup
n→∞

〈
1

2
(|v∗xn|ξ + |x∗nv|)ξ, ξ

〉
= lim sup

n→∞

1

2

∑
ξ∈F

〈|v∗xn|ξ, ξ〉+
1

2

∑
ξ∈F

〈|x∗nv|ξ, ξ〉

Now, Proposition 3.1.5 and Theorem 3.1.7 imply v∗xn, x
∗
nv ∈ L1(B(H)) with ‖v∗xn‖1 ≤ ‖xn‖1 and ‖x∗nv‖1 ≤

‖x∗n‖1 = ‖xn‖1. This implies we can continue our above estimate with∑
ξ∈F

〈|x|ξ, ξ〉 ≤ lim sup
n→∞

‖xn‖1,
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and this last expression is finite since (xn)n∈N is Cauchy with respect to the ‖ · ‖1 norm. Since F ⊂ E was
an arbitrary finite subset, we obtain

‖x‖1 ≤ lim sup
n→∞

‖xn‖1 <∞.

Thus x ∈ L1(B(H)). Now, let ε > 0 and let N ∈ N be such that ‖xn − xm‖ < ε for all n,m ≥ N . Since
x− xN ∈ L1(B(H)) we can find a finite subset F ⊂ E so that

‖x− xN‖1 ≤
∑
ξ∈F

〈|x− xN |ξ, ξ〉+ ε =
∑
ξ∈F

| 〈(x− xN )ξ, vξ〉 |+ ε,

where x − xN = v|x − xN | is the polar decomposition. Recalling that x is the norm limit of (xn)n∈N, let
n ≥ N be large enough so that ‖x− xn‖ < ε

|F | . Note that this implies∑
ξ∈F

| 〈(x− xn)ξ, vξ〉 | ≤
∑
ξ∈F

‖(x− xn)ξ‖‖vξ‖ <
∑
ξ∈F

ε

|F |
‖ξ2 = ε.

So we have

‖x− xN‖1 ≤
∑
ξ∈F

| 〈(x− xN )ξ, vξ〉 |+ ε ≤
∑
ξ∈F

| 〈(x− xn)ξ, vξ〉 |+ | 〈(xn − xN )ξ, vξ〉 |+ ε

≤
∑
ξ∈F

| 〈v∗(xn − xN )ξ, ξ〉 |+ 2ε ≤
∑
ξ∈F

〈
1

2
(|v∗(xn − xN )|+ |(xn − xN )∗v|)ξ, ξ

〉
+ 2ε

≤ 1

2
‖v∗(xn − xN )‖1 +

1

2
‖(xn − xN )∗v‖1 + 2ε ≤ ‖xn − xN‖1 + 2ε < 3ε.

Thus (xn)n∈N also converges to x in the ‖ · ‖1 norm, and so L1(B(H)) is complete.

For x ∈ L1(B(H)), the density of FR(H) implies the existence of a sequence (xn)n∈N ⊂ FR(H) such
that ‖x − xn‖1 → 0. Since ‖x − xn‖ ≤ ‖x − xn‖1, this sequence also converges to x in the operator norm.
Since operator norm limits of finite-rank operators are compact operators, we obtain x ∈ K(H). This yields
the following corollary:

Corollary 3.1.9. L1(B(H)) ⊂ K(H).

Theorem 3.1.7 implies that for any x ∈ L1(B(H)) and y ∈ B(H) we have

|Tr(xy)| ≤ ‖x‖1‖y‖.

This shows simultaneously that x 7→ Tr(xy) and y 7→ Tr(yx) are bounded linear functionals on L1(B(H))
and B(H), respectively, with norms at most ‖y‖ and ‖x‖1, respectively. From this we will deduce two
important facts. The first is that the dual of L1(B(H)) as a Banach space with norm ‖ · ‖1 is B(H). The
second, which will show in the next theorem, is that L1(B(H)) is itself the dual of K(H) as a Banach space
with the operator norm. You should compare this with c0(N)∗ = `1(N). Since dual spaces of Banach spaces
are always Banach spaces (see [Exercise 2.5, GOALS Prerequisite Notes]), this gives another proof—albeit
an indirect one—that L1(B(H)) is a Banach space.

Theorem 3.1.10. For x ∈ L1(B(H)), define ψx : K(H)→ C by ψx(y) = Tr(xy). Then the map

L1(B(H))→ K(H)∗

x 7→ ψx

is an isometric isomorphism.
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Proof. Fix x ∈ L1(B(H)). The discussion preceding the statement of the theorem implies ψx ∈ K(H)∗ with
‖ψx‖ ≤ ‖x‖1. Conversely, let x = v|x| be the polar decomposition and let E ⊂ H be an orthonormal basis.
Let ε > 0 and let F ⊂ E be a finite subset such that

‖x‖1 ≤
∑
ξ∈F

〈|x|ξ, ξ〉+ ε.

Let p ∈ FR(H) be the projection onto spanF . Then pv∗ ∈ FR(H) ⊂ K(H) and

‖x‖1 − ε =
∑
ξ∈F

〈|x|ξ, ξ〉 =
∑
ξ∈E

〈v∗xξ, pξ〉 = |Tr(pv∗x)| = |Tr(xpv∗)| ≤ ‖ψx‖‖pv∗‖ ≤ ‖ψx‖.

Thus ‖x‖1 = ‖ψx‖. It remains to show that x 7→ ψx is surjective.
Let ψ ∈ K(H)∗. Then for any ξ, η ∈ H we have

|ψ(ξ ⊗ η̄)| ≤ ‖ψ‖‖ξ ⊗ η̄‖ ≤ ‖ψ‖‖ξ‖‖η‖,

where the last inequality follows from [Exercise 7.49, Day 1 Lectures]. Thus (ξ, η) 7→ ψ(ξ ⊗ η̄) is a bounded
sesquilinear form, and so

ψ(ξ ⊗ η̄) = 〈xξ, η〉 ∀ξ, η ∈ H.

for some x ∈ B(H) by Lemma 2.1.2. If x = v|x| is the polar decomposition, then for any finite subset F ⊂ E
define

aF :=
∑
ξ∈F

ξ ⊗ vξ ∈ FR(H).

Note that aF = pv∗ where p is the projection onto spanF , and consequently ‖aF ‖ ≤ ‖p‖‖v∗‖ ≤ 1. We then
have ∑

ξ∈F

〈|x|ξ, ξ〉 =
∑
ξ∈F

〈xξ, vξ〉 =
∑
ξ∈F

ψ(ξ ⊗ vξ) = ψ(aF ) ≤ ‖ψ‖‖aF ‖ ≤ ‖ψ‖.

Consequently, x ∈ L1(B(H)) with ‖x‖1 ≤ ‖ψ‖. We claim that ψx = ψ. Since they are both bounded
linear functionals on K(H), it suffices to show they agree on the dense subspace FR(H). Given a ∈ FR(H),
[Theorem 7.10, Day 1 Lectures] we can find ξ1, . . . , ξn, η1, . . . , ηn ∈ H so that

a =

n∑
j=1

ξj ⊗ ηj .

Then

ψ(a) =

n∑
j=1

ψ(ξj ⊗ ηj) =

n∑
j=1

〈xξj , ηj〉 ,

while using Exercise 3.1.8 we have

ψx(a) =

n∑
j=1

Tr(x(ξj ⊗ ηj))
n∑
j=1

Tr((xξj)⊗ ηj) =

n∑
j=1

〈xξj , ηj〉 .

Thus ψ = ψx and so x 7→ ψx is surjective.

Remark 3.1.11. As indicated by the discussion preceding Theorem 3.1.10, for x ∈ L1(B(H)) the linear
functional ψx naturally extends to a linear functional Ψx : B(H) → C. Moreover, the same argument as
in Theorem 3.1.10 shows ‖Ψx‖ = ‖x‖1. Hence x 7→ Ψx is an isometric embedding of L1(B(H)) in B(H)∗.
However, this mapping is not surjective. Morally, the reason is because FR(H) is not operator norm dense
in B(H) like it is in K(H), and we showed surjectivity by analyzing these functionals only on FR(H). The
technical reason for the lack of surjectivity follows from some facts about Banach spaces: since K(H) is
not dense in B(H) (assuming H is infinite dimensional) the Hahn–Banach Theorem implies the existence
of a non-trivial φ ∈ B(H)∗ with φ|K(H) ≡ 0. We cannot have φ = Ψx for any x ∈ L1(B(H)) because
Ψx|K(H) = ψx being identically zero implies x = 0 which in turn implies Ψx ≡ 0.
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We conclude this section by showing that B(H) is the dual of L1(B(H)).

Theorem 3.1.12. For y ∈ B(H), define φy : L1(B(H))→ C by φy(x) = Tr(xy). Then the map

B(H) 7→ L1(B(H))∗

y 7→ φy

is an isometric isomorphism.

Proof. Fix y ∈ B(H). The discussion preceding Theorem 3.1.10 implies φy ∈ L1(B(H))∗ with ‖φy‖ ≤ ‖y‖.
Conversely, recall that

‖y‖ = ‖|y|‖ = sup
‖ξ‖=1

〈|y|ξ, ξ〉 .

Let ε > 0 and let ξ ∈ H be a unit vector satisfying

‖y‖ ≤ 〈|y|ξ, ξ〉+ ε.

Note that ξ ⊗ ξ̄ is a rank 1 projection and so ‖ξ ⊗ ξ̄‖1 = 1 by [Example 7.21, Day 1 Lectures]. We therefore
have

‖y‖ − ε ≤ 〈|y|ξ, ξ〉 = | 〈yξ, vξ〉 | = |Tr((yξ)⊗ vξ)| = |Tr(y(ξ ⊗ ξ̄)v∗)| = |Tr((ξ ⊗ ξ̄)v∗y)|
= |φy((ξ ⊗ ξ̄)v∗)| ≤ ‖φy‖‖(ξ ⊗ ξ̄)v∗‖1 ≤ ‖φy‖‖ξ ⊗ ξ̄‖1‖v∗‖ ≤ ‖φy‖.

Thus ‖y‖ = ‖φy‖. It remains to show that y 7→ φy is surjective.
Let φ ∈ L1(B(H)). Then for any ξ, η ∈ H we have

|φ(ξ ⊗ η̄)| ≤ ‖φ‖‖ξ ⊗ η̄‖1 ≤ ‖φ‖‖ξ‖‖η‖,

where the last inequality follows from Exercise 3.1.8. Thus (ξ, η) 7→ φ(ξ⊗ η̄) is a bounded sesquilinear form,
and so

φ(ξ ⊗ η̄) = 〈yξ, η〉 ∀ξ, η ∈ H

for some y ∈ B(H) by Lemma 2.1.2. Proceeding exactly as in Theorem 3.1.10 we can show φ and φy agree
on finite-rank operators, which are dense in L1(B(H)). Thus φ = φy and the map y 7→ φy is surjective.
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Exercises

3.1.1. Let x ∈ B(H).

(a) Show that
‖|x|ξ‖ = ‖xξ‖ ∀ξ ∈ H.

(b) Show that ker(|x|) = ker(x) and ran(|x|) = ran(x∗).

3.1.2. Find the polar decomposition for x ∈ B(H) when:

(a) x is positive;

(b) x is a partial isometry;

(c) x is a projection.

3.1.3. Find the polar decomposition for z1 0
. . .

0 zn

 ∈Mn(C).

3.1.4. Let {pi : i ∈ I} ⊂ B(H) be an orthogonal family of projections and let {zi : i ∈ I} ⊂ C be a bounded
subset. Show

∑
i zipi defines a bounded operator on H and find its polar decomposition.

3.1.5. Show that if x ∈ B(H) is self-adjoint with polar decomposition x = v|x|, then v is self-adjoint.

3.1.6. Let x ∈ L1(B(H)) with polar decomposition x = v|x|. Verify the identity

x = v|x| = 1

4

3∑
k=0

ik(v + ik)|x|(v + ik)∗,

by expanding the right-hand side.

3.1.7. Let M ⊂ B(H) be a von Neumann algebra.

(a) For x ∈M self-adjoint with ‖x‖ ≤ 1, show that

u := x+ i
√

1− x2

is a unitary operator in M .

(b) Show that x = 1
2 (u+ u∗).

(c) Show that element of M can be written as a linear combination of four unitaries in M .

3.1.8. Show that FR(H) ⊂ L1(B(H)) and that Tr(ξ ⊗ η) = 〈ξ, η〉 and ‖ξ ⊗ η‖1 ≤ ‖ξ‖‖η‖ for ξ, η ∈ H.

3.1.9. Let p ∈ FR(H) be a rank n projection. Show that Tr(p) = n.

3.1.10. For x ∈ L1(B(H)), a ∈ B(H), and any orthonormal basis E ⊂ H we have∑
ξ∈E

‖|x|1/2aξ‖2 ≤ ‖x‖1‖a‖2.

3.1.11. Let (ξn)n∈N, (ηn)n∈N ⊂ H be sequences such that
∑
n ‖ξn‖2,

∑
n ‖ηn‖2 <∞. Show that the series∑

n∈N
ξn ⊗ η̄n

converges (in the ‖ · ‖1 norm) to an element of L1(B(H)) with

Tr

(∑
n∈N

ξn ⊗ η̄n

)
=
∑
n∈N
〈ξn, ηn〉 .
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3.2 The σ-Topologies

Unless explicitly stated otherwise, the weak* topology on B(H) will from now on mean the topology induced
by the duality B(H) = L1(B(H))∗ established in Theorem 3.1.12. In this section we will analyze the weak*
topology on B(H). In particular, we will produce alternate characterizations of the weak* topology that
are more readily generalized to arbitrary von Neumann algebras. Let us begin by showing that weak*
convergence implies WOT convergence.

Suppose (xi)i∈I ⊂ B(H) is a net converging weak* to some x ∈ B(H). For ξ, η ∈ H, we have ξ ⊗ η̄ ∈
FR(H) ⊂ L1(B(H)) and using Exercise 3.1.8 we have

〈xiξ, η〉 = Tr((xiξ)⊗ η̄) = Tr(xi(ξ ⊗ η̄))→ Tr(x(ξ ⊗ η̄)) = 〈xξ, η〉 .

Thus (xi)i∈I also converges to x in the WOT. However, it is not true that WOT convergence implies weak*
convergence as the following example demonstrates.

Example 3.2.1. Let {en : n ∈ N} ⊂ H be an orthonormal set, and for m ≤ n define

xm,n := em ⊗ ēm +m2en ⊗ ēn.

Observe that {(m,n) : m,n ∈ N, m ≤ n} is a directed set under the following ordering: (m,n) ≤ (m′, n′) if
and only if m ≤ m′ and n ≤ n′ (Exercise: check this), and so (xm,n)m≤n gives a net in B(H). This net
converges to zero in the WOT (Exercise 3.2.1), but does not converge to zero in the weak* topology. To see
this we will construct a particular trace class operator which witnesses this lack of convergence. Since∑

n∈N
‖ 1

n
en‖2 =

∑
n∈N

1

n2
<∞,

Exercise 3.1.11 implies

a :=
∑
n∈N

(
1

n
en)⊗ (

1

n
en) =

∑
n∈N

1

n2
en ⊗ ēn ∈ L1(B(H)).

Moreover, the same exercise tells us that for any bounded operator x ∈ B(H) we have
∑

1
n2 (xen) ⊗ ēn ∈

L1(B(H)) with

Tr

(∑
n∈N

1

n2
(xen)⊗ ēn

)
=
∑
n∈N

1

n2
〈xen, en〉 .

In particular, we compute

Tr(xm,na) =
∑
k∈N

1

k2
〈xm,nek, ek〉 =

∑
k∈N

1

k2

〈
〈ek, em〉 em +m2 〈ek, en〉 en, ek

〉
=

1

m2
+
m2

n2
.

Thus Tr(xm,na) cannot converge to zero because for any m ≤ n, we have (m,n) ≤ (n, n) and Tr(xn,na) =
1
n2 + 1 ≥ 1. �

The key idea in the previous example was to use the fact that weak* convergence implies a stronger
variation of WOT convergence: if a net (xi)i∈I ⊂ B(H) converges weak* to some x ∈ B(H) then for any
sequences (ξn)n∈N, (ηn)n∈N ⊂ H satisfying

∑
n ‖ξn‖2,

∑
n ‖ηn‖2 <∞ we have (using Exercise 3.1.11)

∑
n∈N
〈xiξn, ηn〉 = Tr

(∑
n∈N

(xiξn)⊗ η̄n

)
= Tr

(
xi
∑
n∈N

ξn ⊗ η̄n

)
→ Tr

(
x
∑
n∈N

ξn ⊗ η̄n

)
=
∑
n∈N
〈xξn, ηn〉 .

This compels us to define another topology on B(H) with this mode of convergence. There is also a similarly
strengthened version of SOT convergence and a corresponding topology which we will define at the same.
Note that the sequences of vectors (xin)n∈N and (ηn)n∈N are really elements of the Hilbert space `2(N,H)
(see [Section 1.3, GOALS Prerequisite Notes]).
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Definition 3.2.2. The σ-strong operator topology (σ-SOT) on B(H) is the topology generated by the
basis consisting of sets of the form

U
(
x; (ξ(1)

n )n∈N, . . . , (ξ
(d)
n )n∈N; ε

)
:=

y ∈ B(H) :

(∑
n∈N
‖(x− y)ξ(j)

n ‖2
) 1

2

< ε, j = 1, . . . , d

 ,

for x ∈ B(H), (ξ
(1)
n )n∈N, . . . , (ξ

(d)
n )n∈N ∈ `2(N,H), and ε > 0.

The σ-weak operator topology (σ-WOT) on B(H) is the topology generated by the basis consisting
of sets of the form

U
(
x; (ξ(1)

n )n∈N, . . . , (ξ
(d)
n )n∈N; (η(1)

n )n∈N, . . . , (η
(d)
n )n∈N; ε

)
:=

{
y ∈ B(H) :

∣∣∣∣∣∑
n∈N

〈
(x− y)ξ(j)

n , η(j)
n

〉∣∣∣∣∣ < ε, j = 1, . . . , d

}
,

for x ∈ B(H), (ξ
(1)
n )n∈N, . . . , (ξ

(d)
n )n∈N, (η

(1)
n )n∈N, . . . , (η

(d)
n )n∈N ∈ `2(N,H), and ε > 0.

As with the SOT and WOT, the formal definitions above are not as important to understand as what it
means for nets of operators to converge in these topologies: a net (xi)i∈I ⊂ B(H) converges to x ∈ B(H) in
the σ-SOT if and only if

lim
i→∞

∑
n→∞

‖(x− xi)ξn‖2 = 0 ∀(ξn)n∈N ∈ `2(N,H),

and (xi)i∈I converges to x in the σ-WOT if and only if

lim
i→∞

∑
n→∞

〈(x− xi)ξ, η〉 = 0 ∀(ξn)n∈N, (ηn)n∈N ∈ `2(N,H).

Operator norm convergence implies σ-SOT convergence, which in turn implies σ-WOT convergence, and
both of the σ-convergences imply their non-σ counterparts (see Exercise 3.2.2). In general it is not true that
SOT (resp. WOT) convergence implies σ-SOT (resp. σ-WOT) convergence. Indeed, the net (xm,n)m≤n in
Example 3.2.1 converges in the WOT but not the σ-WOT. In fact, the same net converges to zero in the
SOT but not the σ-SOT. However, if a net is uniformly bounded then SOT (resp. WOT) convergence is
equivalent to σ-SOT (resp. σ-WOT) convergence (see Exercise 3.2.4).

Also note that because σ-SOT convergence and σ-WOT convergence implies SOT and WOT convergence,
respectively, any SOT (resp. WOT) closed subset of B(H) is σ-SOT (resp. σ-WOT). closed. In particular,
von Neumann algebras are both σ-SOT and σ-WOT closed.

Remark 3.2.3. Equipping B(H) with the SOT, WOT, σ-SOT, or σ-WOT makes it into a locally convex
space. This means the topology is determined by a family of seminorms p : B(H) → [0,∞), rather than a
single norm like the operator norm topology. The σ-WOT, for example, is determined by seminorms of the
form

p(x) =

∣∣∣∣∣∑
n∈N
〈(x− x0)ξn, ηn〉

∣∣∣∣∣
for x0 ∈ B(H), (ξn)n∈N, (ηn)n∈N ∈ `2(N,H). Note that in the notation of Definition 3.2.2 we have

U(x0; (ξn)n∈N; (ηn)n∈N; ε) := {x ∈ B(H) : p(x) < ε},

and this set is convex since p is a seminorm. As you might guess, locally convex spaces are named for having
an abundance of open convex subsets, and have a robust theory in functional analysis. We will not require
the full force of this theory in our mini-courses, but we will note that the Hahn–Banach Separation Theorem
(see [Theorem 4.7, GOALS Prerequisite Notes]) is applies in this greater generality: if B(H) is equipped
with a topology T ∈ {SOT, WOT, σ-SOT, σ-WOT} and X,Y ⊂ B(H) are disjoint closed convex sets with
Y compact, then there exists a continuous linear functional ϕ : B(H)→ C, t ∈ R, and ε > 0 such that

Re ϕ(x) < t < t+ ε < Re ϕ(y) ∀x ∈ X, y ∈ Y.
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(Note that closed, compact, and continuous in the above statement all mean with respect to the chosen
topology T .)

From the discussion preceding Definition 3.2.2, we see that weak* convergence implies σ-WOT conver-
gence. It turns out, as we shall see below, that the converse holds; that is, the weak* topology equals the
σ-WOT. We first require a lemma.

Lemma 3.2.4. Let a ∈ L1(B(H)). Then there exists (ξn)n∈N, (ηn)n∈N ∈ `2(N,H) satisfying

Tr(xa) =
∑
n∈N
〈xξn, ηn〉 ∀x ∈ B(H).

Proof. Let a = v|a| be the polar decomposition of a and let E ⊂ H be an orthonormal basis for H. Then
Exercise 3.1.10 implies ∑

ζ∈E

‖v|a|1/2ζ‖2,
∑
ζ∈E

‖|a|1/2ζ‖2 ≤ ‖a‖1.

Consequently, there are at most countably many ζ ∈ E such that both ‖v|a|1/2ζ‖ 6= 0 and ‖|a|1/2ζ‖ 6= 0.
Enumerate them as {ζn : n ∈ N} and set ξn := v|a|1/2ξn and ηn := |a|1/2ζn. The above inequalities imply
(ξn)n∈N, (ηn)n∈N ∈ `2(N,H), and for any x ∈ B(H) we have

Tr(xa) = Tr(xv|a|) = Tr(|a|1/2xv|a|1/2)

=
∑
ζ∈E

〈
|a|1/2xv|a|1/2ζ, ζ

〉
=
∑
n∈N

〈
xv|a|1/2ζn, |a|1/2ζn

〉
=
∑
n∈N
〈xξn, ηn〉 ,

as claimed.

Theorem 3.2.5. The weak* topology on B(H) ∼= L1(B(H))∗ equals the σ-weak operator topology.

Proof. To show two topologies are equal, we need to show they have the same open sets. By taking com-
plements, this is equivalent to showing they have the same closed sets. Since being closed is characterized
by containing the limits of convergent nets, it suffices to show weak* convergence is equivalent to σ-WOT
convergence. Let (xi)i∈I ⊂ B(H) be a net and let x ∈ B(H). We have already seen that (xi)i∈I converging
weak* to x implies it converges in the σ-WOT. Conversely, suppose the net conveges to x in the σ-WOT.
Then previous lemma implies Tr(xia) → Tr(xa) for all a ∈ L1(B(H)). Hence the net also converges weak*
to x.

Recall that the Banach–Alaoglu Theorem says the closed unit ball of the dual of a Banach space is weak*
compact. Thus we obtain the following as an immediate corollary.

Corollary 3.2.6. The closed unit ball of B(H) is σ-WOT compact.

We will conclude this section by analyzing σ-SOT and σ-WOT continuous linear functionals. It will be
helpful to first understand SOT and WOT continuous linear functionals.

Lemma 3.2.7. Let ϕ : B(H)→ C be a linear functional. Then the following are equivalent:

(i) ϕ is SOT continuous.

(ii) ϕ is WOT continuous.

(iii) There exists ξ1, . . . , ξn, η1, . . . , ηn ∈ H so that ϕ(x) =
∑n
i=1 〈xξi, ηi〉.

(iv) There exists a ∈ FR(H) so that ϕ(x) = Tr(xa).

Proof. (iii)⇔ (iv) follows from Exercise 3.1.8 and [Theorem 7.10, Day 1 Lectures]. (iii)⇒ (ii) is immediate,
and (ii)⇒ (i) follows from the fact that SOT convergence implies WOT convergence. So it suffices to prove
(i)⇒ (iii).
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Suppose ϕ is SOT continuous. Let D be the open unit disc in C. Then ϕ−1(D) contains an SOT open
neighborhood of the zero operator. Consequently there exists ε > 0 and ξ1, . . . , ξn ∈ H so that ϕ(x) ∈ D
whenever ‖xξi‖ ≤ ε for each j = 1, . . . , n. Consequently, ϕ(x) ∈ D holds whenever(

n∑
i=1

‖xξi‖2
)1/2

≤ ε.

Thus ∣∣∣∣∣ϕ
(

εx

(
∑n
i=1 ‖xξi‖2)

1/2

)∣∣∣∣∣ < 1 ∀x ∈ B(H).

The linearity of ϕ then implies

|ϕ(x)| ≤ 1

ε

(
n∑
i=1

‖xξi‖2
)1/2

∀x ∈ B(H).

It follows that
(xξ1, . . . , xξn) 7→ ϕ(x).

is a well-defined, bounded map on the closure of {(xξ1, . . . , xξn) ∈ H⊕n : x ∈ B(H)}. Thus there exists
(η1, . . . , ηn) ∈ H⊕n such that

ϕ(x) = 〈(xξ1, . . . , xξn), (η1, . . . , ηn)〉 =

n∑
i=1

〈xξi, ηi〉

for all x ∈ B(H) (see [Theorem 1.35, GOALS Prerequisite Notes]).

The previous lemma implies that the finite-rank operators are the dual of B(H) equipped with either the
SOT or WOT. This is one reason why the SOT and WOT are not sufficient for a comprehensive study of
von Neumann algebras. We also have:

Corollary 3.2.8. For K ⊂ B(H) convex, the SOT and WOT closures coincide.

Proof. K
SOT ⊂ KWOT

holds for any set, not to mention convex ones, since SOT convergence implies WOT

convergence. Suppose, towards a contradiction, that there exists y ∈ KWOT \KSOT
. In the SOT, K

SOT
and

{y} are disjoint closed convex sets with {y} compact. Remark 3.2.3 implies that there is SOT continuous
linear functional ϕ : B(H)→ C, t ∈ R, and ε > 0 such that

Re ϕ(x) < t < t+ ε < Re ϕ(y) ∀x ∈ KSOT
.

Lemma 3.2.7 tells us that ϕ is also WOT continuous and so S := {x ∈ B(H) : Re ϕ(x) ≤ t} is a WOT closed

subset. Since K ⊂ S, we must have K
WOT ⊂ S, but this contradicts Re ϕ(y) > t. Thus we must have

K
SOT

= K
WOT

.

Theorem 3.2.9. Let ϕ : B(H)→ C be a linear functional. Then the following are equivalent:

(i) ϕ is σ-SOT continuous.

(ii) ϕ is σ-WOT continuous.

(iii) There exists (ξn)n∈N, (ηn)n∈N ∈ `2(N,H) so that ϕ(x) =
∑
n 〈xξn, ηn〉.

(iv) There exists a ∈ L1(B(H)) so that ϕ(x) = Tr(xa).
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Proof. (iii) ⇒ (ii) is immediate, and (ii) ⇒ (i) follows from the fact that σ-SOT convergence implies σ-
WOT convergence. (iv)⇒ (iii) follows from Lemma 3.2.4, and (iii)⇒ (iv) follows from Exercise 3.1.11. So
it suffices to prove (i)⇒ (iii).

Suppose ϕ is σ-SOT continuous. The map π : B(H)→ B(`2(N,H)) given by defining π(x) for x ∈ B(H)
by

π(x)(ξn)n∈N = (xξn)n∈N (ξn)n∈N ∈ `2(N,H),

is an isometric ∗-homomorphism, and (xi)i∈I ⊂ B(H) is σ-SOT convergent if and only if (π(x))i∈I ⊂
B(`2(N,H)) is SOT convergent (see Exercise 3.2.6). Thus if we define Φ: π(B(H)) → C by Φ := ϕ ◦ π−1,
then Φ is SOT continuous. Using the Hahn–Banach Theorem, we can find an SOT continuous extension

of Φ to all of B(`2(N,H)), which we also denote by Φ. Lemma 3.2.7 then yields (ξ
(1)
n )n∈N, . . . , (ξ

(d)
n )n∈N,

(η
(1)
n )n∈N, . . . , (η

(d)
n )n∈N ∈ `2(N,H) so that

Φ(X) =

d∑
j=1

〈
X(ξ(j)

n )n∈N, (η
(j)
n )n∈N

〉
X ∈ B(`2(N,H)).

In particular, for x ∈ B(H) we have

ϕ(x) = Φ(π(x)) =

d∑
j=1

〈
π(x)(ξ(j)

n )n∈N, (η
(j)
n )n∈N

〉
=

d∑
j=1

〈
(xξ(j)

n )n∈N, (η
(j)
n )n∈N

〉
=

d∑
j=1

∑
n∈N

〈
xξ(j)
n , η(j)

n

〉
.

Re-indexing {(ξ(j)
n , η

(j)
n ) : j = 1, . . . , d, n ∈ N} yields the desired sequences.

Note that a linear functional ϕ : B(H) → C satisfying any (hence all) of the above conditions is also
norm continuous and hence bounded. The corollary below follows mutatis mutandis from the proof of
Corollary 3.2.8.

Corollary 3.2.10. For K ⊂ B(H) convex, the σ-SOT and σ-WOT closures coincide.

With σ-topologies in hand, we conclude with the following important definition.

Definition 3.2.11. Let M ⊂ B(H) and N ⊂ B(K) be von Neumann algebras. We say a map π : M → N
is normal if it is σ-WOT continuous.

If ϕ : M → C is a normal linear functional, then it satisifies all of the equivalent conditions in Theo-
rem 3.2.9. In particular, it is σ-SOT continuous. If π : M → N is a normal ∗-homomorphism, then it is also
σ-SOT continuous. Indeed, if (xi)∈I ⊂M converges to zero in the σ-SOT, then (x∗i xi)i∈I converges to zero
in the σ-WOT by Exercise 3.2.3. Consequently (π(x∗i xi))i∈I = (π(xi)

∗π(xi))i∈I converges to zero in the
σ-WOT by normality and invoking Exercise 3.2.3 again implies (π(xi))i∈I converges to zero in the σ-SOT.

We will see a partial justification for why we call such maps normal in the next section, where it will
be shown that the collection of normal linear functionals on a von Neumann algebra plays the role of the
predual. The full justification (whose proof we must delay a little longer, see Theorem 4.2.8) is that if
π : M → N is a normal unital ∗-homomorphism, then π(M) is a von Neumann subalgebra of N . This tells
us that in the category of von Neumann algebras, the correct morphisms to use are unital ∗-homomorphisms.

Exercises

3.2.1. Show that the net (xm,n)m≤n in Example 3.2.1 converges to zero in the WOT. [Hint: use Theorem
1.22 in the Prerequisite Notes.]

3.2.2. Let (xi)i∈I ⊂ B(H) be a net and let x ∈ B(H). Consider the following statements:

(i) (xi)i∈I converges to x in operator norm.

(ii) (xi)i∈I converges to x in the σ-strong operator topology.

(iii) (xi)i∈I converges to x in the σ-weak operator topology.
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(iv) (xi)i∈I converges to x in the strong operator topology.

(v) (xi)i∈I converges to x in the weak operator topology.

Verify implications and non-implications in the following diagram:

(i) (ii)

(iii)

(iv)

(v)

3.2.3. Show that (xi)∈I ⊂ B(H) converges to x ∈ B(H) in the σ-strong operator topology if and only if
((x− xi)∗(x− xi))i∈I converges to zero in the σ-weak operator topology.

3.2.4. Suppose (xi)i∈I ⊂ B(H) is a uniformly bounded net: supi ‖xi‖ <∞.

(a) Show that (xi)i∈I converges in the σ-SOT if and only if it converges in the SOT.

(b) Show that (xi)i∈I converges in the σ-WOT if and only if it converges in the WOT.

3.2.5. Show that the net (xm,n)m≤n in Example 3.2.1 is not uniformly bounded.

3.2.6. For x ∈ B(H), define a linear operator π(x) on `2(N,H) by

π(x)(ξn)n∈N = (xξn)n∈N

(a) Show that π(x) ∈ B(`2(N,H)) with ‖π(x)‖ = ‖x‖ for all x ∈ B(H).

(b) Show that π : B(H)→ B(`2(N,H)) is a ∗-homomorphism.

(c) Show that U ⊂ B(H) is open in the σ-SOT (resp. σ-WOT) if and only if π(U) ⊂ B(`2(N,H)) is open
in the SOT (resp. WOT).

3.2.7. Show that a spatial isomorphism π : M → N is normal.

3.3 The Predual of a von Neumann Algebra

Let M ⊂ B(H) be a von Neumann algebra. Our goal in this section is to find a Banach space M∗ satisfying
(M∗)

∗ = M (i.e. the predual of M). Thanks to Theorem 3.1.12, we already know the answer for one case:
B(H)∗ = L1(B(H)). Starting with this fact, one is virtually guaranteed to stumble across the general answer
after citing enough Banach space facts. But in order to avoid feeling like we are wandering around in the
dark, we will first give a definition for the predual and check the desired properties afterwards. We can still
partially motivate our definition.

The pairing
B(H)× L1(H) 3 (x, a) 7→ Tr(xa)

allows us to identify B(H) with the dual of L1(B(H)). It also allows us to identify L1(B(H)) with a subspace
of the dual of B(H): L1(B(H)) 3 a 7→ Tr( · a). Indeed, from the proof of Theorem 3.1.10 we know this is an
isometric embedding. Moreover, Theorem 3.2.9 tells us the image of this embedding is precisely the σ-WOT
continuous linear functionals. Thus we make the following definition.

Definition 3.3.1. Let M ⊂ B(H) be a von Neumann algebra. We denote the set of all normal linear
functionals by M∗ and call this set the predual of M .

Note that a normal linear functional is also norm continuous and hence bounded; that is, M∗ ⊂M∗ and
moreover M∗ is a subspace (Exercise 3.3.1). We should also remark that it is not at all obvious from this
definition that the dual of M∗ is M . It is not even clear that M∗ is a Banach space, though it is a normed
space as a subspace of M∗. We will check all of these details below and begin with a lemma.
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Lemma 3.3.2. Let X ⊂ B(H) be a subspace. Then any σ-WOT continuous linear functional ϕ : X → C
has a σ-WOT continuous extension to B(H).

Proof. The set
U := {x ∈ X : |ϕ(x)| < 1}

is a σ-WOT open neighborhood of zero. Consequently, there are (ξ
(j)
n )n∈N, (η

(j)
n )n∈N ∈ `2(N,H), j = 1 . . . , d,

and ε > 0 so that {
x ∈ X :

∣∣∣∣∣∑
n∈N

〈
xξ(j)
n , η(j)

n

〉∣∣∣∣∣ < ε, j = 1, . . . , d

}
⊂ U.

Define a seminorm on B(H) by

p(x) :=
2

ε

d∑
j=1

∣∣∣∣∣∑
n∈N

〈
xξ(j)
n , η(j)

n

〉∣∣∣∣∣ .
Observe that {x ∈ X : p(x) ≤ 1} ⊂ U . It follows that |ϕ(x/p(x))| < 1 for all x ∈ X, or equivalently
|ϕ(x)| < p(x) for all x ∈ X. Thus we can apply the Hahn–Banach theorem to find an extension of ϕ
to B(H) (which we will continue to denote by ϕ) that satisfies |ϕ(x)| ≤ p(x) for all x ∈ B(H). This
extension is σ-WOT continuuous because if (xi)i∈I ⊂ B(H) converges to x ∈ B(H) in the σ-WOT, then
|ϕ(x)− ϕ(xi)| = |ϕ(xi − x)| ≤ p(xi − x)→ 0.

The above lemma in conjunction with Theorem 3.2.9 tells us that for any ϕ ∈ M∗, there exists a ∈
L1(B(H)) with φ = ψa|M , where ψa(x) = Tr(xa) for x ∈ M . Thus L1(B(H)) 3 a 7→ ψa|M is a surjection
onto M∗, and so if we can understand its kernel then we can identity M∗ with a quotient of L1(B(H)).
Suppose ψa|M ≡ 0 for some a ∈ L1(B(H)). This is equivalent to Tr(xa) = 0 for all x ∈M . Thus the kernel
of the map a 7→ ψa|M is the set

M⊥ := {a ∈ L1(B(H)) : Tr(xa) = 0 ∀x ∈M.}

This is a closed subspace of L1(B(H)) (Exercise 3.3.2), so we can consider the quotient Banach space
L1(B(H))/M⊥ with the norm given by:

‖a+M⊥‖1 := inf
b∈M⊥

‖a+ b‖1.

Observe that if a + M⊥ = b + M⊥ in L1(B(H))/M⊥, then a − b ∈ M⊥ and so Tr(x(a − b)) = 0 or
Tr(xa) = Tr(xb) for all x ∈ M . That is, ψa|M = ψb|M . Hence L1(B(H))/M⊥ 3 a + M⊥ 7→ ψa|M is a
well-defined map, and from the above discussion we know it is a surjection onto M∗. We will see below that
it is in fact an isometric isomorphism, but we first require a lemma.

Lemma 3.3.3. Let M ⊂ B(H) be a von Neumann algebra and consider the set

(M⊥)⊥ := {y ∈ B(H) : Tr(ya) = 0 ∀a ∈M⊥}.

Then (M⊥)⊥ = M .

Proof. We first note that M ⊂ (M⊥)⊥ by definition of M⊥. Suppose, towards a contradiction, that there
exists y ∈ (M⊥)⊥ \M . Then M and {y} are disjoint σ-WOT closed convex sets with {y} compact, and so
by Remark 3.2.3 there is a σ-WOT continuous linear functional ϕ : B(H)→ C, t ∈ R, and ε > 0 such that

Re ϕ(x) < t < t+ ε < Re ϕ(y) ∀x ∈ X.

Because ϕ is σ-WOT continuous, we know from Theorem 3.2.9 that ϕ = Tr( · b) for some b ∈ L1(B(H)). If
b ∈ M⊥, then Re ϕ(x) = 0 for all x ∈ M , but also Re ϕ(y) = 0 by definition of (M⊥)⊥, which contradicts
the above inequalities. If b 6∈ M⊥, then we can find x0 ∈ M so that ϕ(x0) 6= 0. Letting xn := n

ϕ(x0)x0 ∈ M
for each n ∈ N, we have ϕ(xn) = n. But then t > Re ϕ(xn) = n for all n ∈ N, another contradiction. So in
either case we have a contradiction, and so we must have (M⊥)⊥ = M .
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Theorem 3.3.4. Let M ⊂ B(H) be a von Neumann algebra. For a ∈ L1(B(H)), define ψa : B(H)→ C by
ψa(x) = Tr(xa). Then the map

L1(B(H))/M⊥ →M∗

a+M⊥ 7→ ψa|M

is an isometric isomorphism.

Proof. The discussion preceding the statement of the theorem implies this map is well-defined, valued in
M∗, and is a surjection. Also note that it is linear by virtue of the trace being linear. Thus it suffices to
show that this is an isometry.

Fix a ∈ L1(B(H)). For x ∈M we have

|ψa|M (x)| = |Tr(xa)| = inf
b∈M⊥

|Tr(x(a+ b)| ≤ inf
b∈M⊥

‖x‖‖a+ b‖1 = ‖x‖‖a+M⊥‖1.

Thus ‖ψa|M‖ ≤ ‖a + M⊥‖1. Showing the reverse inequality will take a bit more work. First note that if
‖a+M⊥‖1 = 0 then the previous inequality is automatically an equality, so we will assume ‖a+M⊥‖1 > 0.
In particular, this implies a 6∈M⊥. Now, since L1(B(H))∗ ∼= B(H), we can use the Hahn–Banach Theorem
to find a y ∈ B(H) with ‖y‖ = 1 satisfying Tr(ya) = ‖ψa‖ and Tr(yb) = 0 for all b ∈M⊥ (see Exercise 3.3.3).
This means y ∈ (M⊥)⊥ and so y ∈M by Lemma 3.3.3. Thus

ψa|M (y) = ψa(y) = Tr(ya) = ‖ψa‖ = ‖a‖1,

where the last equality follows from Theorem 3.1.10. Since ‖y‖ = 1, this shows that ‖ψa|M‖ ≥ |ψa(y)| =
‖a‖1 ≥ ‖a+M⊥‖1 and the proof is complete.

Observe that one consequence of the previous theorem is that M∗ is indeed a Banach space when equipped
with the norm it inherits from M∗ ⊂M∗. Our final task of this section is to show prove that M is the dual of
M∗. We will use the previous theorem to identify M∗ with L1(B(H))/M⊥ and establish (L1(B(H))/M⊥)∗ ∼=
M . This is actually a more generic result in Banach space theory (see Exercise 3.3.4), but we will only
present the details for our situation (and they do not differ greatly from the generic ones anyways).

Theorem 3.3.5. Let M ⊂ B(H) be a von Neumann algebra. For x ∈M , define x̂ : M∗ → C by x̂(ϕ) = ϕ(x).
Then the map

M → (M∗)
∗

x 7→ x̂

is an isometric isomorphism. Moreover, the weak* topology on M induced by M ∼= (M∗)
∗ is the σ-WOT.

Proof. Note that x 7→ x̂ is linear by virtue of the linearity of each ϕ ∈M∗. For x ∈M and ϕ ∈M∗ we have

|x̂(ϕ)| = |ϕ(x)| ≤ ‖ϕ‖‖x‖,

and so ‖x̂‖ ≤ ‖x‖. In particular, the map x 7→ x̂ is indeed valued in the dual of M∗. Fix x ∈ M and
let φx be as in Theorem 3.1.12. Recall that ‖φx‖ = ‖x‖, and so given ε > 0 we can find a ∈ L1(B(H))
with ‖a‖1 = 1 so that |φx(a)| ≥ ‖x‖ − ε. If we let ψa be as in Theorem 3.3.4, then ψa|M ∈ M∗ with
‖ψa|M‖ = ‖a+M⊥‖1 ≤ ‖a‖1 = 1. Thus

|x̂(ψa|M )|
‖ψa|M‖

≥ |x̂(ψa|M )| = |ψa(x)| = |Tr(xa)| = |φx(a)| ≥ ‖x‖ − ε.

So ‖x̂‖ ≥ ‖x‖ − ε, and letting ε tend to zero yields ‖x̂‖ = ‖x‖.
Next we will show x 7→ x̂ is a surjection. Fix µ ∈ (M∗)

∗. By identifying M∗ ∼= L1(B(H))/M⊥ as in
Theorem 3.3.4, we can view µ as a linear functional on the quotient Banach space L1(B(H))/M⊥. Let
Q : L1(B(H))→ L1(B(H))/M⊥ be the quotient map. Then µ ◦Q ∈ L1(B(H))∗ and so µ ◦Q = φy for some
y ∈ B(H) by Theorem 3.1.12. Note that for all a ∈M⊥ we have

Tr(ya) = φy(a) = µ ◦Q(a) = µ(0) = 0.
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Hence y ∈ (M⊥)⊥ = M by Lemma 3.3.3. Consequently, for all a ∈ L1(B(H)) we have

µ(a+M⊥) = µ ◦Q(a) = φy(a) = Tr(ya) = ψa|M (y) = ŷ(ψa|M ).

That is, µ = ŷ (up to the identification M∗ ∼= L1(B(H))/M⊥), and the map x 7→ x̂ is surjective.
Finally, we show that the weak* topology on M induced by M ∼= (M∗)

∗ is the σ-WOT. Suppose a
net (xi)i∈I ⊂ M converges to x ∈ M in this weak* topology. Then ϕ(xi) → ϕ(x) for all ϕ ∈ M∗. But
Lemma 3.3.2 implies each ϕ ∈ M∗ is the restriction to M of a σ-WOT continuous linear functional on
B(H), and hence is of the form ϕ = Tr( · a) for some a ∈ L1(B(H)) by Theorem 3.2.9. Consequently,
(xi)i∈I converges to x in the weak* topology on B(H), which is the σ-WOT by Theorem 3.2.5. Conversely,
if (xi)i∈I ⊂ M converges to x ∈ M in the σ-WOT, then ϕ(xi) → ϕ(x) for all ϕ ∈ M∗ by definition of
normality. Hence the net converges in the weak* topology on M .

Since the weak* topology on M is just the σ-WOT, we obtain the following corollary from the Banach–
Alaoglu Theorem.

Corollary 3.3.6. Let M ⊂ B(H) be a von Neumann algebra. Then the norm closed unit ball of M is
σ-WOT compact.

Remark 3.3.7. You might have noticed that we did not actually use the algebra structure of M at any
point in this section, just that it was a σ-WOT closed (equivalently weak* closed) subspace. Thus all of
the theorems we proved in this section hold when M is replaced by an arbitrary weak* closed subspace.
In fact, as mentioned at the beginning of the section, analogous theorems hold when L1(B(H)) and B(H)
are replaced with an arbitrary Banach space and its dual. You will explore this greater generality in the
exercises.

Exercises

3.3.1. Show that a linear combination of normal linear functionals is normal.

3.3.2. Let X be a Banach space with dual space X ∗. For Y ⊂ X define

Y ⊥ := {x∗ ∈ X ∗ : x∗(y) = 0 ∀y ∈ Y },

and for Y ∗ ⊂ X ∗ define
Y ∗⊥ := {x ∈ X : y∗(x) = 0 ∀y∗ ∈ Y ∗}.

(a) For Y ⊂ X , show that Y ⊥ is a weak* closed subspace.

(b) For Y ∗ ⊂ X ∗, show that Y ∗⊥ is weakly closed subspace.

(c) For a subspace Y ⊂ X , show that (Y ⊥)⊥ is the weak closure of Y .

(d) For a subspace Y ∗ ⊂ X ∗, show that (Y ∗⊥)⊥ is the weak* closure of Y ∗.

3.3.3. Let X be a Banach space, Y ⊂ X a closed subspace, and x0 ∈ X \ Y .

(a) Show that Z := span(Y ∪ {x0}) is closed.

(b) Show that Z/Y ∼= C.

(c) Find a ϕ ∈ Z∗ with ‖ϕ‖ = 1 satisfying ϕ(x0) = ‖x0‖ and ϕ|Y ≡ 0.

(d) Find a ϕ ∈ X ∗ with ‖ϕ‖ = 1 satisfying ϕ(x0) = ‖x0‖ and ϕ|Y ≡ 0.

3.3.4. Let X be a Banach space with Y ⊂ X a closed subspace.

(a) Show that X ∗/Y ⊥ 3 x∗ + Y ⊥ 7→ x∗|Y ∈ Y ∗ is an isometric isomorphism.

(b) Let Q : X → X/Y be the quotient map. Show that (X/Y )∗ 3 x∗ 7→ x∗ ◦ Q ∈ Y ⊥ is an isometric
isomorphism.

3.3.5. Show that a map π : M → N between two von Neumann algebras is normal if and only if ϕ ◦π ∈M∗
for all ϕ ∈ N∗.

40



3.4 The Kaplansky Density Theorem

Suppose A ⊂ B(H) is a unital ∗-algebra and M := A′′ is the von Neumann algebra generated by A. By the
Bicommutant Theorem, we know M is also the SOT closure of A and thus for any x ∈ M there is a net
(xi)i∈I ⊂ A which converges to x in the SOT. In this section, we show that the net (xi)i∈I can be chosen
so that ‖xi‖ ≤ ‖x‖ for all i ∈ I. This is a result due to Kaplansky, and although it may not seem like it at
first, it is the kind of result one uses every day and twice on Sundays. We begin with a pro.

Lemma 3.4.1. Let (xi)i∈I , (yi)i∈I ⊂ B(H) be nets (indexed by the same directed set I) that converge in
then SOT. If supi∈I ‖xi‖ <∞, then (xiyi)i∈I is SOT convergent.

Proof. Let x, y ∈ B(H) be the respective SOT limits of (xi)i∈I and (yi)i∈I , and set R := supi ‖xi‖. For
ξ ∈ H we have

‖xyξ − xiyiξ‖ ≤ ‖(x− xi)yξ‖+ ‖xi(y − yi)ξ‖ ≤ ‖(x− xi)yξ‖+R‖(y − yi)ξ‖ → 0.

Thus (xiyi)i∈I converges to xy in the SOT.

Proposition 3.4.2. If f ∈ C(C), then the map x 7→ f(x) on normal operators in B(H) is SOT continuous
on bounded subsets.

Proof. Let (xi)i∈I ⊂ B(H) be a net of uniformly bounded normal operators converging to x ∈ B(H) in the
SOT. Let R = supi ‖xi‖, and note that ‖x‖ ≤ lim supi ‖xi‖ ≤ R (see Exercise 1.1.2). The Stone–Weierstrass
theorem allows us to approximate f uniformly on {z ∈ C : |z| ≤ R} by a sequence polynomials (pn(z, z̄))n∈N.
Note that (x∗i )i∈I converges to x∗ in the SOT by Exercise 1.1.8, and since multiplication is SOT continuous
on bounded sets (see Exercise 1.1.10) it follows that for each n ∈ N the net (pn(xi, x

∗
i ))i∈I converges to

pn(x, x∗) in the SOT.
Now, fix ξ ∈ H and let ε > 0. Let N ∈ N be such that

sup
|z|≤R

|f(z)− pN (z, z̄)| < ε

3‖ξ‖
.

Then let i0 ∈ I be such that for all i ≥ i0

‖(pN (x, x∗)− pN (xi, x
∗
i ))ξ‖ <

ε

3
.

We can then estimate for i ≥ i0

‖(f(x)− f(xi))ξ‖ ≤ ‖(f(x)− pN (x, x∗))ξ‖+ ‖(pN (x, x∗)− pN (xi, xi
∗
i ))ξ‖+ ‖(pN (xi, x

∗
i )− f(xi))ξ‖

< ‖f(x)− pN (x, x∗)‖‖ξ‖+
ε

3
+ ‖f(xi)− pN (xi, x

∗
i )‖‖ξ‖

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus (f(xi))i∈I converges to f(x) in the SOT.

Recall that if x ∈ B(H) is self-adjoint, then σ(x) ⊂ R. Consequently, x + z is invertible for any z ∈ C
with Im z 6= 0.

Definition 3.4.3. For a self-adjoint operator x ∈ B(H), the operator

(x− i)(x+ i)−1 ∈ B(H)

is called the Cayley transform of x.

Note that the Cayley transform is given by the continuous functional calculus f(x) for f(t) = t−i
t+i .

Using this one can show that the Cayley transform of x is a unitary operator and that (x − i)(x + i)−1 =
(x+ i)−1(x− i).

Proposition 3.4.4. The Cayley transform is SOT continuous on self-adjoint operators.
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Proof. Let (xj)j∈J ⊂ B(H) be a net of self-adjoint operators converging to a necessarily self-adjoint operator
x ∈ B(H). Note that by the continuous functional calculus ‖(xj + i)−1‖ ≤ 1 for all j ∈ J . For ξ ∈ H we
have

‖(x− i)(x+ i)−1ξ − (xj − i)(xj + i)−1ξ‖ = ‖(x− i)(x+ i)−1ξ − (xj + i)−1(xj − i)ξ‖
= ‖(xj + i)−1 [(xj + i)(x− i)− (xj − i)(x+ i)] (x− i)−1ξ‖
= ‖2i(xj + i)−1 [x− xj ] (x− i)−1ξ‖
≤ 2‖[x− xj ](x− i)−1ξ‖.

Thus SOT convergence of (xj)j∈J to x implies the SOT convergence of the Cayley transforms.

Corollary 3.4.5. If f ∈ C0(R), then the map x 7→ f(x) on self-adjoint operators is SOT continuous.

Proof. Since f vanishes at infinity,

g(z) :=

{
0 if z = 1

f
(
i 1+z

1−z

)
otherwise

defines a continuous function on T ⊂ C. By Proposition 3.4.2, x 7→ g(x) is SOT continuous on the set
of unitary operators. Then using Proposition 3.4.4, we see that x 7→ g((x − i)(x + i)−1) = f(x) is SOT
continuous as the composition of two SOT continuous maps.

For S ⊂ B(H), we adopt the following notation:

Ss.a. := {x ∈ S : x = x∗}
(S)R = {x ∈ S : ‖x‖ ≤ R}.

Theorem 3.4.6 (The Kaplansky Density Theorem). For a ∗-subalgebra A ⊂ B(H),

As.a.
SOT

=
(
A
SOT

)
s.a.

(A)1
SOT

=
(
A
SOT

)
1

Proof. Denote B := A
SOT

. We first show that it suffices to assume A is operator norm closed. If C is the
operator norm closure of A, then

A ⊂ C ⊂ ASOT (= B)

since operator norm convergence implies SOT convergence. Consequently, C
SOT

= A
SOT

, and the same
argument holds when the pair A,C is replaced with As.a., Cs.a. or (A)1, (C)1. So replacing A with C if
necessary, we may assume that A is operator norm closed and hence a C∗-algebra.

Now, using that SOT convergence implies WOT convergence, it follows that As.a.
SOT ⊂ Bs.a.. Let

x ∈ Bs.a. ⊂ B, then there exists a net (xi)i∈I ⊂ A converging strongly to x. Since taking adjoints is

WOT continuous (see Exercise 1.1.6), we have that
(
xi+x

∗
i

2

)
i∈I
⊂ As.a. converges to x in the WOT. So

x ∈ As.a.
WOT

, but As.a. is a convex subset of B(H) and so As.a.
WOT

= As.a.
SOT

by Corollary 3.2.8. Thus

Bs.a. = As.a.
SOT

.

In order to show (A)1
SOT

= (B)1, we need a pair of claims:
Claim 1: (As.a.)1 = (Bs.a.)1.

Indeed, let x ∈ (Bs.a.)1 and let (xi)i∈I ⊂ As.a. be net converging to x in the SOT (which exists by the
previous argument). Letting f ∈ C0(R) be a function with ‖f‖∞ = 1 satisfying f(t) = t for |t| ≤ 1, we have
that (f(xi))i∈I ⊂ (As.a.)1 converges to f(x) = x in the SOT by Corollary 3.4.5. Thus (As.a.)1 is SOT dense
in (Bs.a.)1. �

Claim 2: M2(A)
SOT

= M2(B).
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Fix (
b1,1 b1,2
b2,1 b2,2,

)
∈M2(B).

Let (ξ1, ξ2)T ∈ H2 and ε > 0. Using A
SOT

= B, for each i, j = 1, 2 we can find ai,j ∈ A satisfying
‖(ai,j − bi,j)ξj‖ < ε. Then∥∥∥∥[( a1,1 a1,2

a2,1 a2,2,

)
−
(
b1,1 b1,2
b2,1 b2,2,

)](
ξ1
ξ2

)∥∥∥∥2

=

2∑
i=1

‖(ai,1 − bi,1)ξ1 + (ai,2 − bi,2)ξ2‖2 < 8ε2.

Thus M2(A) is SOT dense in M2(B). �

Now, the inclusion (A)1
SOT

⊂ (B)1 follows from Exercise 1.1.2. Conversely, let x ∈ (B)1 and consider

x̃ =

(
0 x
x∗ 0

)
∈ (M2(B))1.

Note that x̃ is self-adjoint. By Claim 2, we can apply Claim 1 with A and B replaced by M2(A) and M2(B),
respectively. Thus there exists a net (x̃i)i∈I ⊂ (M2(A)s.a.)1 converging to x̃ in the SOT. For each i ∈ I,
define xi to be the (1, 2)-entry of x̃i. Applying x̃i to vectors of the form (0, ξ)T ∈ H2 shows that ‖xi‖ ≤ 1,
so (xi)i∈I ⊂ (A)1. Finally, applying the net (x̃i)i∈I to the same type of vectors shows that (xi)i∈I converges
to x in the SOT.

The choice of 1 for our operator norm bounds in the Kaplansky Density Theorem is essentially arbtitrary.
Indeed, for any R > 0 if x ∈ (B)R then 1

Rx ∈ (B)1. So we can find a net (xi)i∈I ⊂ (A)1 converging to 1
Rx

in the SOT, which implies (Rxi)i∈I converges to x is the SOT and satisfies ‖Rxi‖ ≤ R. Thus (A)R = (B)R
for all R > 0. In particular, for any x ∈ B, by taking R = ‖x‖, we can find a net (xi)i∈I ⊂ A converging to
x in the SOT and satisfying ‖xi‖ ≤ ‖x‖ for all i ∈ I.

Corollary 3.4.7. A unital ∗-algebra M ⊂ B(H), one has

M
σ−SOT

= M
σ−WOT

= M
SOT

= M
WOT

= M ′′

Consequently, M is a von Neumann algebra if and only if it is σ-SOT or σ-WOT closed.

Proof. We already know the last two equalities hold by the Bicommutant Theorem. Since σ-SOT convergence

implies σ-WOT convergence implies WOT-convergence (see Exercise 3.2.2), we have M
σ−SOT ⊂Mσ−WOT ⊂

M
WOT

= M
SOT

. So it suffices to show M
SOT ⊂ M

σ−SOT
. If x ∈ M

SOT
, then the Kaplansky Density

theorem implies we can find a net (xi)i∈I ⊂ (M)‖x‖ converging to x in the SOT. Since the net is uniformly

bounded, Exercise 3.2.4 implies it also converges to x in the σ-SOT. Hence M
SOT ⊂Mσ−SOT

.

If A = M is a von Neumann algebra, then the Kaplansky Density Theorem implies that (M)1 is SOT
closed. Conversely, for a unital ∗-subalgebra A ⊂ B(H), if (A)1 is SOT closed, then the Krein–Smulian
theorem from functional analysis implies A is SOT closed and therefore is a von Neumann algebra. We
can make the same assertion for the WOT, σ-SOT, and σ-WOT using Corollaries 3.2.8 and 3.2.10 and
Exercise 3.2.4. This yields the following corollary.

Corollary 3.4.8. Let A ⊂ B(H) be a unital ∗-subalgebra. The following are equivalent:

(i) A is a von Neumann algebra.

(ii) (A)1 is SOT closed.

(iii) (A)1 is WOT closed.

(iv) (A)1 is σ-SOT closed.

(v) (A)1 is σ-WOT closed.
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Chapter 4

Types of von Neumann Algebras

We saw back in Corollary 2.1.4 that von Neumann algebras are equal to the C∗-algebra generated by
its projections. So it is perhaps unsurprising that much of the structure of a von Neumann algebras is
determined by its projections. More precisely, there is an equivalence relation on the projections in a von
Neumann algebra, and one can classify von Neumann algebras into three types according to the behavior of
this equivalence relation

In the first section we will define and study this equivalence relation on projections. In the second section
we study certain subalgebras related to projections called compressions. In the third section we will define
the three types of von Neumann algebras and show how any von Neumann algebra decomposes into a direct
sum of the three types. We will also consider a few examples.

Lecture Preview: The content of this lecture will covered over two days: Wednesday, July 8th (p. 44–
54) and Friday, July 10th (p. 55–63). The first lecture on July 8th will cover equivalence of projections
(Definition 4.1.1), central supports (Definition 4.1.7), and the Comparison Theorem. We will likely forego
most proofs in favor of concrete examples. Regardless, it is recommended that you skip the proof of Proposi-
tion 4.1.5. The second lecture on July 8th will cover compressions of von Neumann algebras (Definition 4.2.1)
and various properties of projections (Definitions 4.2.5 and 4.3.1), and emphasis will be put on concrete ex-
amples.

For the first lecture on July 10th, we will state the type decomposition (see Theorem 4.3.7) and its
refinements (see Definitions 4.3.10 and 4.3.13), though we will not prove them. Instead we will focus on the
examples at the end of Section 4.3 (Examples 4.3.14, 4.3.15, and 4.3.16).

4.1 Equivalence of Projections

Throughout this section, let M ⊂ B(H) be a von Neumann algebra. We will write P(M) for the collection
of projections in M . Also, for a subset S ⊂ H we write [S] for the projection onto the closed span of S; that
is, [S] = PspanS .

Recall that, viewing B(H) as C∗-algebra, positivity gives us a partial ordering on projections: p ≤ q if
and only if q− p ≥ 0. In fact, (P(M),≤) is a complete lattice for any von Neumann algebra M ⊂ B(H) (see
Exercise 4.1.1). For P ⊂ P(M) a set of projections (not assumed to be pairwise orthogonal) the infimum
and supremum of P are defined by

∧
P :=

⋂
p∈P

pH

 ∨
P :=

⋃
p∈P

pH

 .
If P = {p1, . . . , pn} is a finite subset, we also write p1 ∧ · · · ∧ pn :=

∧
P and p1 ∨ · · · ∨ pn :=

∨
P. Note

that P ⊂M implies that the subspaces used to define
∧
P and

∨
P are reducing for M ′, and consequently∧

P,
∨
P ∈M by Lemma 1.2.5.
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Unfortunately, this lattice structure tends to be too rigid for our purposes. For example, in M2(C) the
projections E1,1 and E2,2 have the same rank but are not comparable via ≤. The underlying issue is that
this partial ordering it too dependent on the Hilbert space: p ≤ q if and only pH ⊂ qH. Partial isometries
will be the key ingredient for loosening this dependence.

Definition 4.1.1. Let M ⊂ B(H) be a von Neumann algebra. For p, q ∈ P, we say that p is equivalent to
q in M and write p ∼ q if there exists a partial isometry v ∈M such that v∗v = p and vv∗ = q. We say that
p is subequivalent to q in M and write p � q if there exists a partial isometry v ∈ M such that v∗v = p
and vv∗ ≤ q. If p � q but p 6∼ q, we write p ≺ q.

Note that if p, q ∈ P(M) are such that p ≤ q, then by taking v = p we see that p � q. Thus p � q is a
coarser relation than p ≤ q.

Example 4.1.2. Consider the following projections in M3(C):

P :=

 1 0 0
0 1 0
0 0 0

 , Q :=

 0 0 0
0 1 0
0 0 1

 , E1,1 =

 1 0 0
0 0 0
0 0 0

 .

If we set

V :=

 0 0 0
0 1 0
1 0 0

 ,

then V ∗V = P and V V ∗ = Q, so P ∼ Q. We also have E1,1 � P (since E1,1 ≤ P ) and E1,1 � Q (using
either of the partial isometries E2,1 or E3,1). Actually, we have E1,1 ≺ P,Q. To see this note that for any
partial isometry V ∈M3(C) with V ∗V = E1,1 we have

Tr(V V ∗) = Tr(V ∗V ) = Tr(E1,1) = 1 < 2 = Tr(P ),Tr(Q).

So V V ∗ can never equal P or Q. In general, a projection in M3(C) is equivalent to another projection if and
only if they have the same trace (see Exercise 4.1.4). �

Remark 4.1.3. A subtle aspect of Definition 4.1.1 is that we can only say p is subequivalent to q in M if
we can find a partial isometry v in M that satisfies v∗v = p and vv∗ ≤ q. To emphasize this, we may write
p �M q or p ∼M q. If M ⊂ N ⊂ B(H) is a larger von Neumann algebra, it may be that p ∼N q but p 6∼M q.
For example, E1,1 and E2,2 are equivalent in M2(C), but not in the von Neumann algebra CE1,1 ⊕ CE2,2.

Proposition 4.1.4. For a von Neumann algebra M ⊂ B(H), ∼ is an equivalence relation on P(M), and
the relation � is reflexive and transitive (a preorder).

Proof. The reflexivity of ∼ and � follows form the fact that a projection is also a partial isometry. The
symmetry of ∼ is evident from the definition. The transitivity of ∼ will follow as a special case of the
transitivity of �, which we now show. Let p, q, r ∈ P(M) with p � q and q � r. Then there exists partial
isometries u, v ∈M so that u∗u = p, uu∗ ≤ q, v∗v = q, and vv∗ ≤ r. It follows that

qu = quu∗u = uu∗u = u,

so that
(vu)∗(vu) = u∗v∗vu = u∗qu = u∗u = p

and
(vu)(vu)∗ = vuu∗v ≤ vqv∗ = v(v∗v)v∗ = vv∗ ≤ r.

Thus p � r, and � is transitive.

The relation � is not a partial order because p � q and q � p does not imply p = q. For example, in
Mn(C) we have E1,1 � E2,2 and E2,2 � E1,1, but E1,1 6= E2,2. Instead, we have E1,1 ∼ E2,2. We will see in
the next proposition that this actually holds in general: p � q and q � p imply p ∼ q (it would be a crime
against notation for this not to hold). Although the proof appears to be rather complicated, it more or less
follows the same argument used to prove the Schröder–Berstein Theorem.
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Proposition 4.1.5. For a von Neumann algebra M ⊂ B(H) and p, q ∈ P(M), p � q and q � p imply p ∼ q.

Proof. Let u, v ∈M be partial isometries so that u∗u = p, uu∗ ≤ q, v∗v = q, and vv∗ ≤ p. Set p1 = p− vv∗,
q1 = up1u

∗, and inductively define sequences (pn)n∈N and (qn)n∈N by

pn = vqn−1v
∗ and qn = upnu

∗.

By Exercise 4.1.8, {pn : n ∈ N} and {qn : n ∈ N} are each pairwise orthogonal families of projections, with
pn ≤ p and qn ≤ q for each n ∈ N. In particular, pn ≤ vv∗ for all n ≥ 2 and qn ≤ uu∗ for all n ≥ 1. The
following diagram provides a rough but helpful mental picture of how these sequences are defined:

p
pn pn+1

q
qn

u · u∗

v · v∗

Using Proposition 1.1.5, we define projections

p∞ := p−
∞∑
n=1

pn and q∞ := q −
∞∑
n=1

qn.

We also define

w := v∗p∞ + u

∞∑
n=1

pn = v∗p∞ +

∞∑
n=1

upn.

We claim w∗w = p and ww∗ = q. The argument will be broken up into the following smaller claims:

(I) (pnu
∗)(upm) = δn=mpn and (upn)(upm)∗ = δn=mqn for all m,n ∈ N.

(II) (p∞v)(v∗p∞) = p∞ and (v∗p∞)(v∗p∞)∗ = q∞.

(III) (pnu
∗)(v∗p∞) = 0, (p∞v)(upn) = 0, (v∗p∞)(pnu

∗) = 0, and (upn)(p∞v
∗) = 0 for all n ∈ N.

Before proving these claims, observe that they are simply the multiplication rules needed to expand the
products w∗w and ww∗:

w∗w =

(
p∞v +

∞∑
m=1

pmu
∗

)(
v∗p∞ +

∞∑
n=1

upn

)

= (p∞v)(v∗p∞) +

∞∑
n=1

(p∞v)(upn) +

∞∑
m=1

(pmu
∗)(v∗p∞) +

∞∑
m,n=1

(pmu
∗)(upn) = p∞ +

∞∑
n=1

pn = p

and similarly ww∗ = q. Thus proving these claims with complete the proof.

(I): We compute
(upn)∗(upm) = pnu

∗upm = pnppm = pnpm = δn=mpn.

Also
(upn)(upm)∗ = upnpmu

∗ = δn=mupnu
∗ = δn=mqn.

(II): Let vk = v∗
(
p−

∑k
n=1 pn

)
. Then

vkv
∗
k = v∗

(
p−

k∑
n=1

pn

)
v = v∗pv −

k∑
n=1

v∗pnv = q −
k∑

n=2

qn−1 = q −
k−1∑
n=1

qn,
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where we we have used v∗pv = q, v∗p1v = 0, and v∗pnv = qn−1 for n ≥ 2. Also

v∗kvk =

(
p−

k∑
n=1

pn

)
vv∗

(
p−

k∑
n=1

pn

)
= vv∗ −

k∑
n=2

pn = p− p1 −
k∑

n=2

pn = p−
k∑

n=1

pn.

where we have used vv∗ ≤ p, p1vv
∗ = 0, and pn ≤ vv∗ for n ≥ 2. Taking limits in the SOT we obtain

(p∞v)(v∗p∞) = lim
k→∞

v∗kvk = lim
k→∞

(
p−

k∑
n=1

pn

)
= p∞,

and

(v∗p∞)(p∞v) = lim
k→∞

vkv
∗
k = lim

k→∞

(
q −

k−1∑
n=1

qn

)
= q∞.

(III): First note that by taking adjoints, the second equality follows from the first and the fourth from the
third. The third equality is simply a consequence of p∞pn = 0. To see the first equality, note that
v∗p = v∗ = v∗q and v∗pn = qn−1v

∗, while v∗p1 = 0. It follows that v∗p∞ = q∞v
∗, which along with

pnu
∗ = u∗qn imply (pnu

∗)(v∗p∞) = u∗qnq∞v
∗ = 0.

The next lemma is an important example of equivalence, and a nice application of the polar decomposi-
tion. Recall that for a subset S ⊂ H, [S] denotes the projection onto spanS.

Lemma 4.1.6. For a von Neumann algebra M ⊂ B(H) and x ∈M , [xH], [x∗H] ∈M and [xH] ∼M [x∗H].

Proof. Let x = v|x| be the polar decomposition and recall that v ∈ M . From Theorem 3.1.1 we know that
vv∗ is the projection onto ran(x) = xH and v∗v is the projection onto

ran(|x|) = ker(|x|)⊥ = ker(x)⊥ = ran(x∗) = x∗H.

Thus vv∗ = [xH] and v∗v = [x∗H], which shows the projections are equivalent and in M .

Another way to see that [xH], [x∗H] ∈M is to observe that the subspaces xH and x∗H are reducing for
M ′ and use Lemma 1.2.5.

Definition 4.1.7. For x ∈M , the central support of x in M is the projection

z(x) :=
∧
{z ∈ P(Z(M)) : xz = zx = x}.

We amy also write zM (x) := z(x) to emphasize the role of M in the above. We say p, q ∈ P(M) are
centrally orthogonal if their central supports are orthogonal: z(p)z(q) = 0.

Note that for p ∈ P(M), zp = p for z ∈ P(Z(M)) implies p ≤ z, and therefore p ≤ z(p). So in this
case we can think of z(p) as the smallest central projection that is larger than p (central being the key word
here). Also, if p, q ∈ P(M) are centrally orthogonal, then this shows p and q are also orthogonal. The next
lemma provides another way to think of the central support.

Lemma 4.1.8. Let M ⊂ B(H) be a von Neumann algebra. The central support of p ∈ P(M) is

z(p) =
∨
x∈M

[xpH] = [MpH].

Proof. The second equality above follows from the definition of the supremum. Let z = [MpH]. Since M is
unital, we have p ≤ z. Because MpH is reducing for M and M ′, we have that z ∈ M ∩M ′ = Z(M). Thus
z(p) ≤ z. Conversely, for any x ∈M we have

xpH = xz(p)pH = z(p)xpH,

which implies [xpH] ≤ z(p). Since this holds for all x ∈M , we have z ≤ z(p).
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Proposition 4.1.9. Let M ⊂ B(H) be a von Neumann algebra. For p, q ∈ P(M), the following are
equivalent:

(i) p and q are centrally orthogonal.

(ii) pMq = {0}.

(iii) There does not exist projections 0 < p0 ≤ p and 0 < q0 ≤ q such that p0 ∼ q0.

Proof. We first show (i) and (ii) are equivalent. If p and q are centrally orthogonal, then for any x ∈M we
have

pxq = pz(p)xz(q)q = pxz(p)z(q)q = 0.

Thus pMq = {0}. Conversely, if pMq = {0}, then by Lemma 4.1.8 pz(q) = p[MqH] = 0. This implies
p ≤ 1 − z(q), and since 1 − z(q) ∈ Z(M) we have z(p) ≤ 1 − z(q). That is, z(p)z(q) = 0. Thus (i) and (ii)
are equivalent.

Next we show (ii) and (iii) are equivalent. Suppose (ii) does not hold and let x ∈M be such that pxq 6= 0.
Then qx∗p 6= 0 and consequently, p0 := [pxqH] and q0 := [qx∗pH] are non-zero projections. Clearly p0 ≤ p
and q0 ≤ q, and by Lemma 4.1.6 p0 ∼ q0. Conversely, suppose (iii) does not hold and p0 ≤ p and q0 ≤ q are
non-zero projections such that p0 ∼ q0. Let v ∈ M be a partial isometry so that v∗v = p0 and vv∗ = q0.
Then v∗ = p0v

∗q0 so that
pv∗q = pp0v

∗q0q = p0v
∗q0 = v∗ 6= 0.

Thus pMq 6= {0}, and we see that (ii) and (iii) are equivalent.

Our next objective in this section is to prove the Comparison Theorem (see Theorem 4.1.11), which says
that—modulo multiplying by a central projection—all projections are comparable via �. We must first
prove a lemma that will also be useful in our forthcoming classification of von Neumann algebras.

Lemma 4.1.10. Let M ⊂ B(H) be a von Neumann algebra. If {pi : i ∈ I}, {qi : i ∈ I} ⊂ P(M) are two
pairwise orthogonal families such that pi � qi for each i ∈ I, then

∑
i∈I pi �

∑
i∈I qi. In particular, if pi ∼ qi

for each i ∈ I, then
∑
i∈I pi ∼

∑
i∈I qi.

Proof. Let ui ∈ M be a partial isometry such that u∗i ui = pi and uiu
∗
i ≤ qi. Write ri = uiu

∗
i and note that

{ri : i ∈ I} is pairwise orthogonal because {qi : i ∈ I} is. We have for i 6= j

u∗i uj = u∗i uiu
∗
i uju

∗
juj = u∗i rirjuj = 0,

and
uiu
∗
j = uiu

∗
i uiu

∗
juju

∗
j = uipipju

∗
j = 0.

Consequently, (∑
i∈I

ui

)∗∑
j∈I

uj

 =
∑
i∈I

u∗i ui =
∑
i∈I

pi

and (∑
i∈I

ui

)∑
j∈I

uj

∗ =
∑
i∈
uiu
∗
i =

∑
i∈I

ri ≤
∑
i∈I

qi.

Thus
∑
pi �

∑
qi. The last assertion follows from the above and Proposition 4.1.5.

Theorem 4.1.11 (Comparison theorem). Let M ⊂ B(H) be a von Neumann algebra. For p, q ∈ P(M),
there exists z ∈ P(Z(M)) such that

pz � qz and q(1− z) � p(1− z).
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Proof. By Zorn’s Lemma there exists maximal families {pi : i ∈ I}, {qi : i ∈ I} ⊂ P(M) of pairwise orthogonal
projections such that pi ∼ qi for all i ∈ I and

p0 :=
∑
i∈I

pi ≤ p

q0 :=
∑
i∈I

qi ≤ q.

Note that p0 ∼ q0 by Lemma 4.1.10. Choose z := z(q− q0). By maximality of the families, Proposition 4.1.9
yields z(p − p0)z = 0. Consequently, (p − p0)z = 0, or pz = p0z. Now, if v ∈ M is such that v∗v = p0 and
vv∗ = q0, then one easily checks that p0z ∼ q0z via the partial isometry vz. Thus

pz = p0z ∼ q0z ≤ qz.

Similarly, p0(1− z) ∼ q0(1− z) and since q − q0 ≤ z we have

q(1− z) = q0(1− z) ∼ p0(1− z) ≤ p(1− z).

Corollary 4.1.12. Let M ⊂ B(H) be a von Neumann algebra. If M is a factor, then for p, q ∈ P(M)
exactly one of the following holds:

p ≺ q p ∼ q q ≺ p.

Proof. By the Comparison Theorem, there exists z ∈ P(Z(M)) so that pz � qz and q(1 − z) � p(1 − z).
Since Z(M) = C, we have either z = 0 or z = 1 and the result follows.

Exercises

4.1.1. Let M ⊂ B(H) be a von Neumann algebra. In this exercise you will show that (P(M),≤) is a
complete lattice.

(a) Show that
∧
P,
∨
P ∈M .

(b) Show that
∧
P ≤ p ≤

∨
P for all p ∈ P.

(c) Show
∧
P is a greatest lower bound for P and that

∨
P is a least upper bound for P.

4.1.2. Let P ⊂ B(H) be a set of projections∨
P = 1−

∧
P⊥

∧
P = 1−

∨
P⊥.

4.1.3. Let {ξ1, . . . , ξn}, {η1, . . . , ηn} ⊂ H be two orthornomal subsets. Show that
∑n
i=1 ξi ⊗ η̄i is a partial

isometry that implements the equivalence (
∑n
i=1 ηi ⊗ η̄i) ∼

(∑n
i=1 ξi ⊗ ξ̄

)
.

4.1.4. Let p, q ∈ (B(H)) be finite-rank projections. Show that p ∼ q if and only if Tr(p) = Tr(q).

4.1.5. Let E ,F ⊂ H be two orthonormal subsets with the same cardinality. Show that [E ] ∼ [F ]. [Hint:
start with a bijection from E to F (as sets).]

4.1.6. Let A ⊂ B(H) be an abelian von Neumann algebra. For p, q ∈ P(A), show that p ∼A q if and only
if p = q.

4.1.7. For p � q, let v be a partial isometry satisfying v∗v = p and vv∗ ≤ q. Show that qvp = v.

4.1.8. Let p, q be projections, and let u, v be partial isometries so that u∗u = p, uu∗ ≤ q, v∗v = q, and
vv∗ ≤ p. Set p1 := p− vv∗, q1 = up1u

∗, and inductively define sequences (pn)n∈N and (qn)n∈N by

pn = vqn−1v
∗ and qn = upnu

∗.

(a) For each n ∈ N, show that pn = (vu)n−1p1((vu)∗)n−1 and qn = (uv)n−1q1((uv)∗)n−1.
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(b) For each n ∈ N, show that (vu)n and (uv)n are partial isometries. In particular, show

((vu)∗)n(vu)n = p (vu)n((vu)∗)n ≤ vv∗

((uv)∗)n(uv)n = q (uv)n((uv)∗)b ≤ uu∗.

(c) For each n ∈ N, show that pn and qn are projections satisfying pn ≤ p and q ≤ q.

(d) For m < n, show that

((vu)∗)m(vu)n = (vu)n−m and ((uv)∗)m(uv)n = (uv)n−m.

(e) For m < n, show that pmpn = 0 and qmqn = 0. [Hint: first check that p1v = 0 and q1uv = 0.]

4.1.9. Let M ⊂ B(H) be a von Neumann algebra and let p, q ∈ P(M) satisfy p � q. Show that z(p) ≤ z(q).
[Hint: use Lemma 4.1.8.]

4.1.10. Let M ⊂ B(H) be a von Neumann algebra and let p, q ∈ P(M). In this exercise you will prove
Kaplansky’s formula:

(p ∨ q − p) ∼ (q − p ∧ q).

(a) For x := (1− p)q, show that [x∗H] = q − p ∧ q.
[Hint: first compute [ker(x)].]

(b) For x as above, show that [xH] = p ∨ q − p.
[Hint: use the previous part and Exercise 4.1.2.]

(c) Use Lemma 4.1.6 to deduce the desired equivalence.

4.2 Compressions

Before we can continue our study of projections, it is necessary to understand an important operation on
von Neumann algebras.

Definition 4.2.1. For a von Neumann algebra M ⊂ B(H) and p ∈ B(H) a projection,

pMp := {pxp : x ∈M}

is called a compression (or corner) of M .

The terminology comes from the fact that under the identification H ∼= pH ⊕ (1 − p)H, pxp for x ∈ M
is identified with (

pxp 0
0 0

)
∈ B(pH⊕ (1− p)H),

where we view pxp as an operator on pH. In fact, for M = B(H) we have pB(H)p ∼= B(pH)
Note that pMp is a subspace and is closed under taking adjoints. There are two cases where pMp is

actually a ∗-algebra. The first is if p ∈ M , in which case pMp is actually a ∗-subalgebra of M . The second
is if p ∈M ′, where pxp = xp for all x ∈M implies pMp = Mp. In both cases p is the unit of the ∗-algebra,
so if p < 1 then they cannot be von Neumann algebras in B(H). However, p is the identity operator on
B(pH), and by the above identification we can view pMp as operators on pH.

Theorem 4.2.2. Let M ⊂ B(H) be a von Neumann algebra and p ∈ P(M). Then pMp and M ′p are von
Neumann algebras in B(pH) and are commutants of one another.

50



Proof. From the discussion preceding the theorem, we see that pMp and M ′p are both unital ∗-subalgebras
of B(pH). So it suffices to show (pMp)′′ = pMp and (M ′p)′′ = M ′p, where the commutants here are taken
in B(pH) (rather than B(H)). Toward this end we will show the following equalities:

(M ′p)′ ∩B(pH) = pMp

(pMp)′ ∩B(pH) = M ′p.

The inclusion pMp ⊂ (M ′p)′ ∩ B(pH) is immediate. Conversely, suppose x ∈ (M ′p)′ ∩ B(pH). Define
x̃ ∈ B(H) by

x̃ =

(
x 0
0 0

)
.

That is, x̃ = px̃p, and for pξ ∈ pH we have x̃pξ = xpξ. If y ∈M ′, then for ξ ∈ H we have

yx̃ξ = ypx̃pξ = ypxpξ = xypξ = xpyξ = x̃pyξ = x̃yξ.

So yx̃ = x̃y and hence x̃ ∈M ′′ = M . As operators on pH we have x = px̃p ∈ pMp.
The inclusion M ′p ⊂ (pMp)′ ∩B(pH) is immediate. Suppose y ∈ (pMp)′ ∩B(pH). Using the functional

calculus to write y as a linear combination of four unitaries, we may assume y = u is a unitary. We will
extend u to an element ũ ∈ B(H). Define ũ on MpH by

ũ

(
n∑
i=1

xipξi

)
=
∑
i

xiupξi,

for x1, . . . , xn ∈M and ξ1, . . . , ξn ∈ H. Observe that∥∥∥∥∥ũ
n∑
i=1

xipξi

∥∥∥∥∥
2

=

n∑
i,j=1

〈xiupξi, xjupξj〉

=

n∑
i,j=1

〈
px∗jxipuξi, upξj

〉
=

n∑
i,j=1

〈
upx∗jxipξi, upξj

〉
=

n∑
i,j=1

〈
px∗jxipξi, pξj

〉
=

∥∥∥∥∥
n∑
i=1

xipξi

∥∥∥∥∥
2

.

Thus ũ is well-defined and an isometry, which we extend to MpH. Observe that ũ commutes with M on MpH
by definition of ũ, and consequently they commute on MpH. Recall that z(p) = [MpH] by Lemma 4.1.8. So
if we extend ũ to H by setting ũ|(MpH)⊥ ≡ 0, then ũ = ũz(p). It follows that for x ∈M and ξ ∈ H we have

xũξ = xũz(p)ξ = ũz(p)xξ = ũxξ.

That is, ũ = M ′ ∩ B(H). By definition ũ, we have ũp = u and so u ∈M ′p.

Corollary 4.2.3. Let M ⊂ B(H) be a von Neumann algebra and p ∈ P(M). If M is a factor then pMp
and M ′p are factors.

Proof. Since pMp and M ′p are each commutants of one another in B(pH) by Theorem 4.2.2, they have the
same center and so it suffices to show M ′p is a factor. First note that for y ∈ M ′, if yp = 0 then for all
x ∈M and ξ ∈ H we have

yxpξ = xypξ = 0.

Since M is a factor, we have [MpH] = z(p) = 1 by Lemma 4.1.8. This means MpH is dense in H and
consequently the above implies y = 0. Now, if zp ∈ Z(M ′p) for z ∈ M ′, then for all y ∈ M ′ we have
[z, y]p = [zp, yp] = 0. By what we just argued, [z, y] = 0 and so z ∈ Z(M ′). Since M ′ is a factor (by virtue
of M being a factor), we have z ∈ C and zp ∈ Cp. Thus Z(M ′p) = Cp and M ′p is a factor.
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The next proposition shows that a compression depends only on the equivalence class of p in M .

Proposition 4.2.4. Let M ⊂ B(H) be a von Neumann algebra. If p, q ∈ P(M) are equivalent in M , then
pMp and qMq are spatially isomorphic.

Proof. Let v ∈M be a partial isometry satisfying v∗v = p and vv∗ = q. We will show that v|pH is a unitary
from pH to qH that implements the spatial isomorphism. Note that v = qvp. This implies v|pH is indeed
valued in qH, and is surjective since qξ = vv∗ξ = vpv∗ξ for any x ∈ H. For pξ, pη ∈ pH, we have

〈vpξ, vpη〉 = 〈v∗vpξ, pη〉 = 〈pξ, pη〉 .

Thus v|pH : pH → qH is a unitary. Using v = qvp again, we have for any x ∈M

vpxpv∗ = vxv∗ = q(vxv∗)q.

and
qxq = vv∗xvv∗ = v(pv∗xvp)v∗.

Thus v(pMp)v∗ = qMq.

Note that in the above proof, we used v ∈M to guarantee vxv∗ ∈M and v∗xv ∈M for all x ∈M . Also
note that if y ∈M ′, then vypv∗ = yvpv∗ = vq, which shows the spatial isomorphism sends M ′p to M ′q.

Definition 4.2.5. Let M ⊂ B(H) be a von Neumann algebra. We say p ∈ P(M) is minimal in M if p 6= 0
and pMp = Cp. We say p is abelian in M if pMp is abelian.

Note that a minimal projection is also abelian.

Example 4.2.6. ,

(1) Let p ∈ B(H). Then pB(H)p ∼= B(pH). Since B(pH) is always a factor, it can only be abelian if
B(pH) ∼= C. This holds off and only if pH ∼= C; that is, if and only if p is a rank 1 projection.

(2) Let (X,µ) be a σ-finite measure space. Recall f ∈ P(L∞(X,µ)) if and only if f = 1E for some
measurable E ⊂ X (see Exercise 1.3.3). Consequently, all compressions of L∞(X,µ) are of the form
L∞(E,µ|E) for some measurable E ⊂ X, and so all projections in L∞(X,µ) are abelian. If 1E is
minimal, then 1E 6= 0 and L∞(E,µ|E) = C1E . The former holds if and only if µ(E) 6= 0 and the latter
holds if and only if for all measurable subsets F ⊂ E we have µ(F ) ∈ {0, µ(E)} (see Exercise 4.2.3).
We call such a subset E an atom of µ. Thus L∞(X,µ) has minimal projections if and only if µ has
atoms. �

If p ∈ P(M) is minimal, then whenever q ∈ P(M) satisfies q ≤ p we must have q ∈ {0, p} since
q = pqp ∈ pMp = Cp. Conversely, if p ∈ P(M) is such that q ∈ {0, p} whenever q ∈ P(M) satisfies q ≤ p,
then p and 0 are the only projections in pMp. Since von Neumann algebras are equal to the C∗-algebras
generated by their projections (see Corollary 2.1.4), we must have pMp = Cp and so p is minimal. Thus,
“q ∈ {0, p} whenever q ∈ P(M) satisfies q ≤ p” is an equivalent definition of being minimal, and this is
non-commutative analogue of an atom for a measure.

Proposition 4.2.4 implies that if p is minimal (resp. abelian) and q ∈ P(M) satisfies q ∼M p, then q is also
minimal (resp. abelian). In fact, if q 6= 0 and q � p then it is minimal (resp. abelian). For p minimal, this
is simply because q � p implies q ∼ p by the above characterization of minimality. For p abelian, suppose
v ∈M is a partial isometry satisfying v∗v = q and vv∗ ≤ p. Then (vv∗)M(vv∗) is abelian as a subalgebra of
pMp, and hence qMq(∼= (vv∗)M(vv∗)) is abelian. We record these observations in the following proposition.

Proposition 4.2.7. Let M ⊂ B(H) be a von Neumann algebra. Let p, q ∈ P(M) be non-zero projections
that satisfy q � p. If p is minimal (resp. abelian), then q is minimal (resp. abelian).

We conclude this section by using compressions to prove that the image of a von Neumann algebra under
a normal unital ∗-homomorphism is again a von Neumann algebra.

Theorem 4.2.8. Let M ⊂ B(H) and N ⊂ B(K) be von Neumann algebras. If π : M → N is a normal
unital ∗-homomorphism, then π(M) ⊂ B(K) is a von Neumann algebra.
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Proof. We first prove a special case: assume π is injective. Because π is a unital ∗-homorphism, π(M) is a
unital ∗-subalgebra of B(K) and so by Corollary 3.4.8 we just need to check that (π(M))1 is σ-WOT closed.
Because ∗-homomorphisms preserve positivity, for x ∈M we have

π(x)∗π(x) = π(x∗x) ≤ π(‖x∗x‖1) = ‖x∗x‖π(1) = ‖x∗x‖,

and hence ‖π(x)‖ = ‖π(x)∗π(x)‖1/2 ≤ ‖x∗x‖1/2 = ‖x‖. The same argument applied to π−1 : π(M) → M
gives ‖π(x)‖ = ‖x‖ for all x ∈ M . Thus (π(M))1 = π((M)1). The duality M ∼= (M∗)

∗ and the Banach–
Alaoglue theorem imply (M)1 is σ-WOT compact, and consequently so is its σ-WOT continuous image
π((M)1) = (π(M))1. In particular, (π(M))1 is σ-SOT closed and therefore π(M) is a von Neumann algebra.

Now suppose π is not injective. Consider p := [ker(π)M ] and note that ker(π)H is reducing for M since
ker(π) is an ideal, and is reducing for M ′ since ker(π) ⊂ M . Thus p ∈ M ∩M ′ = Z(M) by Lemma 1.2.5.
We will show that π(M) is the injective image of (1 − p)M(1 − p) = M(1 − p), which is a von Neumann
algebra by Theorem 4.2.2, and hence π(M) is a von Neumann algebra by the first part of the proof. Our
first step, is to show that p ∈ ker(π).

Since π is ∗-homomorphism, ker(π) is a ∗-subalgebra of M , and it is norm closed by virtue of being
σ-WOT closed. Consequently, ker(π) is a C∗-algebra and therefore has an approximate identity (ei)i∈I
by [Theorem 4.2, C∗-Algebras Mini-course]. We claim that (ei)i∈I converges to p in the σ-WOT, and
consequently p ∈ ker(π) since ker(π) is σ-WOT closed. Note that x = pxp for all x ∈ ker(π), and so
it suffices to check σ-WOT convergence on pH. Moreover, because (ei)i∈I is uniformly bounded, it not
only suffices to show WOT convergence on pH, it suffices to show this on the dense subset ker(π)H. For
x, y ∈ ker(π) and ξ, η ∈ H we have

| 〈(ei − p)xξ, yη〉 | = | 〈(eix− px)ξ, yη〉 | = | 〈(eix− x)ξ, yη〉 | ≤ ‖eix− x‖‖ξ‖‖yη‖ → 0

by definition of the approximate identity. Thus p is the σ-WOT limit of (ei)i∈I .
Since p ∈ ker(π), for x ∈M we have

π(x(1− p)) = π(x)(π(1)− π(p)) = π(x)(1− 0) = π(x).

Thus π(M) is the image of M(1 − p) under π. This also shows x(1 − p) ∈ ker(π) if and only if x ∈ ker(π),
but in this case x(1− p) = x− xp = x− x = 0. Thus π|M(1−p) is injective and so π(M) is a von Neumann
algebra by the first part of the proof.

Remark 4.2.9. There is a partial converse to the above theorem: if π : M → B(K) is an injective ∗-
homomorphism such that π(M) is a von Neumann algebra, then π is normal. That is, ∗-isomorphisms
between von Neumann algebras are automatically normal (compare this to how ∗-isomorphisms between
C∗-algebras are automatically isometric). This follows from a characterization of normality in terms of the
increasing but uniformly bounded nets of positive operators (see Section III.2.2 in Operator Algebras: Theory
of C*-Algebras and von Neumann Algebras by Bruce Blackadar).

Exercises

4.2.1. Let p ∈ B(H) be a rank n projection for n ∈ N. Show that pB(H)p ∼= Mn(C).

4.2.2. Let M ⊂ B(H) be a von Neumann algebra and let z ∈ P(Z(M)). Show that M is spatially isomorphic
to the direct sum of compressions Mz ⊕M(1− z) (see Exercise 1.2.8).

4.2.3. Let (X,µ) be a positive σ-finite measure space. We call a measurable subset A ⊂ X an atom of if
µ(A) > 0 and for all measurable subsets E ⊂ A one has µ(E) = µ(A) or µ(E) = 0.

(a) If A1, A2 ⊂ X are atoms, show that either 1A1∩A2
= 0 or 1A1∩A2

= 1A1
= 1A2

.

(b) If A ⊂ X is an atom, show that f |A is constant for all f ∈ L∞(X,mu).

4.2.4. Let (X,µ) be a positive σ-finite measure space. Show that L∞(X,µ) is finite dimensional (as a vector
space) if and only if X can be partitioned into a finite union of atoms. Also show that in this case the
dimension is given by the number of distinct atoms.
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4.2.5. Let M ⊂ B(H) be a factor. Show that any abelian projection in M is either zero or minimal. [Hint:
use Corollary 4.2.3.]

4.2.6. Let M ⊂ B(H) be a factor. Show any two minimal projections are equivalent. [Hint: use the
Comparison Theorem.]

4.2.7. Let π : M → N be a ∗-homomorphism between von Neumann algebras.

(a) Show that π(P(M)) ⊂ P(N).

(b) For p, q ∈ P(M), show that p � q implies π(p) � π(q).

(c) Show that if p is minimal (resp. abelian) in M , then π(p) is minimal (resp. abelian) in π(M). Show
that π(p) need not be minimal (resp. abelian) in N .

4.2.8. Let M ⊂ B(H) be a von Neumann algebra and let I ⊂M be a σ-WOT closed subspace.

(a) Show that if I is a left ideal then there exists p ∈ P(M) so that I = Mp.

(b) Show that if I is a right ideal then there exists p ∈ P(M) so that I = pM .

(c) Show that if I is a (two-sided) ideal then there exists p ∈ P(Z(M)) so that I = Mp.

4.3 The Type Decomposition

The following definition highlights some additional important properties of projections, which will be needed
in the statement of the type decomposition of von Neumann algebras.

Definition 4.3.1. For M ⊂ B(H) be a von Neumann algebra, p ∈ P(M) is said to be

• finite in M if q ≤ p and q ∼M p implies p = q for q ∈ P(M).

• semi-finite in M if there exists a family {pi}i∈I ⊂ P(M) of pairwise orthogonal, finite projections
such that p =

∑
i∈I pi.

• purely infinite in M if p 6= 0 and there does not exist any non-zero finite projections q ∈ P(M) with
q ≤ p.

• properly infinite in M if p 6= 0 and for all non-zero z ∈ P(Z(M)) the projection zp is not finite.

Furthermore, M is said to be finite, semi-finite, purely infinite, or properly infinite if 1 ∈M has the
corresponding property in M .

Recall that in an abelian von Neumann algebra, projections are equivalent if and only if they are equal
(see Exercise 4.1.6). This implies abelian projections (and consequently minimal ones) are necessarily finite,
and all abelian von Neumann algebras are finite. We also have a number of implications that follow from
the above definitions:

finite =⇒ semi-finite =⇒ not purely infinite,

and
purely infinite =⇒ properly infinite.

Also note that a factor is either finite or properly infinite.

Example 4.3.2. In each of the examples below, we consider M = B(H) and p ∈ P(B(H)).

(1) If p is finite-rank then it is finite in the above sense. Suppose q ≤ p. Then qH ⊂ pH and so q is
finite-rank. Suppose q ∼ p and let v be partial isometry satisfying v∗v = q and vv∗ = p. Then by
Exercise 3.1.9 we have

dim(qH) = Tr(q) = Tr(v∗v) = Tr(vv∗) = Tr(p) = dim(pH).

Thus qH = pH and q = p. If dim(H) <∞, then 1 ∈ B(H) is a finite-rank projection and hence finite,
so B(H) is finite.
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(2) If dim(pH) is infinite, then p is not finite. Let E ⊂ pH be an orthonormal basis. Since it is an infinite
set by assumption, we can partition it into disjoint subsets E1 and E2 so that |E| = |E1| = |E2|. If
q := [E1], then q ∼ p (see Exercise 4.1.5), but q < p since p − q = [E2] 6= 0. Since B(H) is a factor,
these projections are also properly infinite.

(3) p is always semi-finite, and consequently never purely infinite. Let E ⊂ pH be an orthonormal basis.
Then

p =
∑
ξ∈E

ξ ⊗ ξ̄

and each ξ⊗ ξ̄ is finite by part (1). In particular, 1 ∈ B(H) is semi-finite and so B(H) is semi-finite. �

You probably learned in linear algebra that a matrix A ∈Mn(C) is left (or right) invertible if and only if
it is invertible. In particular, any isometry in Mn(C) is necessarily a unitary. Not only does this latter fact
hold in any finite von Neumann algebra (which Mn(C) is by Example 4.3.2.(1)), it actually characterizes
them.

Proposition 4.3.3. A von Neumann algebra M ⊂ B(H) is finite if and only if all isometries are unitaries.

Proof. Suppose M is finite and let v ∈ M be an isometry: v∗v = 1. Then vv∗ ≤ 1 and so by finiteness
vv∗ = 1. That is, v is a unitary. Conversely, assume every isometry is a unitary, and suppose p ≤ 1 satisfies
p ∼ 1. Let v ∈ M satisfy v∗v = 1 and vv∗ = p. Then v is an isometry and hence a unitary, and therefore
p = vv∗ = 1. Thus 1 is finite in M .

We will need the next two propositions in proving the type decomposition.

Proposition 4.3.4. Let M ⊂ B(H) be a von Neumann algebra. Let p, q ∈ P(M) be non-zero projections
that satisfy p � q. If q is finite (resp. purely infinite), then p is also finite (resp. purely infinite).

Proof. Suppose q is finite, and further suppose p ∼ q. Let v ∈ M be such that v∗v = p and vv∗ = q. If
u ∈M satisfies u∗u = p and uu∗ ≤ p, then

(vuv∗)∗(vuv∗) = vu∗v∗vuv∗ = vu∗puv∗ = vu∗uv∗ = vpv∗ = vv∗ = q

and
(vuv∗)(vuv∗)∗ = vuv∗vu∗v∗ = vupu∗v∗ = vuu∗v∗ ≤ vpv∗ = q.

Since q is finite, we must have (vuv∗)(vuv∗)∗ = q. But then

uu∗ = pupu∗p = v∗(vuv∗)(vuv∗)∗v = v∗qv = p.

Thus p is finite.
Now assume p ≤ q. If u ∈M is such that u∗u = p and uu∗ ≤ p, then for w = u+ (q − p) we have

w∗w = u∗u+ u∗(q − p) + (q − p)u+ (q − p) = p+ (q − p) = q,

and
ww∗ = uu∗ + u(q − p) + (q − p)u∗ + (q − p) = uu∗ + (q − p) ≤ q.

Since q is finite, we have uu∗ + (q − p) = ww∗ = q or uu∗ = p. Thus p is finite. In general, if p � q, then
there exists q0 ∈ P(M) such that p ∼ q0 ≤ q. By the two previous arguments we see that p is finite.

Finally, if q is purely infinite then it has no finite subprojections. If p � q had a finite subprojection
p0 ≤ p, then p0 � q. In particular, p0 ∼ q0 ≤ q, which is finite by the above arguments, a contradiction.

Proposition 4.3.5. Let M ⊂ B(H) be a von Neumann algebra. A projection p ∈ P(M) is semi-finite if
and only if it is a supremum of finite projections. In particular, the supremum of semi-finite projections is
again semi-finite. Moreover, any subprojection of a semi-finite projection is also semi-finite.
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Proof. If p ∈ P(M) is semi-finite, then by definition it is the sum (hence supremum) of pairwise orthogonal
finite projections. Conversely, suppose p =

∨
i pi for {pi}i∈I ⊂ P(M) finite projections. Let {qj}j∈J be a

maximal family of pairwise orthogonal finite subprojections of p. Suppose, towards a contradiction, that
q := p −

∑
j∈J qj 6= 0. Then, by definition of the supremum, there exists i ∈ I so that q and pi are not

orthogonal. In particular, they are not centrally orthogonal and so by Proposition 4.1.9 there exists non-zero
q0 ≤ q so that q0 � pi. Thus q0 is finite by Proposition 4.3.4, which contradicts the maximality of {qj}j∈J .
The final observation follows from the fact that the above argument also works if p ≤

∨
i pi.

Definition 4.3.6. A von Neumann algebra M ⊂ B(H) is said to be

• type I if every non-zero projection has a non-zero abelian subprojection.

• type II if it is semi-finite and has no non-zero abelian projections.

• type III if it is purely infinite.

We can see immediately from the definition that any abelian von Neumann algebra is type I. We also
have B(H) is it type I, because a non-zero projection p has minimal (and hence abelian) subprojections of
the form ξ⊗ ξ̄ for any unit vector ξ ∈ pH. On the other hand, group von Neumann algebras for i.c.c. groups
give type II von Neumann algebras (see Example 4.3.14). Unfortunately, type III von Neumann algebras are
beyond the scope of these notes. But Brent is a big fan and would love to tell you about them!

A von Neumann algebra need not be of any type. For example, if M1 is type I and M2 is type II, then their
direct sum M1⊕M2 (see Exercise 1.2.8) has no type. Indeed, it is not type I because any non-zero projection
p ∈ P(M2) yields a non-zero projection 0⊕p ∈ P(M1⊕M2) lacking non-zero abelian subprojections. It is not
type II since any non-zero abelian projection p ∈M1 yields a non-zero abelian projection p⊕0 ∈ P(M1⊕M2).
Since p ⊕ 0 is finite by virtue of being abelian, we see that M1 ⊕M2 also not type III. However, note that
z1 := 1 ⊕ 0 and z2 := 0 ⊕ 1 are central projections and the compressions (M1 ⊕ M2)z1 = M1 ⊕ 0 and
(M1 ⊕M2)z2 = 0⊕M2 are type I and type II, respectively. The Type Decomposition tells us that this can
always be done.

Theorem 4.3.7 (Type Decomposition). Let M ⊂ B(H) be a von Neumann algebra. Then there exists
unique pairwise orthogonal central projections zI, zII, zIII ∈ P(Z(M)) such that zI + zII + zIII = 1 and the
compression MzT is type T for each T ∈ {I, II, III}.

Proof. Let zI be the supremum of all abelian projections in M . Conjugating an abelian projection in M
by a unitary in M yields another abelian projection in M . It follows that uzIu

∗ = zI or uzI = zIu for all
unitaries u ∈ M . Since every element in M can be written as a linear combination of four unitaries, this
implies zI ∈ M ∩M ′ = Z(M). To see that MzI is type I, suppose p ≤ zI is non-zero. Then by definition
of the supremum there exists an abelian projection r ∈ M so that pr 6= 0. Consequently, pMr 6= {0} and
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Proposition 4.1.9 tells us there exists non-zero p ≥ p0 ∼ r0 ≤ r. Proposition 4.2.7 implies that p0 is abelian
and so MzI is type I.

Next, let zII be the supremum of all finite p ∈ P(M) such that p ≤ 1 − zI. By the same argument
as above, we have zII ∈ Z(M). Also, zII is semi-finite by Proposition 4.3.5. Since zII ≤ 1 − zI, it has no
non-zero abelian subprojections. Thus MzII is type II.

Finally, we let zIII = 1− zI − zII. Note that any finite projection in M lies under zI if it is also abelian
and otherwise lies under zII. Consequently, zIII has no finite subprojections and so MzIII is type III.

Towards showing this decomposition is unique, suppose pI, pII, pIII ∈ P(Z(M)) are pairwise orthogonal
projections summing to one and satisfy MpR is type R for each R ∈ {I, II, III}. Then pIIIzI and pIIIzII

are both finite and purely infinite by Proposition 4.3.4. That is, pIIIzI = pIIIzII = 0, and consequently
pIII ≤ zIII. Reversing the roles of z and p yields pIII = zIII. Next, pIIzI is an abelian subprojection of pII by
Proposition 4.2.7. Since MpII is type II, we must therefore have pIIzI = 0. Thus pII ≤ zII and by symmetry
we obtain pII = zII. Finally

pI = 1− pII − pIII = 1− zII − zIII = zI.

So the decomposition is unique.

Since zI, zII, zIII are all central projections, Exercise 4.2.2 tells that M ∼= MzI ⊕MzII ⊕MzIII. So even
thoughh all von Neumann algebras need not have a type, they can all be written as a direct sums of type I,
type II, and type III von Neumann algebras.

If M is a factor, then the only central projections are 0 and 1. Consequently, in the type decomposition
for a factor the summation condition zI + zII + zIII = 1 implies zT = 1 for some T ∈ {I, II, III} and the rest
are zero. This yields the following corollary.

Corollary 4.3.8. A factor is either type I, type II, or type III.

Remark 4.3.9. We remark here on some important (but non-trivial) facts whose proofs we have omitted
from these notes. Let M ⊂ B(H) be a von Neumann algebra and T ∈ {I, II, III}. Then M is type T if and
only if M ′ is type T . Additionally, if M is type T then pMp is type T for any p ∈ P(M). If z(p) = 1, then
the converse also holds.

Each of the three types can be further refined. We begin with type I.

Definition 4.3.10. Let M ⊂ B(H) be a type I von Neumann algebra. For n ∈ N, we say M is type In
if there exists non-zero pairwise orthogonal and equivalent abelian projections p1, . . . , pn ∈ P(M) satisfying
p1 + · · · pn = 1. We say M is type I∞ if there is an infinite family of non-zero pairwise orthogonal and
equivalent abelian projections that sum to 1.

A von Neumann algebra can only be type In for one n ∈ N ∪ {∞}. Each type I von Neumann algebra
uniquely decomposes into a direct sum of type I1, type I2,. . ., and type I∞ von Neumann algebras, and
consequently a type I factor is type In for exactly one n ∈ N∪{∞}. The proofs of these facts are not terribly
difficult, but we have omitted them from these notes.

Example 4.3.11. ,

(1) An abelian von Neumann algebra A ⊂ B(H) is type I1. Indeed, 1 ∈ A is an abelian projection
and this cannot be further decomposed into a sum of pairwise orthogonal and equivalent projections,
because in an abelian von Neumann algebra projections are eqiuvalent if and only if they are equal
(see Exercise 4.1.6).

(2) Mn(C) is type In. The projections E1,1, . . . , En,n ∈Mn(C) are non-zero pairwise orthogonal projections
that sum to one. They are pairwise equivalent via the partial isometries Ei,j , and they are minimal
(hence abelian) projections.

(3) B(H) for dim(H) = ∞ is type I∞. Let E ⊂ H be an orthonormal basis. Then the projections
{ξ ⊗ ξ̄ : ξ ∈ E} are non-zero pairwise orthogonal projections that sum to one. They are pairwise
equivalent via the partial isometries ξ ⊗ η̄ for ξ, η ∈ E , and they are minimal projections. �

Theorem 4.3.12. If M ⊂ B(H) is a finite type I factor, then M ∼= Mn(C) for some n ∈ N.
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Proof. Since M is type I, 1 ∈M has a non-zero abelian subprojection, and since M is a factor this abelian
projection is minimal by Exercise 4.2.5. Thus M has non-zero minimal projections.

Let {pi : i ∈ I} ⊂ P(M) be a maximal family of pairwise orthogonal minimal projections (note I 6= ∅ by
the above). Consider

q := 1−
∑
i∈I

pi.

Suppose q 6= 0. Then the Comparison Theorem and the factoriality of M imply either q � pi or pi � q for
i ∈ I. The former implies q ∼ pi since pi is minimal, but then q is minimal by Proposition 4.2.7 and this
contradicts the maximality of the {pi : i ∈ I}. The latter implies pi ∼ q0 ≤ q and the same argument shows
q0 contradicts the maximality of {pi : i ∈ I}. So we must have q = 0, and therefore∑

∈I
pi = 1

Now, the factoriality of M implies pi ∼ pj for all i, j ∈ I by Exercise 4.2.6. We claim that I is finite. If
not, then let I = I1 t I2 be a partition of I satisfying |I| = |I1| = |I2|, which implies there is a bijection
σ : I → I1. Setting qi := pσ(i), we have pi ∼ qi for all i ∈ I and so by Lemma 4.1.10∑

i∈I
qi ∼

∑
i∈I

pi = 1.

But

1 =
∑
i∈I

pi =

(∑
i∈I1

pi

)
+

(∑
i∈I2

pi

)
=

(∑
i∈I

qi

)
+

(∑
i∈I2

pi

)
>
∑
i∈I

qi,

and so we have contradicted 1 being finite. Thus n := |I| < ∞, and so we can relabel {pi : i ∈ I} =:
{p1, p2, . . . , pn}. Since p1 ∼ pi for each i = 1, . . . , n, we can find vi ∈ M satisfying v∗i vi = pi and viv

∗
i = p1.

Using vi = p1vi for each i = 1, . . . , n we have for any x ∈M

x =

(
n∑
i=1

pi

)
x

 n∑
j=1

pj

 =

n∑
i,j=1

pixpj =

n∑
i,j=1

v∗i vixv
∗
j vj =

n∑
i,j=1

v∗i pivixv
∗
j p1vj =

n∑
i,j=1

v∗i (p1vixv
∗
j p1)vj .

Because p1 is minimal there exists a scalar xi,j ∈ C so that p1vixv
∗
j p1 = xi,jp1. Thus we have

x =

n∑
i,j=1

v∗i xi,jp1vj =

n∑
i,j=1

xi,jv
∗
i p1vj =

n∑
i,j=1

xi,j .

This computation shows that the map

π : M 3 x 7→

 x1,1 · · · x1,n

...
. . .

...
xn,1 · · · xn,n

 ∈Mn(C)

is injective. Since

p1vi(v
∗
kv`)vjp1 = δi=kδj=`p1viv

∗
i vjv

∗
j p1 = δi=kδj=`p1p1p1p1 = δi=kδj=`p1,

we see that π(v∗kv`) = Ek,` ∈ Mn(C). Thus π is a bijection, and we leave it for Exercise 4.3.5 to check that
it is also a ∗-homomorphism.

While we only considered finite type I factors in the above theorem, a similar proof (see Exercise 4.3.6)
shows that properly infinite (i.e. non-finite) type I factors are of the form B(H) for H infinite dimensional.
Moreover, the form of any type I von Neumann algebra M ⊂ B(H) can be given by a tensor product (see
Exercise 4.3.7): M ∼= Z(M)⊗̄B(K) for some Hilbert space K. Thus the theory of type I von Neumann
algebras reduces to measure theory and functional analysis, and consequently researchers today focus their
efforts on type II or type III von Neumann algebras.

We move on to the refinement of type II von Neumann algebras.
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Definition 4.3.13. A type II von Neumann algebra M ⊂ B(H) is said to be type II1 if it is finite, and is
said to be type II∞ if M is properly infinite.

Equivalently, a von Neumann algebra if type II1 if it is finite but has no non-zero abelian projections,
and a von Neumann algebra is type II∞ if it is properly infinite but semi-finite and has no non-zero abelian
projections. Each type II von Neumann algebra uniquely decomposes into a direct sum of type II1 and type
II∞ von Neumann algebras, and consequently each type II factor is either type II1 or type II∞.

Example 4.3.14. L(Γ) for a countable i.c.c. group Γ is type II1 factor. First note that L(Γ) is a factor by
Exercise 1.3.7. It is also finite by Exercise 4.3.1. So it remains to show it has no non-zero abelian projections.
Suppose, towards a contradiction, that p ∈ P(L(Γ)) is non-zero and abelian. Then p is actually minimal by
Exercise 4.2.5. Let {pi}i∈I ⊂ P(L(Γ)) is a maximal family of pairwise orthogonal minimal projections. Then
I 6= ∅ by the above and the exact same argument as in the proof of Theorem 4.3.12 shows n := |I| <∞ and
L(Γ) ∼= Mn(C). Note that Mn(C) is finite dimensional as a vector space. On the other hand, Γ is necessarily
infinite as an i.c.c. group and so {λ(g) : g ∈ Γ} is an infinite linearly independent set (just apply any linear
combination to the vector δe). So L(Γ) ∼= Mn(C) yields a contradiction and hence L(Γ) has no non-zero
abelian projections. �

Example 4.3.15. In this example we will construct an important type II1 factor R called the hyperfinite
II1 factor. Observe that for any n ∈ N we can embed Mn(C) into M2n(C) via

Mn(C) 3 A 7→
(
A 0
0 A

)
∈M2n(C).

These inclusions preserve the norm (since they are injective ∗-homomorphisms) and the normalized trace:

1

2n
Tr

(
A 0
0 A

)
=

1

n
Tr(A) A ∈Mn(C).

Thus if we consider the sequence of inclusions

M2(C) ↪→M22(C) ↪→ · · · ↪→M2n(C) ↪→ · · · .

and define R0 :=
⋃
n≥1M2n(C), then R0 is a ∗-algebra with a norm (although it is not complete) and a

linear functional τ0 : R0 → C defined by τ0(x) = 1
2n Tr(x) when x ∈ M2n(C). From the properties of the

trace, it follows that τ0 is

• unital: τ0(1) = 1;

• positive: τ0(x∗x) ≥ 0 for all x ∈ R0;

• faithful: τ0(x∗x) = 0 if and only if x = 0;

• tracial: τ0(xy) = τ0(yx) for all x, y ∈ R0.

We can therefore consider the GNS representation (H, π) for (R0, τ0), and R0 gives a dense subspace of H.
Define

R := π(R0)′′ ⊂ B(H).

We will show that R is a II1 factor. We must first show it admits a WOT continuous faithful tracial state.
Viewing 1 ∈ R0 as a vector in H, we see that it is cyclic for R by construction. It is also separating for R:

it is separating for π(R0) since τ0 is faithful, so it is cyclic for π(R0)′ and hence separating for π(R0)′′ = R
by Proposition 2.2.4. Thus the linear functional τ : R → C defined by τ(x) = 〈x1, 1〉 is faithful, and as a
vector state it WOT continuous. Using τ(π(x)) = τ0(x) for x ∈ R0, it can be shown that τ also tracial (see
Exercise 4.3.10).

Now, suppose z ∈ Z(R)). Define ϕ : R → C by ϕ(x) := τ(xz), which is still tracial since z commutes
with everything in R. Consequently, restricting ϕ ◦ π to M2n(C) gives a tracial linear functional, and thus
Exercise 1.3.2 implies

ϕ ◦ π(x) = ϕ ◦ π(1)
1

2n
Tr(x) = τ(z)τ(π(x))
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for all x ∈ M2n(C). Since this holds for all n ∈ N, we have ϕ(x) = τ(z)τ(x) for all x ∈ π(R0). The WOT
density of π(R0) along with the WOT conintuity of τ implies this holds for all x ∈ R. Thus τ(xz) = τ(z)τ(x),
or equivalently τ(x(z − τ(z))) = 0 for all x ∈ R. In particular, letting x = (z − τ(z))∗ we see that the
faithfulness of τ implies z − τ(z) = 0 or z = τ(z) ∈ C. Thus R is a factor.

To see that it is finite, suppose v ∈ R is a partial isometry satisfying v∗v = 1 and vv∗ ≤ 1, then

τ((1− vv∗)∗(1− vv∗)) = τ(1− vv∗) = τ(1)− τ(vv∗) = τ(1)− τ(v∗v) = τ(1)− τ(1) = 0.

Since τ is faithful, we must have vv∗ = 1 and so R is finite.
It remains to show that R has no non-zero abelian projections. Proceeding exactly as in Example 4.3.14,

we see that if this is not the case then R ∼= Mn(C) for some n ∈ N. This is a contradiction because Mn(C)
is finite dimensional while R is infinite dimensional since π(R0) is infinite dimensional. Thus R is a type II1

factor. �

The term hyperfinite refers to the fact that R is generated by the finite dimensional algebras πτ (M2n(C)).
Alain Connes showed in 1976 that R is the unique II1 factor with this property. Moreover, this same work,
as mentioned back in Section 1.3.3, shows that the two previous examples coincide when Γ is an amenable
i.c.c. group.

Example 4.3.16. Let (X,Ω, µ) be a probability space and let Γ be a countable discrete group. Suppose there
is a homomorphism α : Γ → Aut(L∞(X,µ)), where Aut(L∞(X,µ)) is the set of (normal) ∗-isomorphisms.

In this case we call α an action of Γ on L∞(X,µ) and write Γ
αy L∞(X,µ). We say the action is

• probability measure preserving (p.m.p.) if
∫
X
αg(f) dµ =

∫
X
f dµ for all g ∈ Γ and f ∈ L∞(X,µ).

• free if for f ∈ L∞(X,µ) and g ∈ Γ, we have f = 0 whenever fαg(h) = fh for all h ∈ L∞(X,µ).

• ergodic if f ∈ L∞(X,µ) is such that αg(f) = f for all g ∈ Γ then f = C1.

For f ∈ L∞(X,µ), define a linear operator πα(f) on `2(Γ)⊗ L2(X,µ) by

πα(f)

∑
g∈Γ

δg ⊗ fg

 =
∑
g∈Γ

δg ⊗ [αg−1(f)fg] fg ∈ L2(X,µ).

Then one can show that πα(f) ∈ B(`2(Γ)⊗L2(X,µ)) and πα : L∞(X,µ)→ B(`2(Γ)⊗L2(X,µ)) is a normal
unital injective ∗-homomorphism (Exercise 4.3.11). For g ∈ Γ, we define

λ(g)

(∑
h∈Γ

δh ⊗ fh

)
=
∑
h∈Γ

δgh ⊗ fh fh ∈ L2(X,µ).

Note that λ(g)πα(f)λ(g−1) = πα(α(f)) (Exercise 4.3.11.(c)). This implies the ∗-algebra generated by
πα(L∞(X,µ)) and λ(Γ) is the set

C 〈πα(L∞(X,µ)), λ(Γ)〉 :=


d∑
j=1

πα(fj)λ(gj) : d ∈ N, f1, . . . , fd ∈ L∞(X,µ), g1, . . . , gd ∈ Γ

 .

Note that C 〈πα(L∞(X,µ)), λ(Γ)〉 is unital. The von Neumann algebra

L∞(X,µ) oα Γ := C 〈πα(L∞(X,µ)), λ(Γ)〉′′

is called the crossed product of L∞(X,µ) by Γ. You should think of it as a von Neumann algebra containing

both L∞(X,µ) and L(Γ) with the action Γ
αy L∞(X,µ) encoded via commutation relations. Consider the

normal linear functional τ : L∞(X,µ) oα Γ→ C defined by τ(x) = 〈x(δe ⊗ 1), δe ⊗ 1〉. Since δe ⊗ 1 is a unit
vector and separating for L∞(X,µ) oα Γ (see Exercise 4.3.13), τ is a unital and faithful.

Assume Γ
αy L∞(X,µ) is a free ergodic p.m.p. action and that Γ is an infinite group. The freeness

and ergodicity imply L∞(X,µ) oα Γ is a factor by Exercise 4.3.15, while the action being p.m.p implies τ
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is tracial by Exercise 4.3.16. Consequently, by the same arguement as in the previous two examples we see
that L∞(X,µ) oα Γ is finite and therefore either a type In or type II1 factor. Since L(Γ) ⊂ L∞(X,µ) oα Γ
and Γ is infinite, we see that the crossed product is not finite dimensional. Thus L∞(X,µ) oα Γ is a type
II1 factor. �

We only considered type II1 factors in the examples above, but for any type II1 von Neuman algebra M
the tensor product M⊗̄B(H) for H infinite dimensional yields a type II∞ von Neumann algebra. In fact, all
type II∞ factors are of this form.

The class of type III factors can also be further decomposed into types IIIλ for λ ∈ [0, 1]. This classifi-
cation is achieved via some very beautiful mathematics known as Tomita–Takesaki theory. Essentially, von
Neumann algebras of this type have intrinsic dynamical systems which determine the parameter λ ∈ [0, 1].

We conclude this chapter with a summary of types for factors. Recall that factor is either finite or
properly infinite. We will also say a factor is atomic if it contains a minimal projection, and otherwise say
it is diffuse.

atomic diffuse

finite

properly infinite

type In, n ∈ N type II1

type I∞ type II∞ type III

semi-finite purely infinite

Exercises

4.3.1. Let Γ be a countable discrete group. Show that all projections in L(Γ) are finite. [Hint: use the
trace.]

4.3.2. Let M ⊂ B(H) be a von Neumann algebra and let p, q ∈ P(M) satisfy p � q. Show that if q is
semi-finite then p is semi-finite.

4.3.3. Let π : M → N be a ∗-isomorphism between von Neumann algebras and let p ∈ P(M).

(a) Show p is finite in M if and only if π(p) is finite in N .

(b) Assuming π is normal, show p is semi-finite in M if and only if π(p) is finite in N .

(c) Show p is purely infinite in M if and only if π(p) is purely infinite in N .

(d) Show p is properly infinite in M if and only if π(p) is properly infinite in N .

4.3.4. Let π : M → N be a normal ∗-isomorphism between von Neumann algebras. Show that M has type
T for T ∈ {I, II, III} if and only if N has type T .

4.3.5. Let π : M →Mn(C) be the map defined at the end of the proof of Theorem 4.3.12. Show that π is a
unital ∗-homomorphism.

4.3.6. Let M ⊂ B(H) be properly infinite type I factor. In this exercise, you will show that M ∼= B(K) for
some infinite dimensional Hilbert space K.

(a) Show that M admits an infinite family {pi : i ∈ I} of pairwise orthogonal and equivalent minimal
projections satisfying ∑

i∈I
pi = 1.

(b) Fix i0 ∈ I and let vi ∈ M be a partial isometry satisfying v∗i vi = pi and viv
∗
i = pi0 . For each x ∈ M

and i, j ∈ I, show that there is a scalar xi,j ∈ C so that pixpj = xi,jv
∗
i vj .

(c) Denote K0 := span{pi : i ∈ I}. Show〈
m∑
k=1

αkpik ,

n∑
`=1

β`pj`

〉
:=

m∑
k=1

n∑
`=1

αkβ̄`δik=j`

defines an inner product on K0.
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(d) Let K be the completion of K0 with respect to this inner product. For each x ∈M show that

π(x) :=
∑
i,j∈I

xi,jpi ⊗ p̄j ∈ B(K),

where here we are viewing pi, pj ∈ K so that pi ⊗ p̄j ∈ FR(K).

(e) Show that π : M → B(K) is normal ∗-isomorphism.

4.3.7. Let H1, . . . ,Hn be Hilbert spaces, and for each j = 1, . . . , n and x ∈ B(Hj) define a a linear operator
πj(x) on H1 � · · · � Hn by

πj(x)(ξ1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ ξn) := ξ1 ⊗ · · · ⊗ (xξj)⊗ · · · ⊗ ξn ξ1 ∈ H1, . . . , ξn ∈ Hn.

(a) For j = 1, . . . , n and x ∈ B(Hj), show that πj(x) extends to a bounded operator on H1 ⊗ · · · ⊗ Hn
with ‖πj(x)‖ = ‖x‖.

(b) Show that πj : B(Hj)→ B(H1 ⊗ · · · ⊗ Hn) is a unital ∗-homomorphism for each j = 1, . . . , n.

(c) Show that πj(B(Hj)) and πk(B(Hk)) commute for j 6= k.

(d) Let Mj ⊂ B(Hj) be a von Neumann algebra for each j = 1, . . . , n. Show that

M1 ⊗ · · · ⊗Mn := span {π1(x1) · · ·πn(xn) : x1 ∈M1, . . . , xn ∈Mn} .

is a unital ∗-algebra.

(e) The tensor product of M1, . . . ,Mn is the von Neumann algebra

M1⊗̄ · · · ⊗̄Mn := (M1 ⊗ · · ·Mn)′′

Show that if M2 = · · · = Mn = C, then M1⊗̄ · · · ⊗̄Mn
∼= M1.

4.3.8. Using the notation from Example 4.3.15, show that R0 can be viewed as an inductive limit (see
[Definition 6.1, GOALS Prerequisite Notes]).

4.3.9. Using the notation from Example 4.3.15, show that for verify that τ0 is unital, positive, faithful, and
tracial.

4.3.10. Using the notation from Example 4.3.15, show that τ is tracial. [Hint: first show τ(xy) = τ(yx)
for x ∈ R and y ∈ π(R0) using the SOT density of π(R0).]

4.3.11. Suppose Γ
αy L∞(X,µ) for a countable discrete group Γ and a probability space (X,µ).

(a) For f ∈ L∞(X,µ), show that πα(f) is a bounded operator on `2(Γ)⊗L2(X,µ) with ‖πα(f)‖ = ‖f‖∞.

(b) Show that πα : L∞(X,µ)→ B(`2(Γ)⊗ L2(X,µ)) is a unital ∗-homomorphism.

(c) Show that λ(g)πα(f)λ(g−1) = πα(αg(f)) for all g ∈ Γ and f ∈ L∞(X,µ).

4.3.12. Suppose Γ
αy L∞(X,µ) for a countable discrete group Γ and a probability space (X,µ). For

f ∈ L∞(X,µ), define φα(f) ∈ B(`2(Γ)⊗ L2(X,µ)) by

φα(f)

∑
g∈Γ

δg ⊗ fg

 =
∑
g∈Γ

δg ⊗ ffg fg ∈ L2(X,µ),

and define ρ(g) for g ∈ Γ by

ρ(g)

(∑
h∈Γ

δh ⊗ fh

)
=
∑
h∈Γ

δhg−1 ⊗ αg(fh) fh ∈ L2(X,µ).

Show that φα(L∞(X,µ)) ∪ ρ(Γ) ⊂ (L∞(X,µ) oα Γ)′.
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4.3.13. Suppose Γ
αy L∞(X,µ) for a countable discrete group Γ and a probability space (X,µ).

(a) Show that δe ⊗ 1 is a cyclic vector for L∞(X,µ) oα Γ.

(b) Show that δe ⊗ 1 is a separating vector for L∞(X,µ) oα Γ.

[Hint: use Exercise 4.3.12.]

4.3.14. Suppose Γ
αy L∞(X,µ) for a countable discrete group Γ and a probability space (X,µ). For

x ∈ L∞(X,µ) oα Γ, define a linear operator xg on L2(X,µ) by

xg(f) = [x(δg−1 ⊗ f)](e).

Show that xg ∈ L∞(X,µ). [Hint: show that xg ∈ L∞(X,µ)′ by using φα as in Exercise 4.3.12.]

4.3.15. Suppose Γ
αy L∞(X,µ) for a countable discrete group Γ and a probability space (X,µ).

(a) Show that L∞(X,µ)′ ∩ L∞(X,µ) oα Γ = L∞(X,µ) if and only if the action is free.

[Hint: using the notation from Exercise 4.3.14, compare (xf)g and (fx)g for x ∈ L∞(X,µ)′ ∩
L∞(X,µ) oα Γ and f ∈ L∞(X,µ).]

(b) Assuming the action is free, show that L∞(X,µ) oα Γ is a factor if and only if the action is ergodic.

4.3.16. Suppose Γ
αy L∞(X,µ) for a countable discrete group Γ and a probability space (X,µ). Let

τ : L∞(X,µ) oα Γ→ C be as in Example 4.3.16.

(a) Show that τ(λ(g)) = δg=e for g ∈ Γ.

(b) Show that τ(πα(f)) =
∫
X
f dµ for f ∈ L∞(X,µ).

(c) Assume that the action is probability measure preserving. Show that τ is a tracial.

4.3.17. In this exercise, you will show that Mn(C) can be realized via a crossed-product construction.
Consider Γ := Zn, the countable cyclic group of order n, and also set X := Zn which we view as simply a
space and equip with the counting (probability) measure.

(a) Show that αg(f) := f( · − g) for g ∈ Γ defines an action Γ
αy L∞(X,µ).

(b) Show that Γ
αy L∞(X,µ) is free, ergodic, and probability measure preserving.

(c) Show that 1{1}, . . . , 1{n} ∈ L∞(X,µ) are pairwise orthogonal and equivalent minimal projections.

(d) Show that L∞(X,µ) oα Γ ∼= Mn(C). What is the preimage of Ei,j under this isomorphism?

(e) Explain why there does not exist a discrete group Γ such that L(Γ) ∼= Mn(C).
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Chapter 5

The Trace

In the previous chapters we saw that the Mn(C) group von Neumann algebras and the hyperfinite II1 factor
are all examples tracial von Neumann algebras. The main purpose of this chapter is to show admitting a
trace that characterizes all finite von Neumann algebras.

The first section give some structural results for the projections on finite von Neumann algebras with an
emphasis on the construction of the dyadic projections and the range of the trace on II1 factors. The next
section examines the outcome of the GNS contruction when applied to a trace on a factor, which is called
the standard representation. There are many like it, but this one is ours. We also introduce ultrapower
and ultraproduct constructions to help us define technical invariants for von Neumann algebras, namely the
McDuff Property and Property Γ.

We leave the details of the construction of a center-valued trace to the very end of the chapter for those
who want to punish themselves.

Lecture Preview: The content in this lecture will be covered over 2 days. The first of these lectures on
the 10th of July will cover Pages 64–66 properties of the trace for finite von Neumann algebras. To prepare
yourself for the lecture, it is highly encouraged that you know 5.4.1. Lemmas 5.1.1 through 5.1.3 will be
briefly discussed, but proof will likely not be presented. Definition 5.1.4 onward will provide the bulk of the
content. Please review the statements of Theorem 5.4.8, 5.4.9 , Theorem 5.4.10 as they will be referenced.

The lecture on Monday the 13th of July will describe the Standard Representation of a II1 factor (Pages
67–70). If time allows, we will describe the ultraprocduct construction (see Definition 5.3.2).

5.1 Tracial von Neumann Algebras

Lemma 5.1.1. Let M ⊂ B(H) be a finite von Neumann algebra and p ∈ P(M) non-zero. If {pi}i∈I ⊂ P(M)
is a family of pairwise orthogonal projections satisfying pi ∼ p for all i ∈ I, then |I| <∞.

Proof. If I is infinite, then there exists a proper subset J ⊂ I with |J | = |I|. But then∑
i∈I

pi ∼
∑
j∈J

pj <
∑
i∈I

pi,

contradicting M being finite.

Lemma 5.1.2. Let M ⊂ B(H) be a type II1 von Neumann algebra. Then there exists a projection p1/2 ∈
P(M) so that p1/2 ∼ 1−p1/2. Moreover, there exists a family of projections {pr}r indexed by dyadic rationals
r ∈ [0, 1] such that:

(i) pr ≤ ps if r ≤ s;

(ii) ps − pr ∼ ps′ − pr′ whenever 0 ≤ r ≤ s ≤ 1 and 0 ≤ r′ ≤ s′ ≤ 1 satisfy s− r = s′ − r′;
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(iii) z(pr) = 1 for every r.

Proof. Let {pi, qi}i∈I be a maximal family of pairwise orthogonal projections such that pi ∼ qi for all
i ∈ I. Define p1/2 :=

∑
i pi and q =

∑
i qi. Then p1/2 ∼ q, and we further claim q = 1 − p1/2. If not,

then 1 − (p1/2 + q) 6= 0. Since M is type II, 1 − (p1/2 + q) is not abelian and consequently there exists
p0 ∈ P([1− (p1/2 + q)]M [1− (p1/2 + q)]) which is strictly less than its central support (in this corner), which
we will denote by z. Therefore, if q0 = z− p0, then p0 and q0 are not centrally orthogonal, and consequently
by Proposition 4.1.9 they have equivalent subprojections. However, this contradicts the maximality of
{pi, qi}i∈I . Thus q = 1− p1/2.

Now, we construct the family of projections indexed by dyadic radicals r ∈ [0, 1] inductively. We let p1/2

be as above, and set p1 := 1 and p0 := 0. Let v ∈M be such that v∗v = p1/2 and vv∗ = 1− p1/2. Note that
p1/2Mp1/2 is type II by Remark 4.3.9. Moreover, it is type II1 since p1/2 is a finite projection: if q ∼ p1/2 with
q < p1/2 then q+(1−p1/2) ∼ p1/2 +(1−p1/2) = 1 by Lemma 4.1.10, but q+(1−p1/2) < p1/2 +(1−p1/2) = 1
contradicts 1 being finite. Thus p1/2Mp1/2 is type II1 and so the above argument yields p1/4 ≤ p1/2 such
that p1/4 ∼ p1/2 − p1/4. Set p3/4 := p1/2 + vp1/4v

∗. It is easily observed that p0 ≤ p1/4 ≤ p1/2 ≤ p3/4 ≤ p1

and p1/4 ∼ p(k+1)/4 − pk/4 for each k = 0, 1, 2, 3. Induction then yields a family satisfying (i) and (ii).

To see (iii), fix a dyadic rational r and set z := 1− z(pr). Let n ∈ N be large enough so that s := 1
2n ≤ r.

Then by (i) we have zps ≤ zpr = 0. Using (ii), we have zps ∼ z(pks − p(k−1)s) for every k = 1, . . . , 2n, and
so it must be that z(pks − p(k−1)s) = 0. We then have

z = z

n∑
k=1

(pks − p(k−1)s) = 0,

so that z(pr) = 1 as claimed.

Lemma 5.1.3. Let M ⊂ B(H) be a type II1 von Neumann algebra, and let {pr}r ⊂ P(M) be the family of
projections indexed by dyadic rationals r ∈ [0, 1] as in the previous lemma. If p ∈ P(M) is non-zero, then
there exists z ∈ P(Z(M)) and a dyadic rational r ∈ (0, 1] so that prz � pz and prz, pz 6= 0.

Proof. By considering the compression Mz(p), we may assume z(p) = 1. By the Comparison Theorem, for
each dyadic rational r ∈ (0, 1] there exists a central projection zr such that przr � pzr and p(1 − zr) �
pr(1 − zr). Suppose, towards a contradiction, pzr = 0 for every r. Since z(p) = 1, it must be that zr = 0
and so p � pr for all r. In particular, we have for each k ∈ N

p � p2−(k+1) ∼ p2−k − p2−(k+1) .

For each k ∈ N, let qk ≤ p2−k − p2−(k+1) be such that p ∼ qk. But then {qk}k∈N is an infinite family or
pairwise orthogonal projections that contradicts Lemma 5.1.1. Thus there must be some r such that pzr 6= 0.
Consequently, zr 6= 0 and so przr 6= 0 since z(pr) = 1.

THe existence of the dyadic projections is one of the first steps in constructing a trace on a type II1

von Neumann algebra. The general idea would be to create a map from the dyadic projections mapping
φ(pr) → r and then attempting to extend this map from M to Z(M). In Section 5.4, take an alternate
route applying the Ryll-Nardjewski Theorem and other Banach space techniques. Unfortunatley, both paths
we described as long and highly technical which is why we are instead choosing to accept that finite von
Neuamm algebras have traces.

Definition 5.1.4. Let M be a von Neumann algebra. If τ : M → C is if there exists a normal, faithful state
which also satisfies the trace condition, τ(xy) = τ(yx), the τ is called a trace on M . We say M is tracial
if M admits a trace.

Assuming that a trace exists, we know that M is automatically finite. The converse, however, is much
more difficult and relies upon the construction of a center-valued trace, (see definition 5.4.1). This can be
done, and the approach we take relies on heavy-handed Banach space techniques.

The upshot is that once you know the center valued state φ : M → Z(M) exists, we identify π : Z(M)→
L∞(X,µ) (assuming that M has a cyclic vector). An even better situation comes up when M a factor
because the center-valued trace is automatically a trace and we can stop here.
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Theorem 5.1.5. A von Neumann algebra M is finite if and only if M has a trace M is a finite factor if
and only if M admits a unique trace τ : M → C.

Theorem 5.1.6. Let M be a finite factor equipped with its unique trace τ .

• If M is of type I, then M is of type In with n finite and τ(P(M)) = {0, 1
n , . . . , 1}.

• If M is of type II1, then τ(P(M)) = [0, 1].

One interpretation of the values of the trace on projections of a finite type In is that it tells us the size
of the space onto which p projects relative to the ambient space. The trace on a II1 factor is similar, except
now, the relative size of a projection can be associated to a number in the continuum [0, 1] and moreover,
every value is realized.

I like to remind myself that every projection in Mn(C) can be unitarily conjugated to a diagonal projection
with the only non-zero entries being 1 somewhere along the diagonal. Here, we can view the trace as
something akin to the normalized counting measure on a set of n points.

The picture that I have for II1 factors is remarkably similar, except first I start with a “matrix” indexed by
the interval [0, 1] and mentally identity the diagonal with the interval [0, 1]. We might imagine an projection
of trace t in a II1 factor with “1’s along the interval [0, t]. This allows to view the trace as a non-commutative
analog of the Lebesgue measure on a [0, 1].

The fact that τ is normal implies that for a countable collection of orthogonal projections, τ(
∑
pi) =∑

τ(pi). Since projections are the analogs of characteristic functions and the trace is similar to a measure,
we interpret this as a kind of countable additivity .

If M ⊆ B(H) is a II1 factor with trace τ , then for any non-zero projection p we have that pMp ⊆ B(pH)
is also a type II1 factor with trace given by τ(pxp)/τ(p) (remember, p is the identity element of pMp). Now
suppose that q is another projection such that τ(q) = τ(p). Since M is a factor, we have that p ∼ q and
1− p ∼ 1− q and thus, there is a unitary u ∈M so that u∗pMpu = qMq and thus the isomorphism class of
pMp depends only on t = τ(p) and not the choice of projection. Then for any 0 < t ≤ 1, we define define
M t := pMp where p is any trace t projection.

It’s also possible to extend the definition of M t for any t ≥ 1 by first choosing n ∈ N with n ≥ t, and
considering Mn(N). Mn(C) is again a II1 factor with trace τn([xi,j ]) =

∑n
i=1 τ(xi,i). Choosing a projection

p ∈ Mn(M) with trace τn(p) = t/n, M t = pMn(M)p. We can check that up to isomorphism, M t does not
depend on our p or n and thus is well defined.

Definition 5.1.7. Let M be a type II1 factor. The fundamental group of M is the subgroup of R+

F(M) := {t ∈ (0,∞) : M t ∼= M}.

The terminology here is unfortunate since this has concept no relation to the better-know fundamental
group from topology. Mentioning the fundamental group of a II1 factor in a talk or in casual conversation
will almost surely result in someone asking if this has any connection to topology. My advice, just say “no”
and then change the subject.

It is in fact a multiplicative subgroup of R, which can be checked by verifying that for any s, t > 0 we
have (M t)s ∼= Mst.

When M is a tracial factor, there is another norm that one frequently encounters called the 2-norm.
Letting τ be the unique trace on M , via the formula

‖x‖2 =
√
τ(x∗x).

Since τ is faithful, we see that M this formula indeed defines a norm on M . The trace also induces a Hilbert
space structure on M via the formlula 〈x, y〉 = τ(y∗x). Unfortunately, M is not complete with respect to
this norm but it’s completion is of interest. We delay that discussion for now. Instead, let’s compare the
2-norm and the oeprator norm of a finte von Neumann algebra.

Theorem 5.1.8. Let M be a tracial von Neumann algebra with trace τ . Then for any x, y ∈ M we have
that

‖xy‖2 ≤ ‖x‖‖y‖2.
In particular, ‖x‖2 ≤ ‖x‖
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Proof. We first prove that for any self-adjoint w ∈ M , w ≤ ‖w‖1, were 1 ∈ M is the identity element.
Define f(t) = ‖w‖ − t on [−‖w‖, ‖w‖]. Then by the continuous functional calculus, we have that σ(f(a)) ⊂
f(σ(a)) ⊆ [0,∞) and thus ‖w‖ − w ≥ 0. In particular x∗x ≤ ‖x‖2.

Now let us compute:

‖xy‖22 = τ(y∗x∗xy) ≤ τ(‖x‖2y∗y) = ‖x‖2τ(y2y) = ‖x‖2‖y‖22.

Exercises

5.1.1. Let R be the hyperfinite II1 factor.

(a) Show for every dyadic rational r ∈ [0, 1], there exists a projection pr ∈ R with τ(tr) = r. Hint: think
about the construction of R as an inductive limit.

(b) Now if t ∈ [0, 1], show that there exists a projection pt ∈ R with τ(pt) = t. Hint: if t ∈ [0, 1], there
exists an increasing sequence (rn) of dyadic rationals such rn → t.

5.1.2. Show that a von Neumann algebra M is finite if and only if for every x, y ∈M such that xy = 1 we
have yx = 1, i.e. if X is right invertible, it is invertible.

5.1.3. Let M be a type II∞ factor and p a finite projection in M . Show that there exists an infinite family
of orthogonal projections {pii∈I} with pi ∼ p and

∑
i∈I pi = 1. If τ : pMp → C is the trace on pMp and

vi ∈M with v∗i vi = p, viv
∗
i = pi, show that

τ̃(x) :=
∑
i∈I

τ(v∗i xvi)

defines a normal tracial map. This is called a semi-finite trace on M .

5.1.4. Let M be a factor and d : P(M)→ [0,∞] be a function such that

(i) d(p+ q) = d(p) + d(q) whenever pq = 0.

(ii) d(p) = d(q) whenever p ∼ q.

(iii) d(p) = 0 implies that p = 0.

Then any such d is called a dimension function.

(a) Show that M is finite if and only if there exists a dimension function d with d(1) = 1.

(b) When M is finite, show that d = τ |P(M) where τ is the trace on M .

(c) If M is type II∞, show that any such function which is not identically 0 must take every value in [0,∞].

(d) If M is type III, show that d(p) ∈ {0,∞}

5.1.5. Let M be a type II1 factor.

(a) Show that (M t)s ∼= M ts.

(b) Conclude that the (poorly named IMO) fundamental group F(M) is in fact a subgroups of R+.
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5.2 The Standard Representation

Let M be finite factor with unique faithful normal tracial state τ : M → C. We denote by L2(M) the GNS
Hilbert space associated to τ ; that is,

〈x, y〉2 := τ(y∗x) x, y ∈M

defines an inner product on M and we take L2(M) to be its completion. For x ∈M , we will sometimes add
the decoration x̂ when we want to emphasize that we are thinking of x as a vector in L2(M). We also obtain
a faithful normal representation πτ : M → B(L2(M)) which is defined by πτ (x)ŷ = x̂y for x, y ∈M . Let us
identify M ∼= πτ (M) so that we view M as a von Neumann algebra in B(L2(M)), and for x, y ∈M we have
xŷ = x̂y.

Definition 5.2.1. For a finite factor M with unique trace τ , the representation M ⊂ B(L2(M)) is called
the standard representation of M .

Note that x1̂ = x̂ implies 1̂ is a cyclic vector for M , and

‖x1̂‖22 = 〈x̂, x̂〉2 = τ(x∗x)

implies 1̂ is separating for M since τ is faithful.
Now, for x ∈M define Jx̂ := x̂∗. We note that

‖Jx̂‖22 = ‖x̂∗‖22 = τ(xx∗) = τ(x∗x) = ‖x̂‖22.

Thus J extends to a conjugate linear isometry on L2(M).

Definition 5.2.2. For a finite factor M , the conjugate linear isometry J on L2(M) is called the canonical
conjugation operator.

Note that since J is conjugate linear, we have 〈Jξ, Jη〉2 = 〈η, ξ〉2 for ξ, η ∈ L2(M). You should also
convince yourself that (JxJ)∗ = Jx∗J for x ∈ B(L2(M)) (Exercise 5.2.1). Also observe that for x, y, z ∈M
we have

x(JyJ)ẑ = xJyẑ∗ = xJŷz∗ = xẑy∗ = x̂zy∗

= Jŷz∗x∗ = Jyẑ∗x∗ = JyJx̂z = (JyJ)xẑ.

Thus x(JyJ) = (JyJ)x since M̂ is dense in L2(M). This implies JMJ ⊂M ′ ∩B(L2(M)). We will show the
reverse inclusion holds, but we first need to develop a few concepts. The following definition should remind
you of left and right convolvers in L(Γ) for a discrete group Γ (see Definition 1.3.4).

Definition 5.2.3. For ξ ∈ L2(M) define (potentially unbounded) linear operators λ(ξ) : M̂ → L2(M) and

ρ(ξ) : M̂ → L2(M) by

λ(ξ)x̂ := (Jx∗J)ξ x ∈M
ρ(ξ)x̂ := xξ.

We will call ξ ∈ L2(M) a left bounded (resp. right bounded) vector if λ(ξ) (resp. ρ(ξ)) extends to a
bounded operator on L2(M), and in this case we also denote this extension by λ(ξ) (resp. ρ(ξ)). We denote
by LB(M) (resp. RB(M)) the collection of λ(ξ) (resp. ρ(ξ)) for left-bounded (resp. right-bounded) vectors
ξ ∈ L2(M).

We make a few observations about left and right bounded vectors. For λ(ξ) ∈ LB(M) and x ∈M

Jλ(ξ)Jx̂ = Jλ(ξ)x̂∗ = J(JxJ)ξ = xJξ = ρ(Jξ)x̂.

This shows that ρ(Jξ) ∈ RB(M) and Jλ(ξ)J = ρ(Jξ). Similarly, we have Jρ(ξ)J = λ(Jξ) and hence
J(LB(M))J = RB(M). Additionally, for ρ(ξ) ∈ RB(M) and x, y ∈M

〈ρ(Jξ)x̂, ŷ〉2 = 〈xJξ, ŷ〉2 = 〈Jξ, x∗ŷ〉2 =
〈
Jx̂∗y, ξ

〉
2

=
〈
ŷ∗x, ξ

〉
2

= 〈x̂, yξ〉2 = 〈x̂, ρ(ξ)ŷ〉2 = 〈ρ(ξ)∗x̂, ŷ〉2 .
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Thus ρ(ξ)∗ = ρ(Jξ), and using our previous identities we see that

λ(Jξ) = Jρ(ξ)J = Jρ(Jξ)∗J = (Jρ(Jξ)J)∗ = λ(ξ)∗,

so λ(xi)∗ = λ(Jξ). Lastly, we observe that for λ(ξ) ∈ LB(M), ρ(η) ∈ RB(M), and x, y ∈M

〈λ(ξ)ρ(η)x̂, ŷ〉2 = 〈xη, λ(Jξ)ŷ〉2 = 〈xη, Jy∗J(Jξ)〉2 = 〈JyJxη, Jξ〉2 = 〈xJyJη, Jξ〉2
= 〈ξ, JxJyJη〉2 = 〈Jx∗Jξ, yJη〉2 = 〈λ(ξ)x̂, ρ(Jη)ŷ〉2 = 〈ρ(η)λ(ξ)x̂, ŷ〉2 .

Thus λ(ξ)ρ(η) = ρ(η)λ(ξ), and so LB(M) ⊂ RB(M)′. We collect these observations in the following
proposition.

Proposition 5.2.4. Let M be a finite factor. For λ(ξ) ∈ LB(M) and ρ(η) ∈ RB(M) we have

λ(ξ)∗ = λ(Jξ) = Jρ(ξ)J

ρ(η)∗ = ρ(Jη) = Jλ(η)J.

Moreover, J(LB(M)J = RB(M) and LB(M) ⊂ RB(M)′.

Just as left and right bounded vectors should remind of left and right convolvers, the proof of the following
theorem should remind you of how we showed R(Γ) = L(Γ)′ (see Theorem 1.3.7).

Theorem 5.2.5. Let M be a finite factor with trace τ . Under the standard representation M ⊂ B(L2(M)),
we have M ′ = JMJ where J is the canonical conjugation operator on L2(M).

Proof. For x, y ∈M we have

λ(x̂)ŷ = (Jy∗J)x̂ = Jy∗x̂∗ = Jŷ∗x∗ = x̂y = xŷ,

so that λ(x̂) = x. Hence M ⊂ LB(M). Also, for x ∈M ′ and y ∈M we have

ρ(x1̂)ŷ = yx1̂ = xy1̂ = xŷ,

so that ρ(x1̂) = x. Hence M ′ ⊂ RB(M). Thus

M ⊂ LB(M) ⊂ RB(M)′ ⊂ (M ′)′ = M,

where the second inclusion follows from Proposition 5.2.4. Thus M = LB(M) = RB(M)′. Similarly,

M ′ ⊂ RB(M) ⊂ LB(M)′ ⊂M ′,

and so M ′ = RB(M) = LB(M)′. Thus M ′ = RB(M) = J(LB(M))J = M .

One consequence of the above theorem is that M ′∩B(L2(M)) is also a finite factor. Indeed, τ ′(Jx∗J) :=
τ(x) for x ∈ M defines a trace on M ′. However, this need not be true for an arbitrary representation
M ⊂ B(H) of a finite factor.

We change topics slightly here and derive another important concept from the standard representation.

Definition 5.2.6. Let M ⊂ B(H) be a von Neumann algebra and 1M ∈ N ⊂M a von Neumann subalgebra.
A conditional expectation from M to N is a linear map E : M →M satisfying

(i) E(a) = a for all a ∈ N ;

(ii) E(axb) = aE(x)b for all a, b ∈ N and x ∈M ;

(iii) E(x) ≥ 0 whenever x ≥ 0.
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Observe for x ∈M that one has

0 ≤ E ((x− E(x))∗(x− E(x))) = E (x∗x− x∗E(x)− E(x)∗x+ E(x)∗E(x))

= E(x∗x)− E(x∗)E(x)− E(x)∗E(x) + E(x)∗E(x) = E(x∗x)− E(x∗)E(x).

So E(x∗)E(x) ≤ E(x∗x). Since E preserves positive elements, decomposing x as a linear combination of
four positive elements yields E(x∗) = E(x)∗. Thus we have E(x)∗E(x) ≤ E(x∗x) ≤ E(‖x‖21M ) = ‖x‖21M ,
which implies ‖E(x)‖ ≤ ‖x‖. That is, E is automatically a contraction.

In general, a conditional expectation from M to a subalgebra N need not exist. However, when M is a
finite factor the situation is quite nice:

Theorem 5.2.7. Let M be a finite factor with trace τ . If 1M ∈ N ⊂M is a von Neumann subalgebra, then
there exists a unique conditional expectation EN : M → N satisfying τ ◦ EN = τ . Moreover, EN is normal
and faithful.

The proof of this theorem is beyond the scope of these notes, but can be found in An introduction to II1

factors by Claire Anantharaman-Delaroche and Sorin Popa. We mention that if eN := [N 1̂] then one can
show eN x̂ is left bounded for all x ∈M and EN (x) = λ(eN x̂) for x ∈M . Observe that

ÊN (x) = EN (x)1̂ = λ(eN x̂)1̂ = J1∗JeN x̂ = eN x̂.

Since 1̂ is separating for M (and hence N), EN (x) is the unique a ∈ N satisfying â = eN x̂. Moreover, EN (x)
is the unique a ∈ N satisfying

〈x̂, b̂〉2 = 〈â, b̂〉2 ∀b ∈ N.

Indeed,

〈x̂, b̂〉2 = 〈x̂, eN b̂〉2 = 〈eN x̂, b̂〉2 = 〈ÊN (x), b̂〉2,

implies that 〈â − ÊN (x), b̂〉2 = 0 for all b ∈ N . Choosing b̂ = â − ÊN (x) shows that â = ˆEN (x) and so
a = EN (x) since 1̂ is separating for M .

Exercises

5.2.1. For x ∈ B(L2(M)), show that (JxJ)∗ = Jx∗J .

5.2.2. For n ∈ N, show that L2(Mn(C)) = Mn(C) with inner product

〈A,B〉2 =
1

n

n∑
i,j=1

Ai,jBi,j .

5.2.3. For a discrete i.c.c. group Γ, let M := L(Γ).

(a) Show that L2(M) = `2(Γ).

(b) Show that LB(M) = LC(Γ) and RB(M) = RC(Γ).

5.2.4. Let M be a finite factor with trace τ . For N := C ⊂ M , show that the conditional expectation
EN : M → N is given by EN (x) = τ(x)1M .

5.2.5. For n ∈ N, let D ⊂ Mn(C) be the subalgebra of diagonal matrices. Show that the conditional
expectation ED : Mn(C)→ D is given by

ED

 a1,1 · · · a1,n

...
. . .

...
an,1 · · · an,n

 =

 a1,1 0
. . .

0 an,n


5.2.6. Let Γ be a discrete i.c.c. group. Let Λ < Γ be a subgroup, and view L(Γ) as a von Neumann subalgebra
of L(Γ). Show that the conditional expectation EL(Λ) : L(Γ)→ L(Λ) satisfies EL(Λ)(λ(g)) = 1Λ(g)λ(g).
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5.3 The Tracial Ultraproduct and Ultrapowers

For this portion, we fix a family of von Neumann algebras (Mn)n∈N such that every Mn is finite with trace
τn. We fix an ultrafilter ω ∈ β(N), where β(N). We let

`∞(N, (En)) =

{
(xn) ∈

∞∏
n=1

Mn : sup
n∈N
‖xn‖ <∞

}
,

denote the ∗-algebra of bounded sequences. We define the trace ideal to be

I =
{

(xn) ∈ `∞(N, (Mn) : lim
n→ω

τn(x∗nxn) = 0
}

Lemma 5.3.1. I as defined above is an operator closed 2-sided ideal of

`∞(N, (Mn))

.

Proof. Letting (xn) ∈ I, notice that for any an, bn ∈Mn, we have that

‖anxnbn‖2 ≤ ‖an‖‖bn‖‖xn‖2,

and hence
lim
n→ω

τn(b∗nxna
∗
nanxnbn) ≤ lim

n→ω
(‖an‖‖bn‖‖xn‖2)2 = 0

Definition 5.3.2. Consider a family of finite von Neumann algebras (Mn)n∈N such that every Mn is finite
with fixed trace τn, and fix an ultrafilter ω ∈ β(N) where β(N) is the Stone-Cech compactification of N. The
algebra `∞(N, (Mn))/I, called the ultraproduct of the family (Mn). ‖(xn)‖ = limn→ω ‖xn‖ is a norm on the
ultraproduct. When Mn = M is a fixed finite von Neumann algebra, then this is called the ultrapower of
M , and is denoted by Mω.

There is a natural embedding of M ⊆Mω which is defined by mapping x to the equivalence class of the
constant sequence (x) ∈Mω.

Observe that since every element of `∞(N, (Mn))/I with limn→ω ‖xn‖ = 0 is contained in the trace ideal
I, and thus the ‖(xn)‖ = limn→ω ‖xn‖.

Theorem 5.3.3. The ultrapoduct of a family of finite von Neumann algebras is again a finite von Neumann
algebra with trace τω := limn→ω τn. Additionally, the ultraproduct is a factor whenever each of the Mn’s are
factors.

Notice that the definition above is in some sense uninteresting when ω is a principle ultrafilter. Hence,
we often make the standing assumption that an utlrafilter is non-principle.

Definition 5.3.4. Let M be a tracial von Neumann algebra. M has Property Gamma if and only if
M ′∩Mω 6= C where ω is a non-principle ultrafilter on N. M has the McDuff property if and only if M ′∩Mω

is non-abelian.

The advantage of working with an ultrapower von Neumann algebar is that it converts asymptotic
behavior within a von Neumann algebra into something exact. To say the same thing more concretely, the
key property of ulttrapowers is countable saturation, which essentially enables us to pass from approximately
satisfying a certain property to exactly satisfying that property. On the flip side, if an ultrapower of a von
Neumann Mω algebra satisfies a certain property, then there should be some kind of sequential version of
that same statement for M .

This is not the definition of Property Γ or the McDuff property that one usually encounters. However,
the ultrapower version of these concepts simplifies things quite a bit. For example, here are the version of
Property Γ and the McDuff property that is frequently found in the literature.
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Definition 5.3.5. Let M be a tracial von Neumann algebra. M is said to have property Γ if there exist
a sequence of unitaries (un)n∈N with τ(un) = 0 and

lim
n→∞

‖uxn − xun‖2 = 0

for every x ∈M . This sequence (un)n∈N is said to be an asymptotically central sequence of M . M is McDuff
(or has the McDuff property) if M ∼= M ⊗R.

R, the hyperfinite II1 factor, has both Property Γ and the McDuff property, an hence any McDuff von
Neumann algebra has property Γ, though my proof does depend on the model I create for R R is isomorphic
to infinite tensor product of M2(C). Other examples McDuff von Neumann algebras include infinite tensor
products of II1 factors. Murray and von Neumann were able to show that L(F2) does not have Property Γ
and hence L(F2) 6∼= R. The issue here is that we have not talked about tensor products of von Neumann
algebras,

We now have the terminology to state the infamous Connes Embedding Problem (sometimes called the
Connes Embedding Conjecture). Does every II1 factor M admit an embedding into Rω wehere Rω is some
ultrapower of R? There are a myriad of equivalences that one can formulate here. In the language of free
probability theory, the existence of an embedding of M into Rω is equivalent to M admitting micorstates. In
C∗ algebras, this question about embeddings of every possible II1 factor is logically equivalent verifying that
the tensor square of C∗(Fn) admits exactly one C∗ norm. The language of operator spaces and quantum
information theory allow for equivalent rephrasings of the Connes Embbedding Problem that, while notable,
will not be discussed here. Talk to Roy...

Property Gamma is an invariant of the algebra and allowed Murray and von Neumann to show that there
are at least 2 type II1 factors. Here, we show that while the group of finitely supported permutations of
N, S∞, has Gamma, produces a von Neumann algebra L(S∞) with Gamma while L(F2) does not. We will
proceed by getting our hands dirty by looking at sequences of unitaries in the von Neumann algebras.

Embed Sn ⊆ Sn1
my mapping g ∈ Sn a permutation of the set {1, . . . , n} into {1, . . . , n, n + 1} by

considering it as a permutation that leave n+ 1 fixed. We now have trace-preserving, unital, embeddings of
the von Neumann algebras

L(S2) ⊆ L(S3) ⊆ · · · ⊆ L(S∞).

Notice that
⋃
n∈N L(Sn) is a weak-operator topology dense subset of L(S∞). Let gk be the transposition

that swaps 2k and 2k + 1. Notice that if n < k then gkg = ggk for every g ∈ Sn precisely because these
group elements permute disjoint subsets of N. Let uk = λgk (left-regular representation). If x ∈ L(Sn) then
we may write x =

∑
g∈Sn

cgλg. So now, we have that whenever k > n

ukx = uk
∑
g∈Sn

cgλg =
∑
g∈Sn

cgukλg =
∑
g∈Sn

cgλgkg =
∑
g∈Sn

cgλggk =
∑
g∈Sn

cgλgλgk = xuk

Thus, we have that ‖xuk−ukx‖ → 0 for every x ∈
⋃
n∈N L(Sn). Since the trace is WOT continuous and the

aformentioned algebra is WOT dense in L(S∞) this holds for every x ∈ L(S∞) show that this von Neumann
algebra has property Gamma.

Moving to a new algebra L(F2), we first study the representation π : F2 → U(`2(Γ)) given by mapping
ξ ∈ `2(F2) to πg(ξ)(x) = ξ(g−1xg). This is given by applying the left and right regular representation at the
same time. Notice that this leaves Cδe fixed, so instead we will consider the restriction to

π : F2 → U(`2(F2 \ {e})).

For notation’s sake, I’m gonna write H = `2(F2 \ {e}) = `2(F2) 	 Cδe, and F2 = 〈a, b〉. Let’s decompose
F2 \ {e} into Sa and Sb, the words beginning with a power of a and b, respectively. This decomposes
H = `2(Sa) ⊕ `2(Sb), and we’ll call each summmand into Ha and Hb. a, a

2 ∈ Sa and b ∈ Sb by definition.
Moreover, πa(Hb) ⊂ Ha, πa2(Hb) ⊆ Ha, πa(Hb) ⊥ πa2(Hb), and πb(Ha) ⊆ Hb. More notation: PH is the
orthogonal projection onto a closed subspace H ⊆ H.

‖PHb
(πa(ξ))‖22 + ‖PHb

(πa2(ξ))‖22 = ‖Pπa(Hb)(ξ)‖22 + ‖Pπa2 (Hb)(ξ)‖22 ≤ ‖PHa
(ξ)‖22,
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and
‖pHa(πb(ξ))‖2 = ‖Pπb(Ha)(ξ)‖ ≤ ‖PHb

(ξ)‖.

Thus, if ξn is any bounded sequence which is almost invariant (‖πg(ξn)− ξ‖2 → 0 for every g ∈ Γ), we would
have that

√
2 lim sup ‖PHb

(ξn)‖ ≤ lim sup ‖PHa
(ξn)‖ and lim sup ‖PHa

(ξn)‖ ≤ lim sup ‖PHb
(ξn)‖. and thus

‖ξn‖2 → 0, a contradiction. Hence, we cannot have almost invariant vectors, and instead this representation
has spectral gap. That is, there exists a constant k ≥ 0 and g1, . . . , gk ∈ F2 so that for every ξ ∈ H we have

‖ξ‖22 ≤ k
j∑
i=1

‖πgk(ξ)− ξ‖22.

Let’s use these group elements to show that L(F2) does not have property Gamma. For any x ∈ L(F2) we
have that (x− τ(x))δe ∈ H. We define vi = λgi so show that

‖x− τ(x)1‖22 ≤ k
k∑
i=1

‖v∗i xvi − vix‖22 = k

k∑
i=1

‖xvi − vix‖22

In particular, any trace zero unitary must have that

‖u‖22 ≤ k
k∑
i=1

‖uvi − viu‖22

preventing us from forming a sequence of unitaries which asymptotically commute with vi’s, showing that
L(F2) does not have Gamma.

So at this point, we have shown that L(S∞) 6= L(F2) but not much else...

5.4 Center-Valued traces

Fixing for a moment a finite dimensional factor, Mn(C), there is a distinguished state τn : Mn(C)→ C which
we call the trace and it is characterized by the so-called tracial property which means that τ(xy) = τ(yx),
c.f. Exercise 1.3.2. Now, suppose that M = Mn1(C)⊕Mn2(C) is a direct sum of 2 finite dimensional factors.
M admits multiple traces, for example τ = 1

2 (τn1 ⊕ τn2) and τ ′ = 1
4τn1 ⊕ 3

4τn2 . We will soon see that the
existence and uniquness of a trace finite factors. Even when M is not a factorm, there is however a surrogate
for the trace, a unique map φ : M → Z(M) that reduces to the trace when M is a factor. Moreover, the
existence of such a map completely characterizes finite von Neumann algebras.

Definition 5.4.1. Let M be a von Neumann algebra and Z(M) its center. A map φ : M → Z(M) is a
center-valued state if

(i) φ is linear and bounded,

(ii) and φ(zm) = zφ(m) for any z ∈ Z(M),

If in addition we have that

(iii) φ(xy) = φ(yx) for every x, y ∈M ,

then φ is called a center-valued trace.

Lemma 5.4.2. Let M be a von Neumann algebra and φ : M → C be any linear functional. The following
are equivalent:

(i) φ(xy) = φ(yx) for all x, y ∈M .

(ii) φ(x) = φ(u∗xu) for all x ∈M and all unitaries u ∈M .

A linear functional as in Lemma 5.4.2 is called a tracial linear functional. A warning: some authors use
the word central to describe linear functions which satisfy this property.
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Proof. This is left as Exercise 5.4.2.

We now discuss the structure theory of states, in particular the polar decomposition. If φ : M → C is
a normal positive linear functional, then {x ∈ M : φ(x∗x) = 0} is a left ideal which is closed in the WOT,
thus by Exercise 4.2.8 there exists a projection p ∈ P(M) such that φ(x∗x) = 0 if and only if x ∈ Mp. We
denote by s(φ) = 1− p the support projection of φ. Note that if q = s(φ) then

φ(xq) = φ(qx) = φ(x)

for all x ∈M , and moreover, φ will be faithful when restricted to qMq.

Theorem 5.4.3 (Polar Decomposition for States). Suppose M is a von Neumann algebra and φ ∈M∗, then
there exists a unique partial isometry v ∈ M and positive linear functional ψ ∈ M∗ such that φ(x) = ψ(xv)
for every x ∈M and v∗v = s(ψ)

Proof. Assume for now that ‖φ‖ = 1. There exists some a ∈ (M)1 so that φ(a) = ‖φ‖. Let a∗ = v|a∗|
denote the polar decomposition of a∗. Letting ψ(x) = φ(xv), we have that ψ(|a∗|) = φ(a) = ‖φ‖ = 1. Since
0 ≤ |a∗| ≤ 1, it follows that for every t ∈ R

‖|a∗|+ eit(1− |a∗|)‖ ≤ 1.

Fix t so that eitψ((1− |a∗|) ≥ 0. Then we have

ψ(|a∗|) ≤ ψ(|a∗|) + eitψ((1− |a∗|) ≤ ‖φ‖ = φ(|a∗|),

and thus ψ(1) = ψ(|a∗|) = ‖φ‖ implying that ψ is a positive linear functional.
Let p = v∗v. Since we may replace a with avs(φ)s, we may assume that p ≤ s(φ). For every x ∈M such

that ‖x‖ ≤ 1, we have that
ψ(|a∗|+ (1− p)x∗x(1− p)) ≤ ‖ψ‖

which shows that ψ((1− p)x∗x(1− p)) = 0 and thus p ≥ s(φ).
We leave out the proof of the uniqueness for now.
To see thatφ(x) = ψ(xv) it suffices to show that φ(x(1 − p)) = 0 for all x ∈ M . Suppose that ‖x‖ = 1

and φ(x(1− p)) = β ≥ 0. Then for n ∈ N we have

n+ β =φ(na+ x(1− p))
≤‖na+ x(1− p)‖
=‖(na+ x(1− p))(na+ x(1− p)∗‖1/2

≤‖n2|a∗|2 + x(1− p)x∗‖1/2

≤
√
n2 + 1

implying that β = 0.

Our goal with the next few lemmas is to characterize finite von Neumann algebras in terms of the
existence of a center-valued state. The presentation contained here is an existence result that relies on
the Ryll-Nardzewski fixed point theorem. We exclude the proof for now; instead, accept it as fact and
acknowledge that it bestows upon us the existence of a fixed point in an appropriate setting.

Theorem 5.4.4 (Ryll-Nardzewski). Let X be a Hausdorff locally convex vector space, K ⊆ X a non-empty,
weakly compact, convex subset and E a non-contracting semigroup of weakly continuous affine mappings of
K into K . Then there exists an x0 ∈ K, such that T (x0) = x0 for every T ∈ E.

Lemma 5.4.5. Let M be a von Neumann algebra, Z(M) its center, and φ ∈ M∗ a normal tracial linear
functional. Then ‖φ‖ = ‖φ|Z(M)‖. In particular, φ is positive if and only if φ|Z(M) is positive.
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Proof. Let φ = Rv|φ| be the polar decomposition of φ. The for any unitary u ∈M , we have that

φ = Ru∗vuTu|φ|.

From the uniqueness of the polar decomposition for linear functionals and the centrality of φ, it follows that
that u∗vu = v and Tu|φ| = |φ| for every unitary u ∈ M . Thus, v ∈ Z(M) and |φ| is also tracial. Thus, we
have that

‖φ‖ = ‖ |φ| ‖ = |φ|(1) = φ(v∗) ≤ ‖φ|Z(M)‖‖v∗‖ ≤ ‖φ‖.

Lemma 5.4.6. Let M be a finite von Neumann algebras with Z(M) its center. Then any normal linear
functional ω : Z(M)→ C extends uniquely to a bounded normal tracial linear function φω on M . Moreover,
‖φω‖ = ‖ω‖, φω is positive whenever ω is positive, and the map ψ : Z(M)∗ → M∗ defined by ω 7→ φω is
linear.

Proof. The uniqueness will be left as an exercise (see 5.4.4). If we can indeed show that such an extension
exists, then the norm preserving property, and positivity follow from the previous lemma. To show the
existence, let φ ∈ M∗ be any normal linear functional extending ω to M . For notational convenience,
whenever u is a unitary in M we let Tu : M∗ → M∗ denote the transformation mapping ψ 7→ ψ ◦ Ad(u)
where Ad(u)(x) = u∗xu for every x ∈ M . In the statement of the Ryll-Nardzewski theorem, let X = M∗,
K be the norm closed convex hull of = {Tuφ : u ∈ U(M)} ⊆M∗, and E = {Tu|K}. We claim without proof
that K is a weakly compact, convex, non-empty subset of X = M∗. Further, observe that Tu|K : K → K
and that Tu is an isometry, making E a collection of non-contracting semi-group of weakly continuous affine
mappings of K to itself.

Then Ryll-Nardzewski Theorem provides the existence of a fixed point φω ∈ K, i.e. Tuφω = φω for every
u ∈M implying that φω is a normal tracial linear functional on M .

Finally, we show that φω|Z(M) = ω. Notice that by construction, φ|Z(M) = ω, and hence, Tuφ|Z(M) = ω
for every u ∈ U(M). Thus, any convex combination and therefore any element of K will also equal ω when
restricted to the center of M .

Now to show linearity, assume that ω1, ω2 ∈ Z(M)∗ and c ∈ C. Then, ψω1+cω2 and ψω1 + cψω2 are
extensions of ω1 + cω2, and by uniqueness they are equal.

Theorem 5.4.7. If M if a finite von Neumann algebra, then admits a center-valued trace, namely the
adjoint of the map ψ : Z(M)∗ →M∗ defines a center-valued state on a finite von Neumann algebra.

Proof. Now consider a finite von Neumann algebra M . By Lemma 5.4.6, there is a linear and isometric map
ψ : Z(M)∗ → M∗ taking normal linear functionals on Z(M) to tracial linear functional on M . Since we
may identify Z(M)∗)

∗ with (Z(M) and (M∗)
∗ with M , we let φ : M → Z(M) be the map determined by

the relation
ψω(x) = ω(φ(x))

for every ω ∈ Z(M)∗ and x ∈M . In other words, φ : M → Z(M) is the (Banach space) adjoint of the map
ψ.

Theorem 5.4.8. Let M be a von Neumann algebra, Z(M). If φ : M → Z(M) is a center-valued trace, then
φ has the following additional properties:

(i) φ is unique.

(ii) ‖φ‖ = 1,

(iii) φ is σ-WOT continuous (normal),

(iv) φ(zx) = zφ(x) for every x ∈M and z ∈ Z(M) (bimodular),

(v) φ(x∗x) ≥ 0 (positive),

(vi) φ(x∗x) = 0 =⇒ x = 0 (faithful),
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Proof. If we suppose that there was another center-value trace φ̃ on M distinct from φ, there would exist
x ∈M so that φ(x) 6= φ̃(x). But this would imply that we can find a normal linear functional ω ∈ Z(M) so
that ω(φ(x)) 6= ω(φ̃(x)). However, since ω ◦ φ and ω ◦ φ̃ are distinct bounded normal extensions of ω which
are tracial, this contradicts Lemma 5.4.6. Hence, the center-valued trace from Theorem 5.4.7 is the unique
such map on M .

The normality and the the fact that the φ has norm 1 arises from the fact that φ is the (Banach space)
adjoint of the map from Lemma 5.4.6.

Now to prove the bimodularity, we start by fixing a unitary u ∈ Z(M) and defining ψ : M → Z(M)
by ψ(x) = u∗φ(ux). Notice that ψ is a center-valued trace and thus must equal φ, i.e. φ(x) = u∗φ(ux) for
every x ∈ M . Replacing x with u∗x shows that φ(u∗x) = u∗φ(x) for every x ∈ M and for every unitary
u ∈ Z(M). Since every element z ∈ Z(M) is a linear combination of 4 unitaries and φ is a linear map, we
now have that φ(zx) = zφ(x) for every z ∈ Z(M) and every x ∈M .

In order to verify postivity, we will show that ω(φ(x∗x)) ≥ 0 for every positive linear functional ω ∈
Z(M)∗. Notice that φ must satisfy

ω(φ(x∗x)) = φω(x∗x),

where φω is the normal tracial linear functional extending ω. Since Lemma 5.4.6 shows that φω(x∗x) ≥ 0,
which is what we wanted to show.

We will verify the defniteness of φ by proving the contrapositive. In particular, if y ∈ M and y > 0 we
will show that there exists ω ∈ Z(M)∗ so that ω(φ(y)) 6= 0. To this end, fix y ∈M be a positive element and
z = z(y) its central support projection, choose ω a positive normal linear functional such that p = s(ω) ≤ z.
If ψω is the tracial extension of ω to M , it is invariant under conjugation by any unitary in M . Hence, its
support projection is also invariant under conjugation by all unitaries of M implying that s(φω) is in the
center of M and in particular s(φω) = s(ω) = p. If φω(y) = 0, then xp = 0; however this is not possible
since 0 6= p ≤ z. Thus, φω(y) = ω(φ(x)) 6= 0, finishing the final claim.

In light of the first item in the previous lemma, we are justified calling φ : M → Z(M) the canonical
center valued trace on a finite von Neumann algebra M , whenever such a map exists. We should observe
that the canonical center valued trace φ is an example of a conditional expectation. That is, φ is a positive,
bimodular, norm 1, linear functional from M to the subalgebra Z(M). We will explore general conditional
expectations in a later section.

Corollary 5.4.9. M is a finite von Neumann algebra if and only if M has a unique center-valued trace.

Proof. Assume that φ is a center-valued trace on M . If p is a projection on in M such that p ≤ 1 and p ∼ 1.
In this case, 0 ≤ 1− p and 1 = φ(1) = φ(p). It follows that 0 ≤ φ(1− p) = φ(1)−φ(p) = 0. Thus, 1 = p and
hence M is finite.

One of the main uses of a center-valued trace is that it detects equivalence of projections.

Theorem 5.4.10. Let M be a von Neumann algebra with center-valued trace φ. If p and q are projections
in M ,p � q if and only if φ(p) ≤ φ(q). Specifically, p ∼ q if and only if φ(p) = φ(q).

Proof. If p � q and v is a partial isometry such that v∗v = p and vv∗ ≤ q, then φ(p) = φ(v∗v) = φ(vv∗) ≤
φ(q), where the last line follows from the fact that q − vv∗ ≥ 0 and the linearity of φ.

Conversely, assume that φ(p) ≤ φ(q). Linearity of φ shows that φ(q − p) ≤ 0. By the Comparison
Theorem, there exists a central projection z so that zp � zq and (1 − z)q � (1 − z)p. Using the tracial
property of φ in conjunction with the , we have that φ((1−z)(q−p)) ≥ 0. The bimodularity of φ now implies
0 ≤ (1 − z)φ(q − p) From here, we use the initial assumption to conclude that (1 − z)φ(q − p) ≤ 0, which
when combined with the positive definiteness implies that (1− z)q ∼ (1− z)p. Thus, p � q.

The fact that p ∼ q is logically equivalent to φ(p) = φ(q) follows from an application of Proposition 4.1.5
(Cantor-Schoder-Bernstein for projections).

For this portion, we fix a finite von Neumann algebra M with center valued trace φ : M → Z(M).

Definition 5.4.11. M is homogeneous of type In if there exists a family of n equivalent abelian mutually
orthogonal projections,e1, . . . , en , such that

∑n
i=1 pi = 1.
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An elementary example of a homogenous von Neumann algebra of type In is the n×n matrices, Mn(C).

Theorem 5.4.12. Let M be a finite homogeneous type In von Neumann algebra and φ : M → Z(M) its
center valued trace. Then the range of φ restricted to the projections of M coincides with

n∑
k=1

k

n
zk

where z1, . . . , zn are mutually orthogonal central projections

Proof. First, we show that there exists a projection p0 so that z(p0) = 1. Letting {p1, . . . , pk} be a maximal
family of mutually centrally orthogonal abelian projections (z(pi)z(pj) = 0 whenever i 6= j). Then p0 =

∨
pi

is also abelian, and by maximality we must have that z(p0)) = 1.
Since M is homogeneous, of type In, there exists a family of n abelian, mutually orthogonal projections,

equivalent to p0 whose sum equals 1. Hence

1 = φ(1) = φ

(
n∑
i=1

qi

)
=

n∑
i=1

φ(qi) = nφ(p0).

Now, for any central projection z we see that φ(p0z) = 1
nz and thus the range of φ|P (M) contains elements

of the form indicated above.

A center valued trace on a II1 von Neumann algebra satisfies an analog of the intermediate value property.

Theorem 5.4.13. Let M be a type II1 von Neumann algebra with center valued trace φ. If p, q are projections
in M and z ∈ Z(M) is a central projection with φ(q) ≤ z ≤ φ(q), then there exists some projection r with
p ≤ r ≤ f and φ(r) = q.

Proof. First an observation about II1 von Neumann algebras: if s is any projection and ε > 0 then there exists
a non-zero projection sε ≤ s such that φ(sε) ≤ εz(sε). To this end, choose n so that 1

2n ≤ ε. Since M is type
II1, Lemma 5.1.2 shows that there is a family of 2n equivalent, mutually orthogonal, non-zero subprojections
of s whose sum is s. Letting sε be any one of these, this now gives that φ(sε) = 1

2nφ(s) ≤ εφ(s) ≤ εz(eε).
Now, let P a maximal family of totally ordered projections in M such that if s ∈ P then p ≤ s ≤ q and

φ(s) ≤ z. Such a collection exists and is non-empty since p ∈ P . Letting r =
∨
s∈P s, we have that p ≤ r ≤ q

and φ(p) ≤ z.
Let’s suppose that z − φ(r) > 0. Then in this case, there is some ε > 0 and a no-zero central projection

w so that
z − φ(r)w ≥ εw.

Notice that this would imply that (q − r)w 6= 0; otherwise we would have that φ(r)w = φ(p) ≥ zp, a
contradiction . So, we can find some non-zero projection sε with sε ≤ (p − r)w and φ(sε) ≤ εw. But this
would imply that r + Sε ∈ P , contradicting the maximality of P . So we must have that z = φ(r).

Exercises

5.4.1. Show that if M is finite and separable, then M is tracial. When M is not a factor show that a trace
is not unique.

5.4.2. Prove Lemma 5.4.2. [Hint: use Exercise 3.1.7.]

5.4.3. Let n1, . . . , nk be a collection of natural numbers and consider M =
⊕k

i=1Mni
(C).

(a) Compute the center of M . Show that M has a continuum of faithful states φ : M → C with the tracial
property.
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(b) M = M2(C)⊕M3(C) has two non-zero orthogonal central projections which sum to the identity of M ,
which we call z1, z2. For each a ∈ {0, 1

2,1} and b ∈ {0, 1
3 ,

2
3 , 1}, find a projection p ∈ P(M) such that

φ(p) = az1 + bz2 where φ is the center-valued trace.

5.4.4. Show that under the conditions in 5.4.6, the extension of ω to a tracial state defined all of M is
unique.
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Chapter 6

Subfactors

In this chapter we will study subfactors: an inclusion of factors N ≤M satisfying 1M ∈ N . We will restrict
ourselves to the case when N and M are both II1 factors, though more general inclusions have been studied
extensively in the literature. Note that if τM is the unique trace on M , then τM |N is necessarily the unique
trace on N . Despite the starting point sounding like a an Xzibit meme, subfactors result in an incredibly
rich theory with deep connections to knot polynomials and tensor categories.

This chapter will not be as thorough as the other chapters, and part of the reason is because entire books
can be written about this subject alone. We present here only a starting point for learning about subfactors,
though we will strive to present complete details whenever possible.

6.1 Index for Subfactors

Let 1M ∈ N ⊂ M be an inclusion of II1 factors, and let τM and τN be the unique traces on M and N ,
respectively. We will identify M (and consequently N) with its representation on L2(M). In this context
we will denote N ′ ∩ B(L2(M)) simply by N ′, which satisfies N ′ ⊃ M ′. Note that N ′ is a factor, and by
Remark 4.3.9 we know that N ′ is type II. Consequently, N ′ is either a II1 factor or a II∞ factor. In the
former case, we will denote its unique trace by τN ′ .

Noting that τM |N = τN , we see that the closure of N 1̂ in L2(M) is a copy of L2(N). Thus we can view
L2(N) as a closed subspace of L2(M) and we let eN ∈ B(L2(M)) be the projection onto L2(N). Since
L2(N) is reducing for N , we have eN ∈ N ′ by Lemma 1.2.5.

Definition 6.1.1. Let 1M ∈ N ⊂M be an inclusion of II1 factors. We define the index of N inside M as
the quantity

[M : N ] :=
1

τN ′(eN )

when N ′ is a II1 factor, and otherwise set [M : N ] :=∞.
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Assuming N ′ is a II1 (i.e. finite) factor, we have τN ′(eN ) ≤ 1 and consequently [M : N ] ≥ 1. In
particular, we have [M : N ] = 1 if and only if τN ′(eN ) = 1. Since τN ′ is a faithful state this is further
equivalent to eN = 1, which means L2(N) = L2(M) and N = M . Thus [M : N ] = 1 if and only if N = M .
Roughly speaking, [M : N ] measures how much larger M is than N . The notation should remind of you the
notation for group indices, and the following example makes this explicit.

Example 6.1.2. Let Γ
αy L∞(X,µ) be a free ergodic p.m.p action of a countably infinite discrete group on

a probability space (X,µ). Then M := L∞(X,µ) oα Γ is a II1 factor by Example 4.3.16. Let Λ ≤ Γ be a
subgroup such that α|Λ is still ergodic (it is automatically free and p.m.p.). Then N := L∞(X,µ) oα|Λ Λ is
a II1 subfactor of M . In this case, we have

[M : N ] = [Γ : Λ].

We provide only a sketch of the proof. Assume [Γ : Λ] = n <∞ so that

Γ = Λ t Λg2 t · · · t Λgn

for some g2, . . . , gn ∈ Γ \ Λ. By Exercise 4.3.13, we have L2(M) = `2(Γ) ⊗ L2(X,µ) and L2(N) = `2(Λ) ⊗
L2(X,µ). Consequently

L2(M) =
[
`2(Λ)⊗ L2(X,µ)

]
⊕
[
`2(Λg2)⊗ L2(X,µ)

]
⊕ · · · ⊕

[
`2(Λgn)⊗ L2(X,µ)

]
= L2(N)⊕

[
`2(g2Λ)⊗ L2(X,µ)

]
⊕ · · · ⊕

[
`2(gnΛ)⊗ L2(X,µ)

]
.

It can be shown that the projections onto each of the remaining direct summands is equivalent to eN in N ′

(see Exercise 6.1.3). Consequently, τN ′(eN ) = 1
n and so [M : N ] = n = [Γ : Λ]. �

Remark 6.1.3. There is an alternate formula for the index. Suppose M ⊂ B(H) is a finite factor such that
M ′ ∩ B(H) is also finite. Denote their respective traces by τM and τM ′ . For any non-zero ξ ∈ H, Mξ and
M ′ξ are reducing for M ′ and M , respectively, and so [Mξ] ∈ M ′ and [M ′ξ] ∈ M by Lemma 1.2.5. Murray
and von Neumann defined the coupling constant of M over H to be the ratio

τM ([M ′ξ])

τM ′([Mξ])
,

and they showed that it is independent of the choice of ξ. When 1M ∈ N ⊂ M ⊂ B(H) is a subfactor, it
can be shown that the ratio of the coupling constants for N and M

τN ([N ′ξ])

τN ′([Nξ])

τM ′([Mξ])

τM ([M ′ξ])
(6.1)

is further independent of the representation M ⊂ B(H). This expression is in fact Jones’ original definition
for [M : N ], and since it does not depend on either H or ξ we can check that it matches with Definition 6.1.1.
Indeed, takeH = L2(M) and ξ = 1̂, then 1̂ being cyclic and separating for M implies [M 1̂] = [M ′1̂] = [N ′1̂] =
1. Consequently

τN ([N ′1̂])

τN ′([N 1̂])

τM ′([M 1̂])

τM ([M ′1̂])
=

1

τN ′([N 1̂])
= [M : N ].

Thus (6.1) gives us a more flexible definition for the [M : N ].

Given a projection p ∈ N ′ ∩M , we can consider the compressed inclusion p ∈ Np ⊂ pMp. Note that
Np and pMp are both type II factors by Corollary 4.2.3 and Remark 4.3.9, and since 1

τM (p)τM defines a

trace on pMp we see that they are in fact II1 factors. Thus we can consider the index [pMp : Np]. Using
Remark 6.1.3 and a few facts about the coupling constant, one can show

[pMp : Np] = [M : N ]τM (p)τN ′(p). (6.2)

We can use this fact to derive some nice consequences for certain values of the index.
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Proposition 6.1.4. If [M : N ] <∞, then N ′ ∩M is finite dimensional.

Proof. Let p1, . . . , pn ∈ P(N ′ ∩M) be non-zero pairwise orthogonal projections. Then since the index is
always greater than or equal to one, (6.2) implies

[M : N ] ≥ [M : N ]

n∑
i=1

τM (pi) =

n∑
i=1

1

τN ′(pi)
[piMpi : Npi] ≥

n∑
i=1

1

τN ′(pi)
.

Note that the condition
∑n
i=1 τN ′(pi) ≤ 1 implies τN ′(pi) ≤ 1

n for some i = 1, . . . , n. Consequently, [M :
N ] ≥ n, and so for any family of non-zero pairwise orthogonal projections P ⊂ P(N ′ ∩M) we must have
|P| ≤ [M : N ] <∞. Suppose P is a maximal family of pairwise orthogonal projections. We must have∑

p∈P
p = 1,

since otherwise {1 −
∑
p p} ∪ P contradicts the maximality of P. Also, each p ∈ P must be minimal in

N ′ ∩M because otherwise for 0 < q < p the maximality of P is contradicted by {q, p− q}∪P \{p}. Now, as
minimal projections, p, q ∈ P are either centrally orthogonal or equivalent in N ′ ∩M by Proposition 4.1.9.
If they are centrally orthogonal, then the same proposition implies pxq = 0 for all x ∈ N ′ ∩M . If they are
equivalent, say by vv∗ = p and v∗v = q, then for x ∈ N ′ ∩M we have

pxq = pxqq = px(v∗v)(v∗v) = pxv∗(vv∗)v = pxv∗pv = cpv = cv

for some c ∈ C. Denote v := vp,q, and if p and q are centrally orthogonal set vp,q := 0. Thus for any
x ∈ N ′ ∩M , we have

x = (
∑
p∈P

p)x(
∑
q∈P

q) =
∑
p,q∈P

pxq =
∑
p,q∈P

cp,qvp,q,

for cp,q ∈ C. Hence N ′ ∩M = span{vp,q : p, q ∈ P}, and since P is a finite set we see that N ′ ∩M is finite
dimensional.

Proposition 6.1.5. If [M : N ] < 4, then N ′ ∩M = C.

Proof. Suppose, towards a contradiction that p, q ∈ P(N ′ ∩M) are orthogonal and non-zero. Then (6.2)
implies (by the same argument as in the proof of the previous proposition)

[M : N ] ≥ 1

τN ′(p)
+

1

τN ′(q)
≥ 1

τN ′(p)
+

1

1− τN ′(p)
.

This last expression is minimized at τN ′(p) = 1
2 , and hence we obtain the contradiction [M : N ] ≥ 4.

We present the next result without proof, but we direct the interested reader to Jones’ original paper.

Theorem 6.1.6 (Jones, 1983). Let 1M ∈ N ⊂M be an inclusion of II1 factors. Then

[M : N ] ∈ {4 cos2(π/n) : n ≥ 3} ∪ [4,∞].

Moreover, every value in the set above occurs as the index of some unital inclusion of II1 factors.

This result is part of the work that would ultimately earn Vaughan Jones the Fields Medal. That the
index has a discrete component to its range was a remarkable revelation at the time1.

1Masamichi Takesaki says he first heard about the result when picking Vaughan Jones up from the airport for a visit to
UCLA, and was so startled by it that he nearly crashed the car.
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Exercises

6.1.1. Let N ⊂ P ⊂M be inclusions of II1 factors. Show that [M : N ] = [M : P ][P : N ]. [Hint: use (6.1).]

6.1.2. Let N ⊂ B(H) be a II1 factor. For d ∈ N, embed N ↪→Md(N) by

x 7→

 x 0
. . .

0 x

 x ∈ N.

In this exercise, you will compute [Md(N) : N ].

(a) Show that B(L2(Md(N))) = Md2(B(L2(N))), where the entries in the latter space are indexed by
pairs of pairs: ((i, j), (k, `)) for i, j, k, ` = 1, . . . , d.

[Hint: first show that L2(Md(N)) ∼= L2(N)⊕d
2

.]

(b) Show that N ′ ∩B(L2(Md(N))) = Md2(N ′ ∩ L2(N)).

(c) For X = (xi,j)
d
i,j=1 ∈Md(N), show that

eNX =


1
d

∑d
i=1 xi,i 0

. . .

0 1
d

∑d
i=1 xi,i

 .

as vectors in L2(Md(N)).

(d) Viewing eN ∈Md2(N ′ ∩ L2(N)), show that the ((i, j), (k, `))-entry of eN is 1
dδi=jδk=`.

(e) Compute τMd(N)(eN ) and [Md(N) : N ].

6.1.3. Let Γ
αy L∞(X,µ) be a free ergodic p.m.p action of a countably infinite discrete group on a probability

space (X,µ). Let Λ < Γ be a finite index subgroup with

Γ = Λ t Λg2 t · · · t Λgn.

for some g2, . . . , gn ∈ Γ \ Λ. Assume α|Λ is ergodic and set

M := L∞(X,µ) oα Γ

N := L∞(X,µ) oα|Λ Λ.

Recall that L2(M) = `2(Γ)⊗ L2(X,µ) and L2(N) = `2(Λ)⊗ L2(X,µ).

(a) For each i = 2, . . . , n, show that `2(Λgi)⊗ L2(X,µ) is reducing for N .

(b) Let J be the canonical conjugation operator on L2(M): Jx̂ = x̂∗. Show that

J(δg ⊗ f) = δg−1 ⊗ αg−1(f̄)

for g ∈ Γ and f ∈ L∞(X,µ).

(c) For each i = 2, . . . , n, show that Jλ(g−1
i )JeNJλ(gi)J ∈ N ′ and that this is the projection onto the

subspace `2(Λgi)⊗ L2(X,µ).

(d) For each i = 2, . . . , n, show that eN is equivalent to Jλ(g−1
i )JeNJλ(gi)J in N ′.

(e) Compute τN ′(eN ) and [M : N ].

6.1.4. Let Γ be an i.c.c. group, let Λ < Γ be a finite index subgroup, and set M := L(Γ) and N := L(Λ).

(a) Show that Λ is i.c.c.

(b) Suppose Γ = ΛtΛg2t· · ·tΛgn for g2, . . . , gn ∈ Λ\Λ. For each i = 2, . . . , n, show that Jλ(g−1
i )JeNJλ(gi)J ∈

N ′ and that this is the projection onto `2(Λgi).

(c) For each i = 2, . . . , n, show that eN is equivalent to Jλ(g−1
i )JeNJλ(gi)J in N ′.

(d) Compute τN ′(eN ) and [M : N ].
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6.2 The Basic Construction

Once more we let 1M ∈ N ⊂ M ⊂ B(L2(M)) be an inclusion of II1 factors with unique traces τN and τM ,
respectively. Let eN ∈ B(L2(M)) be the projection onto the subspace L2(N) ⊂ L2(M), so that eN ∈ N ′.
Recall from Theorem 5.2.5, that if J is the canonical commutation on L2(M) then JMJ = M ′. Consequently,
JNJ ⊂M ′. However, N ⊂M implies N ′ ⊂M ′. Thus we cannot have JNJ = N ′ unless N ′ = M ′, in which
case N = M . Since this case corresponds to [M : N ] = 1, we see that whenever [M : N ] > 1 we have M ′ is
a strict subset of N ′, and JN ′J ⊃ JM ′J = M . We summarize these various relations in the diagram below.

B(L2(M))

J · J

∪ ∪
JN ′J N ′

∪ ∪
M M ′

∪ ∪
N JNJ

∪ ∪

C1M

Horizontal reflection in the above diagram corresponds to conjugating by J . There is another important
symmetry: reflecting through the center of the diagram corresponds to taking the commutant. This is
clear for the pairs (C1M , B(L2(M)), (M,M ′), and (N,N ′), but it also holds for (JN ′J, JNJ). That is,
(JN ′J)′ = JNJ . Indeed, x ∈ (JN ′J)′ if and only if x(JyJ) = (JyJ)x for all y ∈ N ′, and conjugating the
equation by J shows this is equivalent to (JxJ)y = y(JxJ) for all y ∈ N ′. Consequently, x ∈ (JN ′J)′ if and
only if JxJ ∈ N ′′ = N , and thus the claimed equality holds. In particular, this implies JN ′J is a factor:

Z(JN ′J) = (JN ′J) ∩ (JN ′J)′ = (JN ′J) ∩ JNJ = J(N ′ ∩N)J = C,

since N is a factor. Thus using only conjugation by J and taking commutants, we have produced a new
factor extending our original inclusion: N ⊂M ⊂ JN ′J . We will study this new factor further, but first we
require a lemma.

Recall from Theorem 5.2.7 that there is a faithful normal trace-preserving conditional expectation
EN : M → N . This map is positive, restricts to the identity on N , and satisfies EN (axb) = aEN (x)b for all
a, b ∈ N and x ∈M . Also recall that for each x ∈M , EN (x) is uniquely determined by EN (x)1̂ = eN x̂.

Lemma 6.2.1. ,

(i) For x ∈M , eNxeN = EN (x)eN .

(ii) N = {eN}′ ∩M .

(iii) N ′ = {M ′ ∪ {eN}}′′.

(iv) JeN = eNJ .

Proof. ,

(i): For y ∈M , we have

eNxeN ŷ = eNxEN (y)1̂ = eN ̂xEN (y) = EN (xEN (y))1̂ = EN (x)EN (y)1̂ = EN (x)eN ŷ.

Since M̂ is dense in L2(M), we have eNxeN = EN (x)eN .

(ii): Since eN ∈ N ′, we have N ⊂ {eN}′ ∩M . On the other hand, for x ∈ {eN}′ ∩M we have

EN (x)1̂ = eN x̂ = eNx1̂ = xeN 1̂ = x1̂.

Since 1̂ is separating for M , we must have x = EN (x) ∈ N .
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(iii): The Bicommutant Theorem implies it suffices to show {M ′ ∪ {eN}}′ = N . Note that {M ′ ∪ {eN}}′ ⊂
M ′′ ∩ {eN}′ = M ∩ {eN}′ = N by the previous part. The reverse inclusion follows from N ⊂ M and
the previous part.

(iv): For x ∈M we have

JeN x̂ = JEN (x)1̂ = EN (x)∗1̂ = EN (x∗)1̂ = eN x̂∗ = eNJx̂.

Thus the density of M̂ in L2(M) yields JeN = eNJ .

Proposition 6.2.2. Let 1M ∈ N ⊂ M ⊂ B(L2(M)) be an inclusion of II1 factors. If eN ∈ B(L2(M)) is
the projection onto L2(N), then the factor JN ′J is generated by M ∪ {eN}. In fact, JN ′J is generated by
the ∗-algebra span(M ∪MeNM).

Proof. Recall that we have already seen that JN ′J is a factor in the discussion at the beginning of the
section. From Lemma 6.2.1.(iii), we see that N ′ is the von Neumann algebra generated by M ′ ∪ {eN}. Note
the unital *-algebra generated by M ′∪{eN} is spanned by elements of the form y1eNy2eN · · · eNyd for d ≥ 1
and y1, . . . , yd ∈M ′. Using Lemma 6.2.1.(iv) to assert eN = JeNJ we have

J(y1eNy2eN · · · eNyd)J = (Jy1J)eN (Jy2J)eN · · · eN (JydJ).

Since JM ′J = M by Theorem 5.2.5, the above element is in the *-algebra generated by M ∪ {eN}. Conse-
quently, JN ′J is the von Neumann algebra generated by M ∪ {eN}.

The ∗-algebra generated by M ∪ {eN} is span{x1eNx2eN · · · eNxd : d ≥ 1, x1, . . . , xd ∈ M}. But
Lemma 6.2.1.(i),(iii) imply for d ≥ 3

x1eNx2eNx3eN · · · eNxd = x1EN (x2)eNEN (x3)eN · · · eNxd = x1EN (x2)EN (x3) · · ·EN (xn−1)eNxd.

So span(M ∪MeNM) is a ∗-algebra generating JN ′J .

In light of the above proposition, we make the following definition.

Definition 6.2.3. The basic construction for N ⊂M is 〈M, eN 〉 := {M ∪ {eN}}′′ ⊂ B(L2(M)).

By the discussion of at the beginning of the section, we know the commutant of 〈M, eN 〉 = JN ′J is JNJ ,
which is a II1 factor since N is a II1 factor. So by Remark 4.3.9 we know 〈M, eN 〉 is a type II factor, but it
could be either type II1 or type II∞. As we will see in the next theorem, the former case happens precisely
when the index [M : N ] is finite.

Theorem 6.2.4. Let 1M ∈ N ⊂M ⊂ B(L2(M)) be an inclusion of II1 factors, and let 〈M, eN 〉 be its basic
construction. Then 〈M, eN 〉 is a II1 factor if and only if [M : N ] <∞. In this case, we have

[〈M, eN 〉 : M ] = [M : N ].

If τ〈M,eN 〉 is the unique trace on 〈M, eN 〉, then

τ〈M,eN 〉(xeN ) =
1

[M : N ]
τM (x) ∀x ∈M,

and in particular τ〈M,eN 〉(eN ) = [M : N ]−1.

Proof. By the discussion preceding the theorem we know that 〈M, eN 〉 is a type II factor, and so it suffices
to show 〈M, eN 〉 is finite if and only if [M : N ] < ∞. Recall that [M : N ] < ∞ if and only if N ′ is a finite
by definition of the index. Thus it further suffices to show 〈M, eN 〉 is finite if and only if N ′ is finite, and
by Theorem 5.1.5 it yet further suffices to show 〈M, eN 〉 has a trace if and only if N ′ has a trace. But this
follows from 〈M, eN 〉 = JN ′J because a trace on one algebra can be used to define a trace on the other:

τ〈M,eN 〉(x) := τN ′(JxJ) x ∈ 〈M, eN 〉 .
τN ′(y) := τ〈M,eN 〉(JyJ) y ∈ JN ′J.
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Thus 〈M, eN 〉 is II1 factor if and only if [M : N ] <∞.
Let τ〈M,eN 〉 be the unique trace on 〈M, eN 〉. By the above, we have τ〈M,eN 〉(x) = τN ′(JxJ) for all

x ∈ 〈M, eN 〉, and in particular

τ〈M,eN 〉(eN ) = τN ′(JeNJ) = τN ′(eN ) =
1

[M : N ]
,

where in the second equality we have used eN = JeNJ from Lemma 6.2.1.(iv). Now, by Lemma 6.2.1.(ii)
we see that N 3 x 7→ τ〈M,eN 〉(xeN ) defines a tracial positive linear functional on N , and so must equal cτN
for some c ∈ C by the uniquness of τN . Setting x = 1 reveals

c = cτN (1) = τ〈M,eN 〉(1eN ) = τ〈M,eN 〉(eN ) =
1

[M : N ]
.

Thus τ〈M,eN 〉(xeN ) = 1
[M :N ]τN (x) for x ∈ N . Using Lemma 6.2.1.(i), we can show this also holds for x ∈M :

τ〈M,eN 〉(xeN ) = τ〈M,eN 〉(eNxeN ) = τ〈M,eN 〉(EN (x)eN )

=
1

[M : N ]
τN (EN (x)) =

1

[M : N ]
τM (EN (x)) =

1

[M : N ]
τM (x),

where the last equality uses the fact that EN is trace-preserving.
Finally, we compute the index [〈M, eN 〉 : M ] using (6.1). We take H = L2(M) and ξ = 1̂. Note that 1̂ is

cyclic for 〈M, eN 〉 since it is cyclic for M , and it is cyclic for M ′ since it is separating for M . Consequenlty,
[〈M, eN 〉 1̂] = [M ′1̂] = [M 1̂] = 1. Thus

[〈M, eN 〉 : M ] =
τM ([M ′1̂])

τM ′([M 1̂])

τ〈M,eN 〉′([〈M, eN 〉]1̂)

τ〈M,eN 〉([〈M, eN 〉′ 1̂])
=

τM (1)

τM ′(1)

τ〈M,eN 〉′(1)

τ〈M,eN 〉([〈M, eN 〉′ 1̂])
=

1

τ〈M,eN 〉([〈M, eN 〉′ 1̂])

Now, as we saw above 〈M, eN 〉′ = JNJ and so [JNJ 1̂] = [JN 1̂] = [N 1̂] = eN . Since τ〈M,eN 〉(eN ) = [M :
N ]−1, the above computation yields [〈M, eN 〉 : M ] = [M : N ].

We now see that a finite index inclusion of II1 factors N ⊂M begets another finite index inclusion of II1

factors: M ⊂ 〈M, eN 〉. Moreover, the index of this new inclusion equals the original index and is therefore
finite. Consequently, we can iterate this process and generate a tower of II1 factors:

N ⊂M ⊂ 〈M, eN 〉 ⊂ 〈〈M, eN 〉 , eM 〉 ⊂ · · ·

If we relabel these von Neumann algebras by M0 := N , M1 := M , M2 := 〈M, eN 〉, etc. then we have

M0 ⊂M1 ⊂M2 ⊂M3 ⊂ · · · ,

and [Mi : Mi−1] = [M : N ] for all i ≥ 1. Moreover, by Exercise 6.1.1 for any i > j ≥ 0 we have

[Mi : Mj ] =

i∏
k=j+1

[Mk : Mk−1] = [M : N ]i−j .

In particular, [Mi : M0] = [M : N ]i < ∞ and [Mi : M1] = [M : N ]i−1 < ∞, and so M ′0 ∩Mi and M ′1 ∩Mi

are finite dimensional by Proposition 6.1.4.

Definition 6.2.5. The Jones tower for a finite index inclusion of II1 factors N ⊂M is series of inclusions
constructed above:

M0:=

N

⊂ M1:=

M

⊂ M2:=

〈M, eN 〉

⊂ M3 ⊂ · · ·
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The standard invariant of N ⊂ M is the collection of finite dimensional relative commutants {M ′0 ∩
Mi}i≥0 ∪ {M ′1 ∩Mi}i≥1:

C = M ′0 ∩M0 ⊂ M ′0 ∩M1

⊂

C = M ′1 ∩M1

⊂

⊂

M ′0 ∩M2

⊂

M ′1 ∩M2

⊂

⊂

M ′0 ∩M2

⊂

M ′1 ∩M2

⊂

⊂

· · ·

· · ·

While the standard invariant may seem to be a dizzying array of von Neumann algebras, remember
that each M ′j ∩Mi is finite-dimensional and consequently is isomorphic to a direct sum of matrix algebras.
Moreover, one can diagrammatically encode the data of these relative commutants and their various inclusions
using planar algebras. These objects also provide a bridge between subfactors and category theory, and
although they are worthy of their own entire course we will not go into further detail on them here.

We conclude with an example where the basic construction can be explicitly described. The resulting
von Neumann algebra is the generalization of the crossed product construction from Example 4.3.16, where
L∞(X,µ) (i.e. a commutative von Neumann algebra) has been replaced with II1 factor.

Example 6.2.6. Consider a II1 factor M ⊂ B(L2(M)). Let U(L2(M)) denote the group of unitary operators
on L2(M), and suppose U < U(L2(M)) is a finite subgroup satisfying U ∩M = {1}, uMu∗ = M for all
u ∈ U , and u1̂ = 1̂ for all u ∈ U . Denote

MU := {x ∈M : uxu∗ = x ∀u ∈ U}.

The hypotheses on U imply that this is a factor. This is not obvious but we will assume it as a fact. Then

p :=
1

|U |
∑
u∈U

u ∈ (MU )′,

and p is a projection (Exercise 6.2.3). Observe for x ∈M that

px̂ =
1

|U |
∑
u∈U

ux1̂ =
1

|U |
∑
u∈U

uxu∗u1̂ =
1

|U |
∑
u∈U

uxu∗1̂,

and 1
|U |
∑
u uxu

∗ ∈MU . Thus p = eMU . We claim that

〈M, eMU 〉 =

{∑
u∈U

xuu : xu ∈M

}′′
.

Denote the set on the right by B. For x, y ∈M we have

xeMU y =
1

|U |
∑
u∈U

xuy =
1

|U |
∑
u∈U

x(uyu∗)u ∈ B.

Since the identity of the group U is 1, we have x = x1 ∈ B for x ∈ M . Thus span(M ∪MeNM) ⊂ B, and
the former is a ∗-algebra generating 〈M, eMU 〉 by Proposition 6.2.2. Thus to prove the claim it suffices to
show B ⊂ 〈M, eMU 〉, and this will follow if U ⊂ 〈M, eMU 〉. For x ∈M we have

JuJx̂ = Jux∗1̂ = Jux∗u∗u1̂ = Jux∗u∗1̂ = ûxu∗ = uxu∗1̂ = ux1̂ = ux̂.

So JuJ = u by the density of M̂ ⊂ L2(M). Since U ⊂ (MU )′, this shows U = JUJ ∈ J(MU )′J = 〈M, eMU 〉,
and so the claim holds. The trace on 〈M, eMU 〉 is given by

τ〈M,eMU 〉

(∑
u∈U

xuu

)
= τM (x1)

(see Exercise 6.2.4). In particular,

τ〈M,eMU 〉(eMU ) = τ〈M,eMU 〉

(
1

|U |
∑
u∈U

u

)
=

1

|U |
τM (1) =

1

|U |
.

So by Theorem 6.2.3 we have [M : MU ] = |U |. �
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Exercises

6.2.1. Show that the basic construction for N ⊂ Md(N) is Md2(N). [Hint: use Proposition 6.2.2 and the
computation of eN in Exercise 6.1.2.]

6.2.2. Let Γ be an i.c.c. group, let Λ < Γ be a finite index subgroup, and set M := L(Γ) and N := L(Λ).
Suppose

Γ = Λ t Λg2 t · · · t Λgn

for g2, . . . , gn ∈ Γ \ Λ. Set p1 := eN and pi = λ(gi)eNλ(g−1
i ) for i = 2, . . . , n.

(a) Show that piMpi is spatially isomorphic to NeN for each i = 2, . . . , n.

(b) Show that 〈M, eN 〉 is isomorphic to Mn(N). What is the image of M under this isomorphism?

6.2.3. Let U(H) be the group of unitaries on a Hilbert space H. For a finite subgroup U < U(H), show that

1

|U |
∑
u∈U

u

is a projection.

6.2.4. Let M ⊂ B(L2(M)) be a II1 factor and let U < U(L2(M)) be a finite subgroup satisfying U∩M = {1}
and uMu∗ = M for all u ∈M .

(a) Show that τM (uxu∗) = τM (x) for all u ∈ U and x ∈M . [Warning: since u 6∈M when u is non-trivial,
this is not simply a consequence of the tracial property of τM .]

(b) Show that

τ

(∑
u∈U

xuu

)
= τM (x1)

defines a faithful trace on the ∗-algebra {
∑
u xuu : xu ∈M}.
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