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1. Show that v ∈ B(H) is a partial isometry if and only if v∗v is a projection.

[Hint: expand ‖(v − vv∗v)ξ‖2 for ξ ∈ H.]

2. For x ∈ B(H) with x = x∗, show that

sup
‖ξ‖=1

| 〈xξ, ξ〉 | = ‖x‖.

[Hint: show Re 〈xξ, η〉 = 1
2 〈x(ξ + η), ξ + η〉+ 1

2 〈x(ξ − η), ξ − η〉 for all ξ, η ∈ H.]

3. For a Hilbert space H, prove the inclusions

FR(H) ⊂ L1(B(H)) ⊂ HS(H) ⊂ K(H).

[Hint: approximate by finite-rank operators in the appropriate norm.]

4. Show that v ∈ B(H) is a partial isometry if and only if there exists a closed subspace K ⊂ H such that
v|K is an isometry and v|K⊥ ≡ 0.

5. Let x ∈ B(H). We say x is bounded below if there exists ε > 0 such that ‖xξ‖ ≥ ε‖ξ‖ for all ξ ∈ H.
Determine the implications between the following properties for x ∈ B(H):

(i) x is injective (i.e. ker(x) = {0})
(ii) x is left-invertible (i.e. ∃ y ∈ B(H) with yx = 1)

(iii) x is bounded below.

6. Let H be a Hilbert space and 1 ≤ n <∞. We denote Hn =
⊕n

j=1H. For xi,j ∈ B(H) for 1 ≤ i, j ≤ n,
define [xi,j ] : Hn → Hn by

[xi,j ]

ξ1...
ξn

 =


∑n
j=1 x1,jξj

...∑n
j=1 xn,jξj

 .

Check that this gives an operator in B(Hn) (in fact ‖[xi,j ]‖ ≤ (
∑
‖xi,j‖2)

1
2 ). We denote by Mn(B(H))

the operators in B(Hn) that can be written as [xi,j ] for some xi,j ∈ B(H). Show Mn(B(H)) = B(Hn).

[Hint: How would you do this for H = Cm?]

7. Here’s an intuition building exercise to think about for Wednesday:

(a) Show that all maximal ideals in C([0, 1]) are of the form {f ∈ C([0, 1]) : f(t) = 0} for some
t ∈ [0, 1].

(b) For each t ∈ [0, 1], define the map evt : C([0, 1]) → C by evt(f) = f(t). Show that ̂C([0, 1]) =
{evt : t ∈ [0, 1]}.

(c) Recall that for A = C0((0, 1]), its unitization is Ã := C([0, 1]). That means we can identify

C0((0, 1]) with a maximal ideal inside C([0, 1]). To which character φ ∈ ˆ̃A does this ideal corre-
spond?
Show that this character agrees with the functional φ0 : Ã → C given by φ0(f + λ1) = λ for all
f ∈ A.
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C*.1 (Gelfand-Mazur) If A is a simple, unital, abelian Banach algebra, then A = C.

[Hint: For each a ∈ A, consider aA := {ab : b ∈ A}]

C*.2 Here’s an exercise to build intuition:

(a) Show that all maximal ideals in C([0, 1]) are of the form {f ∈ C([0, 1]) : f(t) = 0} for some
t ∈ [0, 1].

(b) For each t ∈ [0, 1], define the map evt : C([0, 1]) → C by evt(f) = f(t). Show that ̂C([0, 1]) =
{evt : t ∈ [0, 1]}.

(c) Recall that for A = C0((0, 1]), its unitization is Ã := C([0, 1]). That means we can identify

C0((0, 1]) with a maximal ideal inside C([0, 1]). To which character φ ∈ ˆ̃A does this ideal corre-
spond?
Show that this character agrees with the functional φ0 : Ã → C given by φ(f + λ1) = λ for all
f ∈ A.

W*.1 Consider the shift operator S on `2(N):

S(x1, x2, . . .) = (0, x1, x2, . . .).

Show that ((S∗)n)n∈N converges to zero in the SOT, but (Sn)n∈N does not.

W*.2 Let H be a Hilbert space. Given ξ, η ∈ H, recall that the rank one operator ξ⊗ η̄ ∈ B(H) is defined by

(ξ ⊗ η̄)(ζ) := 〈ζ, η〉 ξ.

(a) Show that x ∈ B(H) commutes with ξ ⊗ η̄ if and only if there exists λ ∈ C with ξ ∈ ker(x − λ)
and η ∈ ker(x∗ − λ̄).

(b) Show that FR(H)′ = C and that B(H)′ = C.
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C*.1 Let A be a C∗-algebra. Show the following:

(a) If a, b ∈ A are self-adjoint elements such that a ≤ b and c ∈ A, then c∗ac ≤ c∗bc.
[Hint: Take a square root and use the fact that elements of the form x∗x are positive.]

(b) Assuming A is a unital C∗-algebra and a ∈ A positive, show that a ≤ ‖a‖1. Moreover, ‖a‖ ≤ 1
iff a ≤ 1. In this case we also have 1− a ≤ 1 and ‖1− a‖ ≤ 1.

C*.2 Suppose A is a C∗-algebra with closed two-sided ideal J / A and C∗-subalgebra I ⊂ A such that I / J .
Show that I / A.

W*.1 Prove Lemma 2.1.2: LetH be a Hilbert space and suppose q : H×H → C is linear in the first coordinate,
conjugate linear in the second coordinate, and there exists C > 0 such that |q(ξ, η)| ≤ C‖ξ‖‖η‖ for all
ξ, η ∈ H. Then there exists a unique x ∈ B(H) satisfying

〈xξ, η〉 = q(ξ, η) ∀ξ, η ∈ H,

and ‖x‖ ≤ C.

[Hint: First fix ξ ∈ H and show for all η ∈ H that q(ξ, η) = 〈ξ1, η〉 for some ξ1 ∈ H. Then show that
x(ξ) := ξ1 defines a bounded operator x ∈ B(H).]

W*.2 Let H be a Hilbert space and let p ∈ B(H) be a non-trivial projection: p 6= 0 and p 6= 1. Show that
the algebra A := pB(H)p has no cyclic vectors.
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C*.1 Recall that the set U(H) of unitaries in B(H) is a group under multiplication. A unitary representation
of a group G is a group homomorphism ρ : G→ U(H). Show that representations of CG are in bijection
with unitary representations of G.

C*.2 Complete the proof of Proposition 6.3 by showing that ψ is well-defined (independent of the choice of
sequence (an)n); ∗-preserving; and multiplicative.

W*.1 Suppose (xi)i∈I ⊂ B(H) is a uniformly bounded net: supi ‖xi‖ <∞.

(a) Show that (xi)i∈I converges in the σ-SOT if and only if it converges in the SOT.

(b) Show that (xi)i∈I converges in the σ-WOT if and only if it converges in the WOT.

(c) Show that the example (xm,n)m≤n defined in lecture is not uniformly bounded.

W*.2 Recall that a ∗-isomorphism π : M → N between von Neumann algebras M ⊂ B(H) and N ⊂ B(K)
is called a spatial isomorphism if there exists a unitary U : H → K such that π(x) = UxU∗ for all
x ∈M . Show that a spatial isomorphism π : M → N is normal.
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C*.1 Show that any positive linear functional φ : A→ C is ∗-preserving, i.e. φ(a∗) = φ(a) for all a ∈ A.

C*.2 Show that for a unital C∗-algebra A, S(A) is a weak∗ closed convex subset of A∗≤1. It follows from
Alaoglu’s theorem that it is weak∗-compact. What does the Krein-Milman theorem say about S(A)?

C*.3 Show that if the C∗-algebra A is finite dimensional as a vector space, then we may take the Hilbert
space H of the GNS Theorem to be finite dimensional.

[Hint: Show that you only need finitely many states φ ∈ F , and that Hφ is finite dimensional for all
φ.]

W*.1 Let H be a Hilbert space.

(a) For orthonormal sets {ξ1, . . . , ξn}, {η1, . . . , ηn} ⊂ H, show that
∑n
i=1 ξi ⊗ η̄i is a partial isometry

that implements the equivalence (
∑n
i=1 ηi ⊗ η̄i) ∼

(∑n
i=1 ξi ⊗ ξ̄

)
.

(b) For finite-rank projections p, q ∈ B(H), show that p ∼ q if and only if Tr(p) = Tr(q).

(c) Let E ,F ⊂ H be two orthonormal subsets with the same cardinality. Show that [E ] ∼ [F ].

[Hint: start with a bijection from E to F (as sets).]

W*.2 Let M ⊂ B(H) be a factor. Show any two minimal projections are equivalent.

[Hint: use the Comparison Theorem.]

W*.3 Let (X,µ) be a positive σ-finite measure space. We call a measurable subset A ⊂ X an atom of if
µ(A) > 0 and for all measurable subsets E ⊂ A one has µ(E) = µ(A) or µ(E) = 0.

(a) If A1, A2 ⊂ X are atoms, show that either 1A1∩A2 = 0 or 1A1∩A2 = 1A1 = 1A2 .

(b) If A ⊂ X is an atom, show that f |A is constant for all f ∈ L∞(X,µ).

(c) Show that 1A is a minimal projection in L∞(X,µ) if and only if A is an atom.
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C*.1 Show that the matrix amplification of any ∗-homomorphism between C∗-algebras is again a ∗-homomorphism.
Conclude that any ∗-homomorphism is completely positive.

C*.2 Let A and B be C∗-algebras and C ⊂ B a C∗-subalgebra. Show that if θ : A → C is a nuclear map,
then so is θ when viewed as a map from A to B. Suppose we have a map ρ : A→ C that is nuclear as
a map from A to B. What could prevent ρ from being a nuclear map as a map from A to C?

C*.3 Partitions of unity are nicer when you have a concrete example. For each n ≥ 2, cover [0, 1] by 2n − 1
open intervals of equal length. (What are they? Also, we could start with n = 1, but it’s too simple
to pick up on a pattern.) Call this cover Un. Define (sketch) a partition of unity for Un. (Hint: think
zig-zags.)

Now, construct a sequence of completely positive maps C([0, 1])
ψn−−→ Ckn φn−−→ C([0, 1]), (what is kn?)

that give a completely positive approximation of C([0, 1]).

W*.1 Let Γ be a countable discrete group. Show that all projections in L(Γ) are finite.

[Hint: use the trace.]

W*.2 Let π : M → N be a ∗-isomorphism between von Neumann algebras and let p ∈ P(M).

(a) Show p is finite in M if and only if π(p) is finite in N .

(b) Assuming π is normal, show p is semi-finite in M if and only if π(p) is semi-finite in N .

(c) Show p is purely infinite in M if and only if π(p) is purely infinite in N .

(d) Show p is properly infinite in M if and only if π(p) is properly infinite in N .

W*.3 In this exercise, you will show that Mn(C) can be realized via a crossed-product construction. Consider
Γ := Zn, the countable cyclic group of order n, and also set X := Zn which we view as simply a space
and equip with the counting (probability) measure.

(a) Show that αg(f) := f( · − g) for g ∈ Γ defines an action Γ
αy L∞(X,µ).

(b) Show that Γ
αy L∞(X,µ) is free, ergodic, and probability measure preserving.

(c) Show that 1{1}, . . . , 1{n} ∈ L∞(X,µ) are pairwise orthogonal and equivalent minimal projections.

(d) Show that L∞(X,µ) oα Γ ∼= Mn(C). What is the preimage of Ei,j under this isomorphism?

(e) Explain why there does not exist a discrete group Γ such that L(Γ) ∼= Mn(C).
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Michael Brannan: Quantum Groups: what are they and what are they good for?

Recall that the Brown Algebra Bn is the unital C*-algebra satisfying the following universal property: Bn is
generated by the elements uij , 1 ≤ i, j ≤ n satisfying the property that [uij ]ij is a unitary in Mn(Bn), and
if A is another unital C*-algebra generated by elements vij satisfying the same relations then there exists a
unique unital ∗-homomorphism π : Bn → A such that uij 7→ vij for all i, j.

Exercise: Prove that Brown’s universal unitary algebras Bn, equipped with their canonical co-products, do
not define compact quantum groups.

If you have extra time, consider the following exercise:
Let G = (A,∆) be a compact quantum group with comultiplication ∆ : A→ A⊗min A. Define ∆opp :=

t(∆) := t ◦ ∆, where t : A ⊗min A → A ⊗min A denotes the flip map, i.e., a ⊗ b 7→ b ⊗ a. Show that
Gopp = (A,∆opp) is a compact quantum group.

Dawn Archey: A Crash Course in Crossed Product C*-Algebras

We say that a C∗-algebra A has real rank zero if the invertible elements in As.a. are dense in As.a..

Exercise: Show that C([0, 1]) does not have real rank zero, by finding a function f ∈ C([0, 1])s.a. which
cannot be approximated within ε = 1/4 by an invertible self-adjoint element.

If you have extra time, consider the following exercises:

1. Let G be a finite group. Let A be a unital C∗-algebra. Let α : G→ Aut(A) be a homomorphism. As
short hand, write αt instead of α(t). Consider the algebra AG of all sums

∑
t∈G att.

(a) We will define multiplication on AG by the formal rule tat−1 = αt(a).

Work out an explcit formula for the product fg where f =
∑
t∈G att and g =

∑
s∈G bss. Your

final answer should be in the same format (a sum of things of the form: algebra element times
group element).

(b) Later we will complete this to create a C∗-algebra. So we will need an adjoint. The adjoint is
determined by s∗ = s−1. Use this to determine a formula for the adjoint of f as defined in the
previous part of the problem.

2. Let h : X → X be a homeomorphism. We say (H,h) is a minimal dynamical system if X has no
proper closed h invariant subsets. Let X = S1. Let h(z) = e−2πθz. If θ ∈ Q \ {0} then show h is not
minimal.

Lecture Exercises

C*.1 Finish the proof of the following proposition from the lecture notes:

Proposition 0.1. For C∗-algebras A1 and A2, and x =
∑n
j=1 aj � bj ∈ A1 �A2,

‖x‖min = sup{‖
n∑
j=1

π1(aj)⊗ π2(bj)‖ : πi : Ai → B(Hi) (nondegenerate) representations}.

Proof. Let πi : Ai → B(Hi) be representations and σi : Ai → B(H′i) be faithful representations. Then
by Exercise 4.16, πi ⊕ σi : Ai → B(Hi ⊕H′i) is a faithful representation. Let Pi ∈ B(Hi ⊕H′i) be the
compression to Hi for each i = 1, 2...
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(This is an example of a technique where one can dilate a map to one with a desired property (e.g.
faithfulness) and then cut down to the original map to draw the desired conclusion.)

W*.1 For each N ⊂M below, compute the conditional expectation EN : M → N . Recall that the conditional
expectation is determined by the formula

〈EN (x), y〉2 = 〈x, y〉2 x ∈M, y ∈ N

where 〈a, b〉2 = τ(b∗a) for a, b ∈M .

(a) For d ∈ N, let M := Md(C) and let N be the subalgebra of diagonal matrices.

(b) Let M be an arbitrary finite factor and let N := C.

(c) Let Γ be a discrete i.c.c. group. Let Λ < Γ be a subgroup. Take M := L(Γ) and N := L(Λ).
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Mark Tomforde K-theory: An Elementary Introduction

Let A be a C∗-algebra, and let I be an ideal of A. Prove that if K0(I) ∼= K1(I) ∼= {0}, then K0(A) ∼= K0(A/I)
and K1(A) ∼= K1(A/I).

If you have extra time, consider the following exercises:

1. Suppose A is a unital C∗-algebra that is Morita equivalent to a crossed product of an AF-algebra
by Z; that is, there exists an AF-algebra B and an automorphism α : B → B such that A is Morita
equivalent to the crossed product B oα Z. Prove that

K0(A) ∼= coker(id− α0) and K1(A) ∼= ker(id− α0)

where (id− α0) : K0(B)→ K0(B). Also show that K1(A) is torsion-free abelian group.

(Recall: if h : G → H is a homomorphism between abelian groups, then the cokernel of h is defined
coker(h) := H/im(h).)

[Hint: use the Pimsner–Voiculescu (PV) sequence.]

2. Prove that K0 and K1 distribute over a direct sum; that is, for any C∗-algebras A and B prove that

K0(A⊕B) ∼= K0(A)⊕K0(B) and K1(A⊕B) ∼= K1(A)⊕K1(B).

There are several ways to do this problem. The hints below outline one possible approach.

[Hint 1: use the fact that K0 and K1 each take split exact sequences to split exact sequences.]

[Hint 2: obtain the following commutative diagram

0

0

K0(A)

=

K0(A)

K0(A)⊕K0(B)

K0(A⊕B)

K0(B)

=

K0(B)

0

0

and apply the three-lemma (i.e. a special case of the five-lemma). Similarly for K1.]

Ian Charlesworth Free Probability

Let G and H be countable discrete groups and let G ∗H denote their free product. View L(G) and L(H) as
subalgebras of L(G ∗H), whose trace we denote by τ .

(a) For g1, . . . , gn ∈ G \ {e} and h1, h2, . . . , hn ∈ H \ {e}, show that

τ(λ(g1)λ(h1) · · ·λ(gn)λ(hn)) = 0.

(b) For x ∈ C[λ(G)], characterize when τ(x) = 0. Similarly for y ∈ C[λ(H)].

(c) For x1, . . . , xn ∈ C[λ(G)] and y1, . . . , yn ∈ C[λ(H)] assume τ(xi) = τ(yi) = 0 for i = 1, . . . , n. Show
that

τ(x1y1 · · ·xnyn) = 0.

(d) Show that the previous part holds for xi ∈ L(G) and yi ∈ L(H).
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Lauren Ruth Operator Algebras and Equivalences between Groups

Exercise: Show that measure equivalence of groups is an equivalence relation.

If you have extra time, consider the following exercises:

1. Give an example of a space measure (X,µ) and a measure-preserving action of Z on X along with a
fundamental domain.

2. Let Γ = SL2(Z) act on the upper-half plane H ⊆ C by fractional linear transformations:(
a b
c d

)
· z =

az + b

cz + d
.

(a) Show that if µ(E) :=
∫
E
dx dy
y2 then

µ(E) = µ(g · E)

for every g ∈ Γ and E ⊂ H measurable.

(b) Show that the set F = {z ∈ H : − 1
2 ≤ Re (z) < 1

2 , |z| ≥ 1} ∪ {z ∈ H : |z| = 1, Re (z) ≤ 0} is a
fundamental domain for Γ.

[Hint: Use the fact that Γ is generated by the elements

a =

(
0 −1
1 0

)
b =

(
1 1
0 1

)
.

How do the elements a and b act on a point z ∈ H?]

Nate Brown Duality as the bridge between C*- and W*-algebras

We say a von Neumann algebra M ⊂ B(H) is injective if there is a contractive linear map Φ: B(H)→M
such that Φ(x) = x for all x ∈M .

Exercise: For a direct sum of von Neumann algebras M := M1 ⊕M2, show that M is injective if and only
if M1 and M2 are injective.

Exercise: Suppose M is injective and I ⊂M is a σ-WOT closed ideal. Show that I and M/I are injective.

Lecture Exercises

W*.1 Let Γ be an i.c.c. group, let Λ < Γ be a finite index subgroup, and set M := L(Γ) and N := L(Λ).

(a) Show that Λ is i.c.c.

(b) Suppose Γ = Λ t Λg2 t · · · t Λgn for g2, . . . , gn ∈ Λ \ Λ. For each i = 2, . . . , n, show that
Jλ(g−1i )JeNJλ(gi)J ∈ N ′ and that this is the projection onto `2(Λgi).

(c) For each i = 2, . . . , n, show that eN is equivalent to Jλ(g−1i )JeNJλ(gi)J in N ′.

(d) Compute τN ′(eN ) and [M : N ].

(e) Show that 〈M, eN 〉 is isomorphic to Mn(N). What is the image of M under this isomorphism?

C*.1 Prove the following fact used in the proof of Theorem 12.7: if f ∈ `∞(G), f =
∑
g∈G agug, then

λs(f) = usfu
∗
s as operators on `2(G). In other words, left translation is spatially implemented.
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Robin Deeley Groupoid C*-algebras

Exercise: Suppose X is a nonempty finite set and R is an equivalence relation on X.

(a) Prove that C∗(R) is the direct sum of finitely many matrix algebras.

(b) Compute the K-theory of C∗(R).

If you have extra time:
Let G be a group. Examine the structure of the following two groupoids constructed from G.

1. Let G = G and G2 = G×G; the multiplication map G2 → G is given by group multiplication, and the
map G → G is given by taking the inverse.

(a) Prove that G is a groupoid.

(b) What is G0 in this case?

(c) Prove that G is étale iff G is discrete.

2. Let G be a finite group, and set G̃ = G×G, with G̃2 = {((g, h), (gh, k)) : g, h, k ∈ G}. Then the map
G̃2 → G̃ is given by ((g, h), (gh, k)) 7→ (g, hk) and the map G̃ → G̃ is defined via (g, h) 7→ (gh, h−1).

(a) Prove that G̃ is a groupoid.

(b) What is Cc(G̃)? What changes if G is a countable discrete group?

Corey Jones Subfactors and quantum symmetries

Exercise: Let N ⊂ B(H) be a II1 factor. For d ∈ N, embed N ↪→Md(N) by

x 7→

 x 0
. . .

0 x

 x ∈ N.

In this exercise, you will compute [Md(N) : N ].

(a) Show that B(L2(Md(N))) = Md2(B(L2(N))), where the entries in the latter space are indexed by
pairs of pairs: ((i, j), (k, `)) for i, j, k, ` = 1, . . . , d.

[Hint: first show that L2(Md(N)) ∼= L2(N)⊕d
2

.]

(b) Show that N ′ ∩B(L2(Md(N))) = Md2(N ′ ∩ L2(N)).

(c) For X = (xi,j)
d
i,j=1 ∈Md(N), show that

eNX =


1
d

∑d
i=1 xi,i 0

. . .

0 1
d

∑d
i=1 xi,i

 .

as vectors in L2(Md(N)).

(d) Viewing eN ∈Md2(N ′ ∩ L2(N)), show that the ((i, j), (k, `))-entry of eN is 1
dδi=jδk=`.

(e) Compute τMd(N)(eN ) and [Md(N) : N ].

(f) Show that 〈Md(N), eN 〉 ∼= Md2(N).
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Isaac Goldbring Model theory and von Neumann algebras

Exercise: Let N be a tracial von Neumann algebra, and construct Nω the tracial ultrapower, where ω is a
non principal ultrafilter on the natural numbers. Note that N embeds diagonally in Nω. Suppose N ′ ∩Nω

is not contained in the diagonal embedding of N , we will show in this exercise that N ′ ∩ Nω is infinite
dimensional.

(a) Suppose x0 = (ai)ω is an element of N ′ ∩Nω that is not in the diagonal embedding of N . Show that
there is an ε > 0 such that for all y ∈ N , limi→ω ||ai − y||2 > ε.

(b) Show that there exists x1 ∈ N ′ ∩Nω such that ||x0|| = ||x1|| and ||x0 − x1||2 > ε/2.

[Hint: try working with the same x0, but speeding up the sequence.]

(c) Show that one can find a sequence xi as above, such that they all have the same norm, and they are
pairwise 2-norm distance ε/2 apart. Conclude that the commutant is infinite dimensional.

Sam Kim An introduction to Operator Systems

For a C*-algebra, let Mm,n(A) denote the vector space of m × n-matrices with entries in A. For all n ≥ 1,
let 1n denote the identity element in Mn(A). It follows from [Theorem 3.10, C*-Algebra Notes] that for a
C*-algebra A, an element a ∈ A is positive if and only if there is some b ∈ A such that a = b∗b. The proof
of the following lemma is almost exactly the same as the proof of [Lemma 9.16, C*-Algebra Notes] and you
can feel free to fill in the details if you are interested.

Lemma. Let m,n ≥ 1. Let A ∈ Mn(B(H)) be a positive operator, let X ∈ Mm,n(B(H)), and let λ be a
non-negative number. We have the inequality[

λ · 1m X
X∗ A

]
≥ 0

if and only if X∗X ≤ λA.

The next two exercises use the above result to give us alternative ways to describe multiplication in a
C*-algebra.

Exercise (Walter’s Lemma): Let U, V ∈ B(H) be unitary operators and let X ∈ B(H). Show that
X = UV if and only if  1 U X

U∗ 1 V
X∗ V ∗ 1

 ≥ 0 .

Exercise1,2: Let X,Y, Z ∈ B(H) be contractions. Show that Z = XY if and only if for all B ∈ B(H), we
have the norm identity ∥∥∥∥[ 2 · 1 X −Z B

0 Y ∗ 1 0

]∥∥∥∥2 = ‖
[

2 · 1 X −Z B
]
‖2 .

[Hint: you may require the following two facts.

(1) For any m× n-block matrix X, ‖X∗X‖ = ‖X‖2.

1This is a result of David Blecher and Matthew Neal
2This was also used by Isaac Goldbring and Thomas Sinclair to show that the class of unital C*-algebras is first order

axiomatizable in the language of operator systems (see Isaac Goldbring’s talk).
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(2) For a positive operator T , we have the inequality T ≤ ‖T‖1. ]

Lecture Exercises

C*.1 Let π : A→ B be a surjective ∗-homomorphism between C∗-algebras and b ∈ B a self-adjoint element.
Show that b lifts to a self-adjoint element a ∈ A with π(a) = b and ‖a‖ = ‖b‖.

W*.1 Suppose that Γ is a discrete group. We say that Γ is inner amenable if the representation π : Γ →
U(`2(Γ \ {e})) given by

π(g)(ξ(x)) = ξ(g−1xg) ∀ ξ ∈ `2(Γ \ {e}), x ∈ Γ \ {e}, g ∈ Γ

has a sequence of unit vectors (ξn)∞n=1 such that

‖πg(ξn)− ξn‖2 → 0 ∀ g ∈ Γ

(a) Show that any non-inner amenable group is an i.c.c. group.

(b) Let Γ = Γ1 ∗Γ2 with |Γ1| ≥ 2, |Γ2| ≥ 3. Show that Γ is an i.c.c. group that is not inner amenable
by showing that π, as described above, has spectral gap. Conclude that L(Γ) 6∼= L(S∞).


