
Graph algebras, groupoids, and subalgebras

Sarah Reznikoff
Kansas State University

Support from: BIRS (funded also by AWM ADVANCE); MSRI (NSA grant H98230-19-1-0119, NSF grant
1440140, the Lyda Hill Foundation, the McGovern Foundation, and Microsoft Research); Fitchburg University;

Simons Foundation Collaboration Grant #360563 (SR); and NSF grant DMS-1600749 (EG)

Groundwork for Operator Algebras Lecture Series
July 18, 2020



Graph algebras
Uniqueness theorems

Groupoids and subalgebras

Directed graphs
Cuntz-Krieger systems
Examples
Structure

A directed graph is a four-tuple E = (E0,E1, r , s) consisting of
I a countable set E0 – the vertices of E ,
I a countable set E1 – the edges of E , and
I maps r , s : E1 → E0 called the range and source maps.

Notation: Denote by En the set of paths of length n ∈ N+, and E∗ = ∪∞n=0En.

Example

Ew

v

u
e

f E0 = {u, v ,w}

E1 = {e, f}

s(e) = u r(e) = v

s(f ) = w r(f ) = v

Sarah Reznikoff Kansas State University Graph algebras, groupoids, and subalgebras



Graph algebras
Uniqueness theorems

Groupoids and subalgebras

Directed graphs
Cuntz-Krieger systems
Examples
Structure

Let E = (E0,E1, r , s) be a directed graph and H a Hilbert space.

A Cuntz-Krieger E-system on H is a collection of
I orthogonal projections {Pv | v ∈ E0} onto subspaces of H, and
I partial isometries {Se | e ∈ E1} on H, s.t.

(i) The projections Pv , v ∈ E0, are mutually orthogonal,

(ii) for e ∈ E1, S∗e Se = Ps(e) and SeS∗e ≤ Pr(e), and

(iii) for v ∈ E0,
∑

r(e)=v

SeS∗e = Pv .

Note: we assume ∀v ∈ E0, 0 < |r−1({v})| <∞.

Conventions: For a path λ = e1e2 · · · en in En, denote Sλ = Se1 Se2 · · ·Sen .
Consider vertices v ∈ E0 to be paths of length zero, and denote Sv = Pv .

C∗(Sλ) = the C∗-algebra in B(H) generated by these operators

={SαS∗β |α, β paths with s(α) = s(β)} (exercise)
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Example

Ew

v

u
e

f

A CK-system for E requires
I projections Pw , Pv , Pu ,
I partial isometries

Sf :Pw H → Pv H

Se :PuH → Pv H,
I Pv H = Se(Pw H)⊕ Sf (PuH).

We can find such a system on H = C4:

Pw =

(
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
Pu =

(
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

)
Pv =

(
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

)
Sf =

(
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

)
Se =

(
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

)
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Fact: Given a directed graph E , there exists a universal Cuntz-Krieger
E-system (pv , se), meaning that C∗(E) := C∗(pv , se) satisfies the following.

For any E-system (Pv ,Se) there is a unique ∗-homomorphism

π : C∗(E)→ C∗(Pv ,Se)

pv 7→ Pv

se 7→ Se.

Two immediate questions:

1. Under what conditions can we be sure that C∗(E) ∼= C∗(Pv ,Se)?
(uniqueness theorems)

2. Under what conditions on graphs E and F can we be sure that
C∗(E) ∼= C∗(F )? (classification by moves)
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Examples

•Toeplitz algebra e
f

• Cuntz Algebras (‘77)

(n loops: On)

• Cuntz-Krieger algebras (‘80) 0-1 adjacency matrix A
; Cuntz-Krieger algebra OA

• Finite-dimensional C∗-algebras.

• The compact operators on a separable Hilbert space.

• Approximately finite (AF) algebras – Morita equivalent to graph algebras.

(Recall that Morita equivalence is an equivalence relation on C∗-algebras
that captures when they have the same representation theory.)
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I Kumjian-Pask-Raeburn: C∗(E) is AF iff E has no cycles.

Ideals:
I Gauge-invariant ideals correspond to saturated hereditary subsets of

vertices. Bates-Pask-Raeburn-Szymański (2000): Quotients by these
ideals produce C∗-algebras of quotient graphs.

I The ideal structure of C∗(E) can be completely described from the
graph, for arbitrary E . (Hong-Szymański (2004)).

I Brown-Fuller-Pitts-R (2020): Quotients by regular ideals preserve
Condition (L) (see next slide) in the graph.

Question 2: When is C∗(E) ∼= C∗(F )?

Eilers-Restorff-Ruiz-Sørensen (2016): a complete list of moves on graphs
classifying graph algebras up to Morita equivalence.

Eilers-Ruiz (2019): moves on graphs preserving other notions of equivalence,
including isomorphism.
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Question 1: If {Sλ, λ ∈ E∗} is a Cuntz-Krieger E-system, when is C∗(Sλ)
isomorphic to C∗(E)?

I The system is nondegenerate if every range projection SλS∗λ 6= 0.
I The graph satisfies Condition (L) if every cycle has an entry. That is, for

every path e1e2 . . . en with r(e1) = s(en) there exists an i and an edge
e 6= ei such that r(e) = r(ei ).

Cuntz-Krieger Uniqueness Theorem (Kumjian-Pask-Raeburn-Fowler, ’90s)
When E satisfies condition Condition (L) then for any nondegenerate
Cuntz-Krieger E-system {Sλ}, C∗(Sλ) ∼= C∗(E).

In other words, when E satisfies Condition (L), then the following are
equivalent:

(i) The canonical ∗-homomorphism π : C∗(E)→ C∗(Sλ) is injective.

(ii) π is injective on the diagonal subalgebra D := C∗({sαs∗α |α ∈ E∗}) of
range projections of the paths.
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Nagy-Reznikoff (2012): Let {Sλ, λ ∈ E∗} be a Cuntz-Krieger E-system. Then
the following are equivalent.

(i) The canonical ∗-homomorphism π : C∗(E)→ C∗(Sλ) is injective.

(ii) π is injective on the cycline subalgebra
M := C∗({sαs∗β |α, β ∈ E∗, α ∼ β}),

where α ∼ β if α = β or there is a cycle without entry λ s.t. β = αλ or
α = βλ.

Features of the cycline subalgebra:
I M is a maximal abelian self-adjoint subalgebra (masa)
I there is a faithful conditional expectation E : C∗(E)→M
I {x ∈ C∗(E) | xMx∗ ∪ x∗Mx ⊆M} is dense in C∗(E).
I The set of pure states onM that extend uniquely to pure states on

C∗(E) is weak-∗ dense in the state space.

(Recall: a state is a positive linear functional of norm 1. A pure state is an
extreme point in the state space.)

The first three items mean thatM is a Cartan subalgebra of C∗(E). This
brings us to the topic of groupoids.
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Recall that a groupoid is a nonempty small category G with inverses. That is:
I a set-sized collection of morphisms and objects
I source and range (target) maps denoted s and r from G to the set of

objects, denoted G(0),
I an associative composition, with gh defined whenever r(h) = s(g), and

s.t. r(gh) = r(g), s(gh) = s(h).
I an inverse operation assigning to any g ∈ G an element g−1 ∈ G defined

by gg−1 = r(g) and g−1g = s(g).

The path groupoid of a directed graph E :

Let E∞ = {x1x2 . . . | ∀n ∈ N+ x1x2 . . . xn ∈ E∗}.

GE = {(αy , `(α)− `(β), βy) | y ∈ E∞, α, β ∈ E∗},

s(x , d , z) = (z, 0, z), r(x , d , z) = (x , 0, x)

(x ,m, y)−1 = (y ,−m, x) (x ,m, y)(y , n, z) = (x ,m + n, z)

The cylinder sets Z (α, β) = {(αy , `(α)− `(β), βy) | y ∈ E∞} form a basis for
a locally compact Hausdorff étale topology.

Sarah Reznikoff Kansas State University Graph algebras, groupoids, and subalgebras



Graph algebras
Uniqueness theorems

Groupoids and subalgebras

The path groupoid
Cartan subalgebras and twists
Further directions

Recall: the C∗-algebra of a groupoid is a completion of the space of
compactly supported continuous functions. (Robin Deeley’s slides 38–40)

For a directed graph E , C∗(E) ∼= C∗(GE ), via the map sαs∗β 7→ χZ (α,β).

What is the image of the cycline subalgebraM = C∗(sαs∗β |α ∼ β}?
Recall: α ∼ β iff α = β or β = αλ (or vv) where λ is a cycle without entry.

Observation: α ∼ β iff ∀y ∈ E∞, αy = βy . Therefore,
I α ∼ β iff for all g = (αy , `(α)− `(β), βy) ∈ Z (α, β), we have

r(g) = αy = βy = s(g).
I α ∼ β iff Z (α, β) ⊆ Iso(GE ) := {g ∈ GE | r(g) = s(g)}.
I Thus the image ofM := C∗({sαs∗β |α ∼ β}) in C∗(GE ) under the

isomorphism above is C∗(Iso(GE )◦).

Theorem (Brown-Nagy-R-Sims-Williams, 2014)
For a locally compact Hausdorff étale groupoid G, a ∗-homomorphism
φ : C∗(G)→ B(H) is injective iff it is injective on C∗(Iso(G)◦).
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A typical graph algebra is not abelian, as sαsβ 6= 0 requires r(β) = s(α).

A fruitful method of studying nonabelian operator algebras is to examine nice
abelian subalgebras, such as Cartan subalgebras. We saw that the cycline
subalgebra of a graph algebra is Cartan.

A brief history of Cartan subalgebras:

1971 Vershik: notion of Cartan sub-von Neumann algebra.

1977 Feldman-Moore: Cartan von Neumann pairs arise from measured
countable equivalence relations.

1980 Renault’s definition of Cartan C∗-subalgebras. Correspond to
topologically principal étale groupoid with a twist.

1986 Kumjian: notion of C∗-diagonal, corresponding to subalgebra pairs
arising from twisted equivalence relations.
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A twist is an extension of groupoids: an exact sequence

T×G(0) ι // Σ
q // G such that

• q and ι are continuous groupoid homomorphisms (homeomorphisms of
the unit spaces), ι is injective.

• q−1(G(0)) = ι(T×G(0)) • Σ/T ∼= G.

The C∗-algebra C∗r (Σ; G) of the twist is a completion of
Cc(Σ; G) := {f ∈ Cc(Σ) | ∀z ∈ T ∀γ ∈ Σ f (z · γ) = zf (γ)}.

Renault (’08): Cartan subalgebras B ⊆ A correspond to étale, 2nd countable,
locally compact Hausdorff, topologically principal twisted groupoids:
(A,B) ∼= (C∗r (G; Σ),C0(G(0))).
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Recap: From a directed graph E we obtain a C∗-algebra, C∗(E).
I C∗(E) has a groupoid representation, C∗(GE ).
I C∗(E) has a useful Cartan subalgebra, the cycline subalgebraM.
I M is the C∗-algebra of the subgroupoid Iso(GE )◦.

However:
I The groupoid from Renault’s theorem is not typically the path groupoid!
I The cycline subalgebra of a topological groupoid algebra is not always

Cartan.
I Topological groupoids can give rise to other Cartan subalgebras.
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Cartan subalgebras that arise from other subgroupoids:

Theorem (Duwenig-Gillaspy-Norton-R-Wright, 2019)
Let G be a second countable, locally compact Hausdorff, étale groupoid, and
c : G(2) → T a 2-cocycle. Assume S is maximal among abelian subgroupoids
of Iso(G) on which c is symmetric. If S is clopen, normal, and immediately
centralizing, then C∗r (S, c) is a Cartan subalgebra of C∗r (G, c).

Twisted groupoid representations of C∗-algebras arising from “relatively
Cartan” subalgebras:

Theorem (Brown-Fuller-Pitts-R, 2018): Certain twists correspond to
subalgebras D ⊆ B ⊆ A where (B,D) is a Cartan inclusion and D ⊆ A is a
“homogenous regular inclusion”.
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Thank you!
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