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1 History and Motivation

• Operator algebras are very suitable for noncommutative mathematics

– A general trend of the time, and our time, is to make noncommutative analogs of existing
mathematics; this has some basis in quantum physics

• In the 1980’s, Voiculescu wanted to study the free group factors L(Fn).

– If the theory of von Neumann algebras is like “noncommutative measure theory”, then
the theory of I I1 factors is like non-commutative probability theory (since we have a trace
t such that t(1) = 1).

=) Place free products of groups into a framework of noncommutative probability

• Free probability theory = noncommutative probability theory + free independence.

Why do we keep studying it?

• Analogs of classical probability (central limit theorem, Brownian motion, entropy) have devel-
oped that can be applied to study operator algebras. A bit more on this in the second talk.

• In the 1990’s, Voiculescu discovered that freeness occurs asymptotically for many random ma-
trices. This allows for operator algebras to be modeled asymptotically by random matrices,
and helps us understand some objects e.g. the free group factors. Conversely, free probabil-
ity brought a conceptual approach to understanding the asymptotic eigenvalue distribution of
random matrices.

• The subject itself is beautiful and multi-faceted: Nica & Speicher have a combinatorial approach
to freeness, while Voiculescu’s original approach is analytic.
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Classical Probability (Brief Review/Definitions)

Briefly, a probability space is a measure space (W, P) such that P(W) = 1.

A random variable X is a measurable function X : W ! S, where S is another measurable space
(usually R or C).

Several key ideas: The expectation of X is E[X] =
R

W X(w) dP(w), and measures the mean of X.

The distribution of X describes the probability of certain events involving X, i.e. it details all quan-
tities of the form

P(X 2 A) for all Borel A ✓ W.

Independence is a property which intuitively tells us that “two random variables X and Y are unre-
lated” in a specific sense.
(More on this later).

Non-Commutative Probability Spaces, Random Variables, and NC Laws

We can view classical probability spaces as an algebra of random variables along with a functional
given by the expectation of these random variables.

Definition 1.1. A noncommutative probability space is a unital algebra A over C together with a
linear functional f : A ! C such that f(1) = 1.
If A is a C

⇤-algebra and f is a state, we call (A, f) a C
⇤-probability space. If A is a W

⇤-algebra and f
is a trace, we call (A, f) a W

⇤-probability space.

We should think of the linear functional f as an analog to the expectation functional:

f(x) =
Z

A

x (= E[x]).
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Definition 1.2. A random variable in (A, f) is an element x 2 A. The distribution or noncommuta-

tive law of x is the linear functional lx : C[x] ! C defined by p(x) 7! f(p(x)).

So, the distribution is . Why is this the right analog?

Fact: For classical random variables, the collection of all moments E[Xk], k � 1, completely deter-
mines the probability distribution of X.

2 Free Independence

Classical Independence: Why is it important?

Definition 2.1. Two events A and B are independent if P(A \ B) = P(A)P(B).
We call two random variables X and Y independent if for all A 2 s(X) and B 2 s(Y), A and B are
independent.

• Knowing individual distributions of X and Y completely determines the joint distribution of
(X, Y).

Free Independence

The definition of free independence can be summed up as: subalgebras A1, . . . ,As are freely inde-
pendent if “the alternating product of centered elements is centered”. More formally:

Definition 2.2. Let (A, f) be a noncommutative probability space, with unital subalgebras A1, . . . ,As.
We say that A1, . . . ,As are freely independent if whenever r � 2 and a1, . . . , ar 2 A satisfy:

• f(ai) = 0 for i 2 [r],

• ai 2 Aji
with 1  ji  s for i 2 [r]

• j1 6= j2, j2 6= j3, . . . , jr�1 6= jr,

then we must have f(a1 · · · ar) = 0.

What is “free” about this?
Recall from group theory: we call a family (Gi)i2I of subgroups of a group G free if there are no non-
trivial algebraic relations among the Gi’s,
i.e. g1 . . . gn 6= e whenever gj 6= e for all 1  j  n and gj 2 Gi(j) with i(j) 6= i(j + 1) for 1  j  n � 1.
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For group von Neumann algebras: the free independence of the subalgebras generated by (l(Gi))i2I

in (L(G), t) is equivalent to the family of subgroups (Gi)i2I being algebraically free.
Indeed, if we suppose that (l(Gi))i2I are freely independent, then whenever g1 . . . gn is a word satis-
fying the alternating condition with gj 6= e for all 1  j  n, then

t(g1 . . . gn) = 0;

but recall that t(e) = 1, so we conclude that g1 . . . gn 6= e. On the other hand, let (Gi)i2I be an
algebraically free family of subgroups. Then recall that t is defined by de, so for any alternating
product of elements g1 . . . gn satisfying t(gj) = 0 (equivalently gj 6= e), we have

t(g1 . . . gn) = hg1 . . . gnde, dei = 0 since g1 . . . gn 6= e.

Finally, note that the free independence of the sets (l(Gi))i2I is equivalent to the free independence
of the von Neumann algebras generated by them, by definition.

Why is this the right analogue?
Knowing the individual distributions on subalgebras completely determines joint distributions:

Theorem 2.3. Let (B, f) be a noncommutative probability space. Consider unital subalgebras A1, . . . ,A2 ✓
B which are freely independent. Let A be the algebra generated by A1, . . . ,As.

Then f|A is determined by f|A1 , . . . , f|As
along with the freeness condition.

Proof/Example: Freeness Determines Joint Distribution

Theorem 2.4 (Abbreviated Version). If unital subalgebras A1, . . . ,A2 ✓ B are freely independent, and

A = alg([s

i=1Ai), then f|A is determined by f|A1 , . . . , f|As
.

Proof goes by induction on r, the length of words a1 . . . ar.
For r = 2, suppose a1 2 Ai1 and a2 2 Ai2 with i1 6= i2. Since the subalgebras are free,

f[(a1 � f(a1)1)(a2 � f(a2)1] = 0.

Expanding the term in brackets, we have

(a1 � f(a1)1)(a2 � f(a2)1) = a1a2 � f(a2)a1 � f(a1)a2 + f(a1)f(a2)1.

Hence,

f(a1a2) = f[f(a2)a1 + f(a1)a2 � f(a1)f(a2)1] = f(a1)f(a2).

Connection to Random Matrices: Asymptotic Freeness

Let X
(N)
1 , . . . , X

(N)
s be independent GUE random matrices in MN(C)sa.

Set an r-tuple of positive integers m1, . . . , mr and alternating indices i1, . . . , ir 2 [s].
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Consider YN := ((X
(N)
i1

)m1 � cm1 I) · · · ((X
(N)
ir

)mr � cmr
I), where cm is the asymptotic value of X

m

i
.

Then E(tr(YN)) ! 0.

Basically, as N ! •, the matrices X
(N)
1 , . . . X

(N)
s satisfy the freeness condition.

3 Free Cumulants

The given definition of freeness is sometimes hard to check, and though it does give a way to find
all mixed moments, this is computationally annoying to do. We now want to give an equivalent
formulation of freeness that is easier to check in practice.

Non-Crossing Partitions

1 2 3 4 5 6

Crossing Partitions

1 2 3 4 5 6

1 2 3 4 5 6

Non-Crossing Partitions

1 2 3 4 5 6

Lattice of Non-Crossing Partitions, Example: NC(3)
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Free Cumulants & Moment-Cumulant Formula

The free cumulants are n-linear functionals kn : An ! C defined inductively via the moment-

cumulant formula:

f(a1 · · · an) = Â
p2NC(n)

kp(a1, . . . , an),

where if p = {V1, . . . , Vr}, then

kp(a1, . . . , an) = ’
V2p

V=(i1,...,i`)

k`(ai1 , . . . , ai`
).

Example. In the n = 2 case,

f(a1a2) = k{(1,2)}(a1, a2) + k{(1),(2)} = k2(a1, a2) + k1(a1)k1(a2).

Since k1(ai) = f(ai), we get:

k2(a1, a2) = f(a1a2)� f(a1)f(a2).

Now you try this with n = 3:

Rephrasing Free Independence

Definition 3.1. Let (A, f) be a non-commutative probability space. Elements a1, . . . , as 2 A are free

or freely independent if the generated unital subalgebras Ai = alg(1, ai) are free in A with respect
to f.

Theorem 3.2. The random variables a1, . . . , as 2 A are free iff all mixed cumulants of the a1, . . . , as vanish.

More explicitly, a1, . . . , as are free iff whenever we choose i1, . . . , in 2 {1, . . . , s} in such a way that ik 6= i` for

some k, ` 2 [n], then kn(ai1 , . . . , ain
) = 0.

6



4 Exploration: Free Central Limit Theorem

(Classical) Central Limit Theorem

Theorem 4.1. Let (ai)i2N be a sequence of independent, identically distributed classical random variables,

with f(ai) = 0 and f(a
2
i
) = s2

, and moments of all orders existing. Then,

1p
k
(a1 + · · ·+ ak) =: Sk ! N (0, s2) in distribution,

where N (0, s2) is the normal distribution with mean 0 and variance s2
.

What do we mean by “convergence in distribution”?

Definition 4.2. For random variables (ai)i2N, we say that ai ! X in distribution if the corresponding
probability measures µai

! µX weakly, i.e.
Z

f (ai)dµai
!

Z
f (X)dµX for all f 2 Cb(R).

Distributions and Moments

Central to the proof is the fact that distributions are determined by their moments, i.e.
If µX has moments ak =

R
X

k
dµX for all k 2 N, and if n has the same moments {ak}k2N, then n = µX.

Recall that: for a noncommutative random variable a 2 A, we defined the distribution of a by the
collection:

f(p(a)) for all p 2 C[x].

Definition 4.3. If (ak)k2N is a sequence of noncommutative random variables with ak 2 Ak, we say
ak ! a 2 A in distribution if

for all n 2 N, f(a
n

k
) ! f(a

n) as k ! •.
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Free Central Limit Theorem

Definition 4.4. A self-adjoint nc random variable s with odd moments f(s2n+1) = 0 and even mo-
ments f(s2n) = s2n · Cn, where Cn is the nth Catalan number, is a semi-circular element of variance

s2. If s = 1, we call s a standard semi-circular element.

Theorem 4.5. If (ai)i2N are self-adjoint, freely independent, identically distributed nc random variables with

f(ai) = 0 and f(a
2
i
) = s2

, then

1p
k
(a1 + · · ·+ ak) = Sk ! S(s2) in distribution

Proof of Free Central Limit Theorem
First, we unpack the definition of convergence in distribution:
All we have to do is compute asymptotic moments, and check that limk!• f(S2n+1

k
) = 0, while

limk!• f(S2n

k
) = s2n · Cn.

We start by expanding f(Sn

k
):

f(Sn

k
) = f

✓✓
1p
k
(a1 + · · ·+ ak)

◆n◆
= k

�n/2 Â
i:[n]![k]

f(ai1 · · · ain
).

There are many possible functions i : [n] ! [k] appearing in the sum above, but since the ai’s are
identically distributed and (freely) independent, f(ai1 · · · ain

) only depends on the number of differ-
ent indices and the number of each.

Example: f(·) only depends on shape of keri

In the classical case,

f(a1a2a1a3a1) = f(a
3
1)f(a2)f(a3)

= f(a
3
3)f(a1)f(a2)

= f(a3a1a3a2a3).

In the free and more general cases, we still have f(ai1 · · · ain
) depends only on the indices appear-

ing and their configuration, since freeness gives us some rule for calculating the mixed moments of
ai1 · · · ain

in terms of the individual moments of the ai’s, which are identical.

Notation: For a multi-index i = (i1, . . . , in), we define the kernel, denoted keri to be the partition
whose blocks correspond to the different values of the indices, e.g.

the multi-index i = (1, 2, 1, 3, 1, 3) has kernel:
1 2 1 3 1 3
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Lemma 4.6. When keri =kerj = p, then we have

f(ai1 · · · ain
) = f(aj1 · · · ajn

) =: f(p).

Continuing computing f(Sn

k
)

f(Sn

k
) = k

�n/2 Â
i:[n]![k]

f(ai1 · · · ain
)

= k
�n/2 Â

p2P(n)

f(p) · |{i : [n] ! [k] | keri = p}|

To count the last thing, suppose p has ` blocks. Then we can label each block with a distinct index in
[k]; so we have k choices for block 1, k � 1 choices for block 2, and so on...k � `+ 1 choices for block
`. Thus,

f(Sn

k
) = k

�n/2 Â
p2P(n)

f(p) · k(k � 1) · · · (k � |p|+ 1).

Note that now the number of terms in the sum does not depend on k!

We now see that many of the terms of the sum above vanish, i.e. f(p) = 0 for many p.
First, if p has a singleton, then f(p) = 0 since f(ai) = 0.
So we only consider p with block size � 2. This means |p|  n/2. On the other hand, note that
k · (k � 1) · · · (k � |p|+ 1) is asymptotically like k

|p|, and

lim
k!•

k
|p|

kn/2 =

(
1 if |p| = n/2
0 if |p| < n/2.

=) Asymptotically, any term f(p) with |p| < n/2 vanishes!
We only need to consider pairings p 2 P2(n).

So far, we’ve shown

lim
k!•

f(Sn

k
) = Â

p2P2(n)

f(p).

As a direct corollary, we have that all odd asymptotic moments are zero!

limk!•f(S2n+1
k

) = 0.

Now we only have to compute limk!• S
2n

k
.

We’ll return to this after y’all do some exercises!
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