Representations, Bimodules, and Approximations

Gregory Patchell

June 2023

1 Representations of Groups

Definition 1.1. Let G be a discrete group. A representation of G, (π, \mathcal{H}) , is a group homomorphism $\pi : G \to \mathcal{U}(\mathcal{H})$. (All of my group representations will be unitary; $\mathcal{U}(\mathcal{H})$ denotes the set of unitary operators from \mathcal{H} to \mathcal{H} and is therefore a subset of $\mathcal{B}(\mathcal{H})$.)

Example 1.2.

1. The trivial representation

$$1_G: G \to \mathcal{U}(\mathbb{C}) = \mathbb{T}$$
$$g \mapsto 1$$

2. The left regular representation

$$\lambda_G: G \to \mathcal{U}(\ell^2 G)$$
$$g \mapsto (\delta_h \mapsto \delta_{gh})$$

The right regular representation ρ_G is defined analogously.

3. If (π, \mathcal{H}) and (ρ, \mathcal{K}) are representations of G then so is $(\pi \oplus \rho, \mathcal{H} \oplus \mathcal{K})$ defined by

$$\pi \oplus \rho : G \to \mathcal{U}(\mathcal{H}) \oplus \mathcal{U}(\mathcal{K}) \subset \mathcal{U}(\mathcal{H} \oplus \mathcal{K})$$
$$g \mapsto \pi(g) \oplus \rho(g)$$

Definition 1.3. If (π, \mathcal{H}) and (ρ, \mathcal{K}) are representations of G, we say that π is *contained* in ρ and write $\pi \subset \rho$ if there is an isometry $V : \mathcal{H} \to \mathcal{K}$ such that $V\pi(g)\xi = \rho(g)V\xi$ for all $\xi \in \mathcal{H}$ and all $g \in G$.

Remark 1.4. If $\pi \subset \rho$, then note that in particular, for all $\xi \in \mathcal{H}$ and all $g \in G$ there exists $\eta \in \mathcal{K}$ such that $\langle \xi, \pi(g) \xi \rangle_{\mathcal{H}} = \langle \eta, \rho(g) \eta \rangle_{\mathcal{K}}$. (Take $\eta = V \xi$.)

The quantities $\langle \xi, \pi(g)\xi' \rangle$ are called *matrix coefficients* of π . We would like an approximate version of inclusion where we might not have equality of matrix coefficients, but near equality up to an arbitrary $\varepsilon > 0$ and allowing convex combinations. This inspires our next definition.

Definition 1.5. Let (π, \mathcal{H}) and (ρ, \mathcal{K}) be representations of G. We say π is weakly contained in ρ and write $\pi \prec \rho$ if for all $\varepsilon > 0$, all finite subsets $F \subset G$ and all $x \in \mathcal{H}$ there exist $\eta_1, \ldots, \eta_n \in \mathcal{K}$ such that for all $g \in F$,

$$\left|\langle \xi, \pi(g)\xi \rangle - \sum_{i=1}^n \langle \eta_i, \rho(g)\eta_i \rangle \right| < \varepsilon.$$

2 BIMODULES

The notion of weak containment is actually intimately related to a (non-Hausdorff!!) topology on the space of representations of G, Rep(G). Let (π, \mathcal{H}) be a representation of G. For $\varepsilon > 0$, $F \subset G$ finite, and $\xi_1, \ldots, \xi_n \in \mathcal{H}$, define

$$V(\pi;\varepsilon,F,\xi_1,\ldots,\xi_n)$$

:= { $(\rho,\mathcal{K}) \in \operatorname{Rep}(G): \exists \eta_1,\ldots,\eta_n \in \mathcal{K} \ \forall 1 \le i,j \le n \ \forall g \in F \ |\langle \xi_i,\pi(g)\xi_j\rangle - \langle \eta_i,\rho(g)\eta_j\rangle | < \varepsilon$ }

Definition 1.6. The *Fell topology* on Rep(G) is the topology generated by the $V(\pi; \varepsilon, F, \xi_1, \ldots, \xi_n)$ for $(\pi, \mathcal{H}) \in \text{Rep}(G), \varepsilon > 0, F \subset G$ finite, $n \in \mathbb{N}$, and $\xi_i \in \mathcal{H}$.

Remark 1.7. For a fixed representation (π, \mathcal{H}) of G, the collection of sets $V(\pi; \varepsilon, F, \xi_1, \ldots, \xi_n)$ (as ε, F , and the ξ_i vary) is a neighbourhood base for π in the Fell topology on Rep(G).

Exercise 1.8. Show that in a topological space X, we have that $x \in \overline{\{y\}}$ if and only if for all open sets $U, x \in U$ implies $y \in U$.

Fact 1.9. $\pi \prec \rho$ if and only if $\pi \in \overline{\{\rho^{\oplus \infty}\}}$. Hint: First consider cyclic representations. $(\rho^{\oplus \infty} \text{ is the countably infinite direct sum of } \rho \text{ with itself and the closure is taken in the Fell topology.})$

2 Bimodules

Definition 2.1. Let M, N be von Neumann algebras. An M-N bimodule (also Hilbert bimodule or correspondence) is a Hilbert space \mathcal{H} with commuting normal *-representations $\pi_M : M \to \mathcal{B}(\mathcal{H})$ and $\pi_{N^{op}} : N^{op} \to \mathcal{B}(\mathcal{H})$. We often write ${}_M\mathcal{H}_N$ to denote a M-N bimodule.

Example 2.2. Let (M, τ) be a tracial von Neumann algebra.

- 1. Recall the standard representation $L^2(M)$ of M, namely the closure of M in the norm $||x||_2 = \sqrt{\tau(x^*x)}$. For $x \in M$, denote by \hat{x} the image of x in $L^2(M)$. Then $L^2(M)$ is an M-M bimodule where the left action on $\hat{M} \subset L^2(M)$ is given by $x\hat{y} = x\hat{y}$ and the right action n \hat{M} is given by $\hat{y}x = \hat{y}x$, and both actions are extended to all of $L^2(M)$ by continuity. $L^2(M)$ is called the *trivial bimodule*.
- 2. $L^2(M) \otimes L^2(M)$ is also an *M*-*M*-bimodule with left action given by $x(\hat{1} \otimes \hat{1}) = \hat{x} \otimes \hat{1}$ and right action given by $(\hat{1} \otimes \hat{1})x = \hat{1} \otimes \hat{x}$. $L^2(M) \otimes L^2(M)$ is called the *coarse bimodule*.

Definition 2.3. If ${}_M\mathcal{H}_N$ and ${}_M\mathcal{K}_N$ are M-N bimodules, we say that ${}_M\mathcal{H}_N$ is *contained* in ${}_M\mathcal{K}_N$ and write ${}_M\mathcal{H}_N \subset {}_M\mathcal{K}_N$ if there is an isometry $V : \mathcal{H} \to \mathcal{K}$ such that $V(x\xi) = x(V\xi)$ and $V(\xi x) = (V\xi)x$ for all $\xi \in \mathcal{H}$ and all $x \in M$.

Remark 2.4. If $\pi \subset \rho$, then note that in particular, for all $\xi \in \mathcal{H}$ and all $g \in G$ there exists $\eta \in \mathcal{K}$ such that $\langle \xi, \pi(g) \xi \rangle_{\mathcal{H}} = \langle \eta, \rho(g) \eta \rangle_{\mathcal{K}}$. (Take $\eta = V\xi$.)

As in the group case, the space of M-N bimodules $\operatorname{Bimod}(M, N)$ can be topologized in such a way that allows us to analyze approximate inclusion of bimodules. Let ${}_{M}\mathcal{H}_{N}$ be an M-N bimodule. For $\varepsilon > 0, E \subset M$ finite, $F \subset N$ finite, and $\xi_{1}, \ldots, \xi_{n} \in {}_{M}\mathcal{H}_{N}$, define

 $V({}_{M}\mathcal{H}_{N};\varepsilon,E,F,\xi_{1},\ldots,\xi_{n})$:= { $_{M}\mathcal{K}_{N}\in\operatorname{Bimod}(M,N):\exists\eta_{1},\ldots,\eta_{n}\in\mathcal{K}\;\forall i,j\;\forall x\in E,y\in F\;|\langle\xi_{i},x\xi_{j}y\rangle-\langle\eta_{i},x\eta_{j}y\rangle|<\varepsilon$ }

Definition 2.5. The *Fell topology* on Bimod(M, N) is the topology generated by the $V(_M\mathcal{H}_N; \varepsilon, E, F, \xi_1, \ldots, \xi_n)$ for $_M\mathcal{H}_N \in \text{Bimod}(M, N), \varepsilon > 0, E \subset M$ finite $F \subset N$ finite, $n \in \mathbb{N}$, and $\xi_i \in \mathcal{H}$.

Remark 2.6. For a fixed bimodule ${}_{M}\mathcal{H}_{N}$, the collection of sets $V(\pi; \varepsilon, E, F, \xi_{1}, \ldots, \xi_{n})$ (as ε, E, F , and the ξ_{i} vary) is a neighbourhood base for ${}_{M}\mathcal{H}_{N}$ in the Fell topology on Bimod(M, N).

Definition 2.7. We say that ${}_{M}\mathcal{H}_{N}$ is weakly contained in ${}_{M}\mathcal{K}_{N}$ and write ${}_{M}\mathcal{H}_{N} \prec {}_{M}\mathcal{K}_{N}$ if $\mathcal{H} \in \overline{\{\mathcal{K}^{\oplus \infty}\}}$.

3 Amenability and Property (T)

Definition 3.1. Let G be a discrete group and M a tracial von Neumann algebra.

- 1. G is amenable if $1_G \prec \lambda_G$.
- 2. *M* is amenable if $L^2(M) \prec L^2(M) \otimes L^2(M)$.
- 3. G has Property (T) if for all representations π of $G, 1_G \prec \pi \implies 1_G \subset \pi$.
- 4. If M is a II₁ factor, then M has Property (T) if for all M-M bimodules $\mathcal{H}, L^2(M) \prec \mathcal{H}$ implies $L^2(M) \subset \mathcal{H}$.

Theorem 3.2 (Dixmier Averaging). If M is a factor then for all $x \in M$ and $\varepsilon > 0$, there are unitaries $u_1, \ldots, u_n \in M$ and $\alpha \in \mathbb{C}$ such that $\left\|\frac{1}{n}\sum_{i=1}^n u_i x u_i^* - \alpha 1\right\| < \varepsilon$. If M is tracial, then $\alpha = \tau(x)$.