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1 Representations of Groups

Definition 1.1. Let G be a discrete group. A representation of G, (π,H), is a group homomorphism
π : G → U(H). (All of my group representations will be unitary; U(H) denotes the set of unitary
operators from H to H and is therefore a subset of B(H).)

Example 1.2. .

1. The trivial representation

1G : G → U(C) = T
g 7→ 1

2. The left regular representation

λG : G → U(ℓ2G)

g 7→ (δh 7→ δgh)

The right regular representation ρG is defined analogously.

3. If (π,H) and (ρ,K) are representations of G then so is (π ⊕ ρ,H⊕K) defined by

π ⊕ ρ : G → U(H)⊕ U(K) ⊂ U(H⊕K)

g 7→ π(g)⊕ ρ(g)

Definition 1.3. If (π,H) and (ρ,K) are representations of G, we say that π is contained in ρ and
write π ⊂ ρ if there is an isometry V : H → K such that V π(g)ξ = ρ(g)V ξ for all ξ ∈ H and all
g ∈ G.

Remark 1.4. If π ⊂ ρ, then note that in particular, for all ξ ∈ H and all g ∈ G there exists η ∈ K
such that ⟨ξ, π(g)ξ⟩H = ⟨η, ρ(g)η⟩K. (Take η = V ξ.)

The quantities ⟨ξ, π(g)ξ′⟩ are called matrix coefficients of π. We would like an approximate
version of inclusion where we might not have equality of matrix coefficients, but near equality up to
an arbitrary ε > 0 and allowing convex combinations. This inspires our next definition.

Definition 1.5. Let (π,H) and (ρ,K) be representations of G. We say π is weakly contained in ρ
and write π ≺ ρ if for all ε > 0, all finite subsets F ⊂ G and all x ∈ H there exist η1, . . . , ηn ∈ K
such that for all g ∈ F, ∣∣∣∣∣⟨ξ, π(g)ξ⟩ −

n∑
i=1

⟨ηi, ρ(g)ηi⟩

∣∣∣∣∣ < ε.
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The notion of weak containment is actually intimately related to a (non-Hausdorff!!) topology
on the space of representations of G, Rep(G). Let (π,H) be a representation of G. For ε > 0, F ⊂ G
finite, and ξ1, . . . , ξn ∈ H, define

V (π; ε, F, ξ1, . . . , ξn)

:= {(ρ,K) ∈ Rep(G) : ∃η1, . . . , ηn ∈ K ∀1 ≤ i, j ≤ n ∀g ∈ F | ⟨ξi, π(g)ξj⟩ − ⟨ηi, ρ(g)ηj⟩ | < ε}

Definition 1.6. The Fell topology on Rep(G) is the topology generated by the V (π; ε, F, ξ1, . . . , ξn)
for (π,H) ∈ Rep(G), ε > 0, F ⊂ G finite, n ∈ N, and ξi ∈ H.

Remark 1.7. For a fixed representation (π,H) of G, the collection of sets V (π; ε, F, ξ1, . . . , ξn) (as
ε, F, and the ξi vary) is a neighbourhood base for π in the Fell topology on Rep(G).

Exercise 1.8. Show that in a topological space X, we have that x ∈ {y} if and only if for all open
sets U, x ∈ U implies y ∈ U.

Fact 1.9. π ≺ ρ if and only if π ∈ {ρ⊕∞}. Hint: First consider cyclic representations. (ρ⊕∞ is the
countably infinite direct sum of ρ with itself and the closure is taken in the Fell topology.)

2 Bimodules

Definition 2.1. Let M,N be von Neumann algebras. An M -N bimodule (also Hilbert bimodule or
correspondence) is a Hilbert space H with commuting normal *-representations πM : M → B(H)
and πNop : Nop → B(H). We often write MHN to denote a M -N bimodule.

Example 2.2. Let (M, τ) be a tracial von Neumann algebra.

1. Recall the standard representation L2(M) of M, namely the closure of M in the norm ∥x∥2 =√
τ(x∗x). For x ∈ M, denote by x̂ the image of x in L2(M). Then L2(M) is an M -M bimodule

where the left action on M̂ ⊂ L2(M) is given by xŷ = x̂y and the right action n M̂ is given
by ŷx = ŷx, and both actions are extended to all of L2(M) by continuity. L2(M) is called the
trivial bimodule.

2. L2(M)⊗L2(M) is also an M -M -bimodule with left action given by x(1̂⊗ 1̂) = x̂⊗ 1̂ and right
action given by (1̂⊗ 1̂)x = 1̂⊗ x̂. L2(M)⊗ L2(M) is called the coarse bimodule.

Definition 2.3. If MHN and MKN areM -N bimodules, we say that MHN is contained in MKN and
write MHN ⊂ MKN if there is an isometry V : H → K such that V (xξ) = x(V ξ) and V (ξx) = (V ξ)x
for all ξ ∈ H and all x ∈ M.

Remark 2.4. If π ⊂ ρ, then note that in particular, for all ξ ∈ H and all g ∈ G there exists η ∈ K
such that ⟨ξ, π(g)ξ⟩H = ⟨η, ρ(g)η⟩K. (Take η = V ξ.)

As in the group case, the space of M -N bimodules Bimod(M,N) can be topologized in such a
way that allows us to analyze approximate inclusion of bimodules. Let MHN be an M -N bimodule.
For ε > 0, E ⊂ M finite, F ⊂ N finite, and ξ1, . . . , ξn ∈ MHN , define

V (MHN ; ε, E, F, ξ1, . . . , ξn)

:= {MKN ∈ Bimod(M,N) : ∃η1, . . . , ηn ∈ K ∀i, j ∀x ∈ E, y ∈ F | ⟨ξi, xξjy⟩ − ⟨ηi, xηjy⟩ | < ε}

Definition 2.5. The Fell topology on Bimod(M,N) is the topology generated by the
V (MHN ; ε, E, F, ξ1, . . . , ξn) for MHN ∈ Bimod(M,N), ε > 0, E ⊂ M finite F ⊂ N finite, n ∈ N,
and ξi ∈ H.

Remark 2.6. For a fixed bimodule MHN , the collection of sets V (π; ε, E, F, ξ1, . . . , ξn) (as ε, E, F,
and the ξi vary) is a neighbourhood base for MHN in the Fell topology on Bimod(M,N).

Definition 2.7. We say that MHN is weakly contained in MKN and write MHN ≺ MKN if H ∈
{K⊕∞}.
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3 Amenability and Property (T)

Definition 3.1. Let G be a discrete group and M a tracial von Neumann algebra.

1. G is amenable if 1G ≺ λG.

2. M is amenable if L2(M) ≺ L2(M)⊗ L2(M).

3. G has Property (T) if for all representations π of G, 1G ≺ π =⇒ 1G ⊂ π.

4. If M is a II1 factor, then M has Property (T) if for all M -M bimodules H, L2(M) ≺ H implies
L2(M) ⊂ H.

Theorem 3.2 (Dixmier Averaging). If M is a factor then for all x ∈ M and ε > 0, there are
unitaries u1, . . . , un ∈ M and α ∈ C such that

∥∥ 1
n

∑n
i=1 uixu

∗
i − α1

∥∥ < ε. If M is tracial, then
α = τ(x).


